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Abstract

Hematoxylin and Eosin (H&E) color variation among histological images from different
laboratories can significantly degrade the performance of Computer-Aided Diagnosis
systems. The staining procedure is the primary factor responsible for color variation,
and consequently, the methods designed to reduce such variations are designed in con-
cordance with this procedure.

In particular, Blind Color Deconvolution (BCD) methods aim to identify the true
underlying colors in the image and to separate the tissue structure from the color
information. Unfortunately, BCD methods often assume that images are stained solely
with pure staining colors (e.g., blue and pink for H&E). This assumption does not hold
true when common artifacts such as blood are present, requiring an additional color
component to represent them. This is a challenge for color standardization algorithms,
which are unable to correctly identify the stains in the image, leading to unexpected
results.

In this work, we propose a Blood-Robust Bayesian K-Singular Value Decomposition
model designed to simultaneously detect blood and extract color from histological im-
ages while preserving structural details. We evaluate our method using both synthetic
and real images, which contain varying amounts of blood pixels.
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1. Introduction

The development of Computer-Aided Diagnosis (CAD) systems for the analysis
of Whole Slide Images (WSIs) poses important challenges [1], with one of the most
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significant being that their performance is adversely affected when using data from
different hospitals [2]. This decrease in performance is mainly due to color variation
and artifacts in the image [3], which arise from a wide range of sources such as different
chemicals, scanners, or laboratory conditions. Therefore, preprocessing is often a key
step [3] for reliable CAD systems.

Blind Color Deconvolution (BCD) methods [4] estimate both the image-specific
stain colors and structure (concentration). The separation itself can reduce the impact
of color variation [5] and it is often included as a crucial step for other approaches such
as color normalization [6] or color augmentation [7]. See [3] for a complete survey.

However, a critical assumption underlying BCD methods is that the image contains
only the expected stains (e.g. Blue for nuclei and pink for cytoplasm and connective
tissue in H&E images). This assumption does not hold true when artifacts are present.
Artifacts degrade the quality and diagnosis value of a WSI and introduce additional
sources of color variation [3]. In this work, we focus on blood in the images. It can
appear due to vessels in the tissue, hemorrhages, or contamination of the slide. Once
stained, blood exhibits metachromasia [8]. It reacts differently to H&E staining and
acquires an entirely different color (usually red) [9]. This distinct color is commonly
used for its detection [9] but also hampers the performance of BCD methods [10]. We
refer to areas with blood, as blood artifacts.

1.1. Contributions

While the relationship between artifacts and color is noteworthy, the intersection
of artifact detection and color variation has hardly been explored. In most cases, the
presence of blood and other artifacts is ignored by BCD methods. Similarly, there is a
scarcity of works using BCD for artifact detection. Our work bridges the gap between
the fields of artifact detection and color variation, with a focus on blood and its impact
on BCD methods applied to H&E images. We propose the use of BCD for blood
detection, leveraging the color difference between blood and H&E stains. For this goal,
we use the recently proposed Bayesian K-Singular Value Decomposition (BKSVD) [4]
for BCD. While BKSVD excels at identifying the H&E stains, it is negatively affected
by the presence of blood. We extend the model to detect the presence of blood, enabling
both blood detection and robust estimation of the H&E stains.

This paper builds upon our recent work presented at the international conference
of Artificial Intelligence in Medicine (AIME 2023) [11]. Four major enhancements are
included in this extended work:

• In [11] we solely rely on the blood channel to detect anomalies. We now introduce
a fully Bayesian detection approach that relies on the posterior distribution of the
stain concentrations. This novel approach is more accurate and robust. We also
provide a complete and clearer mathematical derivation of the model.

• With this novel approach, the need for a manual threshold is eliminated. Instead,
we introduce a new thresholding method based on the estimated variance.
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• We expand the experimental validation to include additional experiments and
more extensive datasets. These experiments include evaluating blood detection,
accuracy of color-vector matrix estimation, and tissue fidelity.

• Furthermore, we evaluate the impact of the proposed approach in the context of
breast cancer classification.

