Uncertainty aware models for the diagnosis of primary and secondary skin tumours

Project PID2022-140189OB-C22: Modelos conscientes de la incertidumbre para el diagnóstico de tumores cutáneos primarios y secundarios

Part of the Coordinated Project Acercando la patología computacional a la práctica clínica: un sistema de IA para el diagnóstico de tumores cutáneos primarios y secundarios (ASSIST)

Journal Papers

Conference Papers

  • F. M. Castro-Macías, F. Pérez-Bueno, M. Vega, J. Mateos, R. Molina, and A. K. Katsaggelos, “Blind Color Deconvolution and Classification of Histological Images Using the Hyperbolic Secant Prior” in IEEE International Symposium on Biomedical Imaging, May 2024.
    DOIPDF
  • F. M. Castro-Macías, F. Pérez-Bueno, M. Vega, J. Mateos, R. Molina, and A. K. Katsaggelos, “Bayesian Blind Image Deconvolution using an Hyperbolic-Secant prior” in 2024 IEEE International Conference on Image Processing (ICIP 2024), 1500-1506, October 2024.
    DOIPDF
  • F. M. Castro-Macías, P. Morales-Álvarez, Y. Wu, R. Molina, and A.K. Katsaggelos, “Sm: enhanced localization in Multiple Instance Learning for medical imaging classification” in 2024 Conference on Neural Information Processing Systems (NeurIPS 2024), December 2024. In press.
    PDFCode
  • F. J. Sáez-Maldonado, J. Maroñas-Molano, and D. Hernández-Lobato, “Mode Collapse in Variational Deep Gaussian Processes” in NeurIPS 2024 Workshop on Bayesian Decision-making and Uncertainty, December 2024. In press.
    PDF

Theses

  • A. Schmidt, Probabilistic Deep Learning for Histopathological Images: Overcoming the Labeling Bottleneck of Computer-Aided Diagnosis, Universidad de Granada, February 2024. Supervised by: R. Molina and P. Morales-Álvarez.
    PDF