The paper is organized as follows. Section 1.2 describes related works on BCD
and blood detection. Section 2 provides an overview of the BKSVD method in [4],
discusses its limitations, and provides the necessary improvements for its application to
robust blood detection and BCD. In section 3 we experimentally evaluate the proposed
method. Finally, section 5 concludes the paper.

1.2. Related Work

1.2.1. Blind Color Deconvolution

Most BCD methods use the Beer-Lambert law [12], which establishes a linear com-
bination between the stains in the optical density (OD) space. Let I be a RGB image
I ∈ R3×Q, where each value icq ∈ I correspond to pixel q and channel c ∈ RGB. Then,
the OD is defined as ycq = − log(icq/i

0
cq), where i0cq = 255 denotes the incident light.

Then, a WSI Y stained with S stains follows the equation

Y = MC+N , (1)

where M = [m1, · · · ,mS] ∈ R3×S is the normalized stains’ specific color-vector matrix;
C ∈ RS×Q is the stain concentration matrix, its q-th column, cq = [c1,q, . . . , cS,q]

T,
represents the contribution of each stain to the q-th pixel value in Y; and, finally,
N ∈ R3×Q is a Gaussian noise matrix with independent components of variance β−1.

The goal of BCD is to estimate C and M from Y. Here we summarize the most
relevant approaches in the literature. See [3] for a complete survey. Ruifrok et al. [12]
use a given color-vector matrix to separate the stains, which is widely used as a standard.
However, the actual color is usually considered to be unknown due to color variation.
In the work by Macenko et al. [13] the H&E channels are estimated using Singular
Value Decomposition (SVD). Vahadane et al. [6] estimate the color-vector matrix using
Non-Negative Matrix Factorization (NMF) and the assumption that most pixels in the
image are stained by a single stain. Alsubaie et al. [14] apply Independent Component
Analysis (ICA) in the wavelet domain, under the assumption that stains might not be
independent.

A Bayesian approach is followed by Hidalgo et al. [15] by defining a smoothness
prior on the concentrations and a similarity prior on the color-vectors. To improve
the quality of the concentration obtained, this work was extended by Pérez-Bueno et
al. in [16] by using a Total Variation (TV) prior and in [5] with general super-Gaussian
priors. These Bayesian methods share a need for a reference color-vector matrix for the
similarity prior. The use of a prior on the color [16, 5] can reduce the effect of noise and
artifacts, but limits the adaptability to different color distributions. To solve this issue,
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the work in [4] proposes the use of Bayesian K-SVD (BKSVD) to find the color-vector
matrix as a dictionary learning problem.

Deep Learning (DL) techniques are not widely used in BCD, mostly because of the
lack of ground truth for stain separation. Most works proposed for color variation using
DL avoid the BCD step and directly produce color normalization [17, 18, 19]. However,
some works have applied DL for BCD. Duggal et al. [20] proposed the use of [13]
as a CNN stain deconvolution layer to feed a stain-separated input to CNN-classifiers.
Zheng et al. [21] produced multiple stain separation candidates using a Capsule Network
and then assembled them with a sparse constraint. An Autoencoder was proposed by
Abousamra et al. [22] to separate multiplex immunohistochemistry images using weak
labels. Finally, the work by Yang et al. [23] proposed a deep Bayesian neural network
that jointly estimates the stains and concentrations without ground truth, using the
similarity prior proposed in [15].

From the above works, few consider the effect of noise and artifacts. The use of the
method by Macenko et al. is widely extended, although it is known to be affected by
noise and artifacts [24, 10]. To speed up the method, Vahadane et al. perform a patch
sampling of the WSI. They take advantage of their patch-wise stain estimation to cal-
culate the median color-vector and provide a robust estimation against small artifacts.
Alsubaie et al. [14] include linear filtering to reduce the noise contamination when esti-
mating the stain matrix but did not consider large artifacts. The presence of artifacts
and its effect on the color estimation is acknowledged in [10]. The estimation of the
color-vector and the robust maximum (99th percentile) of the H&E concentrations are
used to identify low-quality images, substituting the color-vector matrix with average
estimates from other images when poor quality is detected. The use of a prior on the
color [25, 16, 5] can reduce the effect of the noise but limits the adaptability to different
color distributions.

1.2.2. Blood Detection

The Detection of blood is frequently formulated as a color-related problem. In [9],
Bukenya et al. classify blood segmentation techniques into (i) RGB segmentation, (ii)
segmentation using other color space (such as HSV, Lab, and LUV) and additional
techniques, (iii) segmentation using one or two channels of a non-RGB color space.
Kim et al. [26] approach the detection of blood with a combination of staining proto-
col and image processing, using mathematical morphology and thresholding the RGB
channels of the image. Sertel et al. [27] use the color to distinguish five major compo-
nents in the H&E images (i.e. nuclei, cytoplasm, background, blood, and extracellular
material). First they threshold the RGB channels to remove blood and background,
and then use k-means in the L*a*b color space. This same RBG tresholding protocol
is also used in [28] to remove blood. Recently, Adamo et al. [29] choose between red or
green channels, before using the Otsu’s threshold to detect blood vessels. The initial
mask is then processed using pixel connectivity. A Maximum Likelihood Estimation
is implemented by Mosaliganti et al. [30] to classify the pixels into four classes (blood,
cytoplasm, nuclei, and background) in the RGB color space. In [31], Swiderska et
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al. use the magenta channel of the CMYK space to detect blood areas that are later
classified into hemorrhages or vessels using mathematical morphology and a decision
tree. Chen et al. [32] use Hue and saturation to detect intracerebral hemorrhage. HSV
was used by Fernandez-Carrobles et al. [33] in combination with logical operators and
morphology and by Aldasoro et al. [34] combined with region-growing.

More complex approaches combine the choice of color space with clustering, mathe-
matical morphology, classification, or DL. Mercan et al. [35] use a combination of LBP
and L*a*b histograms to feed a clustering algorithm. Blood is identified as one of the
clusters, which is used later to represent WSIs as bag-of-words. In [36], Swidereska et
al. use a U-Net model to detect damaged tissue. Although the technique is only tested
on IHC-stained brain tissues, the authors consider it possible to use it for WSI analysis
of other tissues and stain protocols. Clymer et al. [37] use a pretrained RetinaNet model
to detect blood vessels at low resolution. In other cases, blood is identified as a region
to discard. Wetteland et al. [38] use a segmentation CNN to find several tissue classes,
including blood and damaged tissue. This work was extended to multi-scale in [39], and
combined with clustering to include low-probability patches in [40]. Finally, Kanwal et
al. [41] evaluate the detection of blood and damaged tissue from diagnostically relevant
tissue using five popular CNN architectures.

2. Material and Methods

In this section we first introduce the BKSVD method [4] for blind color deconvo-
lution of histological images, then provide the details for the proposed blood robust
BKSVD, and finally present the data that has been used in this work.

2.1. Bayesian k-SVD for Blind Color Deconvolution

Although the color in the slide is a combination of both H&E stains, each biological
structure presents structure-specific color properties [6, 4]. This allows pathologists
to distinguish structures based on their color. In [4] a Bayesian framework is used to
approach the problem as a dictionary learning problem, with sparse concentrations [6],
which encourages the framework to find the color-vector matrix M that better repre-
sents the differential staining of the structures in the image.

Following (1), the OD observed image Y is modeled with a Gaussian distribution
p(Y|C,M, β), where β controls the noise precision. That is,

p(Y|C,M, β) =

Q∏
q=1

N (yq|Mcq, β
−1I3×3). (2)

The sparsity of the solution is promoted by a zero-mean Laplace prior on the concen-
trations, that is,

p(cq) ∝ exp
(
−
√

λq∥cq∥1
)
, (3)
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with λq > 0 the scale parameter. Unfortunately, the non-conjugacy of this distribution
with the likelihood in (2) makes inference intractable. To circumvent this problem, the
prior is replaced with a two-tiered hierarchical prior where

cq ∼ N (cq|0,Γq), (4)

is a zero-mean normal distribution with diagonal covariance Γq = diag(γq), and the
positive-valued γsq is sampled from a Gamma hyperprior given by γsq ∼ Γ(1, λq/2).
Independence is assumed yet again, so that p(γq) =

∏
s p(γsq). The samples produced

using this scheme follow a Laplace distribution [4] while keeping the inference tractable.
Finally, a flat prior p(M) on the color-vector matrix is used, and unit norm for each
column ms is assumed on their posterior estimation.

The true posterior p(Θ|Y) = p(Y,Θ)/p(Y), where Θ = {β,M,C} is the set of
unknowns, is approximated with variational inference [4]. WSIs are usually very large,
rendering their processing computationally expensive. The number of pixels necessary
to estimate the color-vector matrix M̂ is reduced by using a uniform random sampling
of the WSI. The estimations M̂ and Ĉ are then initialized to M and Ĉ = M+Y, where
M is the Ruifrok’s standard matrix [12] and M+ the Moore-Penrose pseudo-inverse of
M. After iteratively optimizing the model parameters and estimations for M̂ and Ĉ
are provided. Notice that the method in [4] did not consider the presence of blood.
When the image contains blood artifacts M will be wrongly estimated because it will
be forced to have two color vectors (H&E).

2.2. Robust Blind Color Deconvolution and Blood Detection

Blood and other artifacts hamper the accurate estimation of the color-vector matrix
and the successful separation of the stains. Developing a robust and accurate BCD
method is closely linked to the correct identification of these elements, which leads to
the combined BCD and blood detection approach. In this work, we extend the BKSVD
method introduced above and propose its use for blood detection and robust BCD
estimation. Figure 1 illustrates the proposed method.

As discussed above, blood gets stained in a different color, commonly used for its
detection [9]. Therefore, it can be seen as an additional effective stain, requiring a
third stain channel to represent it. A third channel is often used by BCD [12, 13,
16], commonly referred to as the ”background” channel. The content of the third
channel is considered to be residual when only two stains are present in the image.
However, it is important to keep the staining procedure in mind. While pixels in
the image are a combination of H&E, only the blood suffers from metachromasia and
should use the third channel. Therefore, including a third channel when not necessary,
hampers the quality of the H&E estimated color-vectors m̂h, m̂e, and the corresponding
concentrations [16].

BKSVD [4] uses two channels to separate H&E images, but it can be extended
to include more channels. To account for the potential presence of blood or other
elements in the image, we divide the BCD process into two stages. The first stage
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Figure 1: Overview of the proposed method. In the first stage, the image is separated into three stain
channels. After checking the right order of the channels, see the text, the method identifies the blood
pixels. The blood mask is used to exclude those pixels from the second stage, that provides a robust
estimation of the H&E stains in the image. The binary blood mask is displayed using python viridis
color map for better visualization. Purple and yellow represent 0 and 1, respectively.

employs three channels to represent all elements in the image, while the second stage
uses only two channels and focuses on the H&E stains. Blood detection is performed
as an intermediate step between both stages.

The first stage starts from the H&E Ruifrok’s standard matrixM [12] and introduce
a third color-vector mb which is orthogonal to both mh and me [16]. Despite this
initialization, the method does not guarantee that the estimated M̂ and Ĉ preserve the
channel order. Maintaining the correct order of the stain channels becomes crucial, as
we require to know which ones correspond to H&E. Thus, we calculate the correlation
between the columns of M̂ and the reference mh, me. We then select m̂h, m̂e as those
with the highest correlation to their respective references. The remaining channel is
designated as the third channel, representing blood, and the order of Ĉ is adjusted
accordingly. The output of this first stage is the initial staining estimation.

At this point, the goal is to identify blood and refine the quality of the stain separa-
tion. The dictionary learning approach of BKSVD is intended to find a representation
of the image where each pixel is assigned to a single channel whenever possible, pixels
assigned to or exhibiting higher values in the third channel are indicative of an inaccu-
rate representation by the H&E channels. This was used in our prior work [11], where
the values in the blood channel Ĉ:,3 are thresholded to detect anomalies. However, this
approach entails manually establishing a threshold on the blood channel, which can
vary between images from different sources. In this paper, we propose to take advan-
tage of the Gaussian posterior distribution q(cq) that derives from the BKSVD model
using Bayesian inference. Note that, rather than a single estimation for the concentra-
tion values, BKSVD estimates a whole probability distribution we can use, see [4] for
details. This approach is at the basis of anomaly detection using generative models [42].
The detection framework is based on the negative logarithm of q(cq), which can be built
using the outputs of the first BKSVD stage.
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− log q(cq) =
β̂

2
∥yq −

∑
s

m̂scq,s∥22︸ ︷︷ ︸
Error term

+
1

2
cTq Γ

−1
q cq︸ ︷︷ ︸

Prior term

+const (5)

which correspond to a Gaussian distribution with mean and covariance matrix given
by

ĉq = β̂ΣcqM̂
Tyq, (6)

Σcq =
(
β̂M̂TM̂+ Γ̂

−1

q

)−1

. (7)

Leaving aside constant terms, Eq. (5) comprises two key components, with both
playing a relevant role in the detection process. The first evaluates the difference be-
tween a sample yq and its reconstruction using the estimated stains and concentrations.
Thus, it plays the role of a reconstruction error. The latter measures how close the esti-
mated cq is to the prior p(cq) (4), serving as a regularization that penalizes non-sparse

pixels. The parameters β̂ and Γ−1
q , represent the variance of the prior distributions

in (2) and (4), respectively. They are automatically calculated within the BKSVD
model and serve to balance both terms according to their contribution to the marginal
likelihood [42].

It is important to notice that we are focused on anomalies mostly expressed in the
third (blood) channel, but this is not considered in (5). Therefore, we include some
changes to create an anomaly score function. In the error term, we exclude the blood
channel for the reconstruction process. This induces a higher error in pixels that require
the use of that channel. In contrast, the prior term maintains all three channels.

Then, we need to look at the weighting parameters β̂ and Γ−1
q . Unfortunately, the

use of random sampling in the BKSVD method [4] renders β̂ and Γ−1
q unavailable for

the entire image, as they are solely calculated for a representative sample of pixels. β̂
is a global measure of the noise and can be considered to represent the entire image.
In contrast, Γ−1

q is a diagonal covariance matrix iteratively calculated at each pixel to
maximize the posterior. To maintain computational efficiency, we choose a simplified
model and approximate it with the same diagonal matrix for the entire image γ̂I.
The scalar value γ̂, is computed as the median value of the estimated γsq in Γ−1

q .
Consequently, the proposed anomaly score is as follows:

ASq =
β̂

2
∥yq −

∑
s=h,e

m̂scq,s∥22︸ ︷︷ ︸
Error term

+
1

2γ̂
cTq cq︸︷︷︸

Prior term

. (8)

In this framework, (8) delivers AS ∈ R1×Q, where pixels conforming to the model
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exhibit values close to zero, while anomalies yield significantly higher values. The value
of Eq. (8) is used to mark and discard pixels that deviate from the model and cannot
be adequately represented using hematoxylin and eosin alone. Given that this value
approximates a Laplacian probability distribution, we can set a threshold according to
the percentile P of data that we want to capture.

thr = µ− b× log(2− 2P ) (9)

where P is typically set to 0.95, and µ and b are the location and scale parameters
of a Laplacian distribution calculated from the samples of (8) using the maximum
likelihood estimator [43]. Then, the binary blood mask B is computed as:

Bq =

{
1 if ASq > thr,

0 otherwise.
(10)

Finally, in the second BCD stage, we use only the blood-free pixels to re-estimate the
H&E color-vector matrix and concentrations, starting from Ruifrok’s reference M. This
ensures a better representation of those pixels in terms of H&E, reducing the deviation
caused by blood pixels. The complete procedure is summarized in Algorithm 1. 1

Algorithm 1 Robust BKSVD for blood detection

Require: Observed image I, initial normalized M, percentile P .
Ensure: Estimated stain color-vector matrix, M̂, concentrations, Ĉ, blood mask B.
1: Obtain the OD image Y from I.
2: First stage: set S = 3. Estimate M̂ and Ĉ using BKSVD [4].
3: Sort M̂ and Ĉ using the correlation of the columns of M̂ and M .
4: Calculate thr using (9)
5: Create blood mask B using (10).
6: Get blood-free pixels Ybf by removing blood-positive pixels from Y.

7: Second stage: set S = 2. Re-estimate M̂ for H&E on blood-free pixels Ybf using
BKSVD.

8: return M̂, Ĉ = M̂+Y, and B.

2.3. Databases

In order to thoroughly validate the proposed method, a diverse range of images from
different centers, both with and without the presence of blood, is essential. This section
describes the four databases used in this paper.

• Synthetic Blood Dataset (SBD) We constructed the SBD using the Warwick
Stain Separation Benchmark (WSSB) [14]. WSSB comprises 24 H&E images

1The code will be made available at https://github.com/vipgugr/ upon acceptance of the paper.

9



of different tissues from different laboratories, each with a known ground truth
color-vector matrix MGT . These images are free from artifacts.

To introduce controlled levels of blood, we synthetically combine the WSSB im-
ages with blood images acquired from real WSIs. We incrementally add blood
pixels as additional columns to each image. This allows us to measure the ef-
fect of different amounts of blood on the estimation of the color-vector matrix
and the segmentation of blood pixels. Which is important to address the adapt-
ability of methods to different scenarios. The amounts of blood considered are
{0, 0.1, 0.2, . . . , 0.9} times the size of the original images, which creates a dataset
of 240 images. All synthetically added pixels are labeled as blood.

• TCGA Blood Dataset To test the method on real images containing blood, we
used 8 breast biopsies from The Cancer Genome Atlas (TCGA). Breast biopsies
often contain blood due to the biopsy procedure [3] and it is also possible to
find blood vessels in the tissue. We selected 16 2000× 2000 H&E image patches
where blood was manually labeled at pixel level. The labeling was performed
by a trained technician with the Qpath annotation tool, using a combination of
manual drawing and the color-sensitive wand.

• Camelyon-17We use the training set of Camelyon-17 breast cancer challenge [44].
It includes 500 WSIs from 5 medical centers and binary labels for cancer classi-
fication. It is intended to assess the performance of classification methods, and
it is of special interest given the color variation between the centers. We use the
subset of patches that have been used for classification experiments in [5, 4]. It
contains 224×224 non-overlapping patches from the 500 WSIs in the Camelyon-17
training set.

• Camelyon Blood Dataset Some of the images from the Camelyon-17 dataset
include patches with a significant amount of blood pixels. To increase the number
and variety of real images on which our method is tested, we have manually
identified and labeled these patches in 25 images. A patch was labeled as blood
if it contained a minimum of 25% of blood pixels. This results in a dataset of 527
blood patches and 7786 tissue patches. Tissue patches contain no blood or less
than 25% of blood. This dataset will be made publicly available in Zenodo [45].

3. Experiments

We have designed a set of experiments to assess our method. They are organized
into three subsections: (i) Blood detection, (ii) Color vector estimation in the presence
of blood, and (iii) cancer classification. In the first subsection, we examine the blood
detection capability of the proposed method on synthetic and real images. Then, we
assess the robustness to estimate the stains when blood is present in the image. Finally,
we evaluate the impact of blood on a breast cancer classification task.
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Figure 2: Example patches from the Camelyon Blood Dataset. Each column depicts two patches from
the same image, one labeled as blood (top) and one tissue (bottom).

3.1. Blood Detection

In this experiment, we evaluate the performance of the proposed method in identi-
fying blood within the image. We compare the results with other approaches for blood
detection. We use the Area Under the ROC Curve (AUC) to provide an overall assess-
ment across various thresholds, the Jaccard index (intersection over union), and the
F1-score (or Dice coefficient). We compare the proposed approach with our previous
work in [11], which corresponds to thresholding the third concentration channel C:,3,
and the blood detection approaches in [29, 32, 31]. These methods involve threshold-
ing the red RGB, the saturation HSV, and the magenta CMYK channels, respectively.
They are denoted as R-RGB, S-HSV, and M-CMYK, respectively. For a better un-
derstanding of the model, we also include the results using the error and prior terms
in (8).

Table 1: ROC AUC for blood detection on the SBD images

Amount Method

of blood C:,3 Error Prior Proposed R-RGB M-CMYK S-HSV

0.1 0.9778 0.9729 0.9624 0.9864 0.7825 0.9489 0.9758
0.2 0.9820 0.9780 0.9572 0.9853 0.7779 0.9447 0.9726
0.3 0.9814 0.9776 0.9516 0.9833 0.7734 0.9397 0.9684
0.4 0.9720 0.9669 0.9502 0.9836 0.7745 0.9402 0.9686
0.5 0.9791 0.9745 0.9494 0.9764 0.7744 0.9398 0.9685
0.6 0.9587 0.9518 0.9475 0.9813 0.7740 0.9392 0.9679
0.7 0.9705 0.9653 0.9482 0.9815 0.7746 0.9392 0.9680
0.8 0.9750 0.9689 0.9468 0.9807 0.7748 0.9391 0.9679
0.9 0.9644 0.9586 0.9426 0.9799 0.7749 0.9386 0.9674

Mean 0.9734 0.9683 0.9507 0.9820 0.7757 0.9410 0.9695

Table 1 summarizes the performance in terms of AUC for the synthetic SBD images.
Notably, the RGB approach exhibits the lower discriminative power. In contrast, C:,3

outperforms the CMYK and HSV approaches. It is worth noting that using the error
and prior terms from Eq. (8) separately does not improve the use of C:,3. However,
when both terms are combined in the proposed approach, we achieve a notably enhanced
detection capability.
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To calculate the Jaccard index and F1-score, we need to determine an appropriate
threshold for each method. In [11] we conducted an explorative analysis to determine
the threshold for the blood channel. In this work, the proposed method is thresholded
as detailed in section 2.2. We set the threshold to capture the 95 percentile for the
Laplace distribution. For all the other approaches we use Otsu’s method, which provides
a dynamic (per image) threshold to separate pixels into two classes and it is a common
approach for histological images [29, 3, 44]. Pixels with values above the selected
threshold are identified as blood and the resulting mask is then compared with the
ground truth label.

Tables 2 and 3 summarize the results for the above-discussed thresholds. The RGB
approach is not close to the ground truth. CMYK, HSV, and C:,3 provide a relatively
fair estimation, but their performance depends on the amount of blood in the image.
Despite the high AUC value in table 1, Otsu’s threshold is not appropriate for the
error term. In contrast, it shows a good performance in the prior term. The proposed
approach outperforms other methods, achieving the highest Jaccard index and F1-score
in most cases, and also obtaining the best mean value. The controlled amount of blood
in this dataset allows us to evaluate how the methods behave under different conditions.
While the effect of larger amounts of blood in table 1 is subtle, their influence on the
choice of a threshold clearly affects the performance of the methods in tables 2 and 3.
It is worth noticing that the proposed approach is the most stable and the best choice
when small amounts of blood are present in the image, which is often the case for real
images.

Table 2: Jaccard index for different approaches to blood detection on the SBD images.

Amount Method

of blood C:,3 Error Prior Proposed R-RGB M-CMYK S-HSV

0.1 0.3567 0.5522 0.5027 0.8354 0.0320 0.2208 0.3187
0.2 0.5071 0.5183 0.6441 0.8277 0.0602 0.3821 0.4931
0.3 0.5882 0.4877 0.6911 0.7985 0.0857 0.4822 0.6049
0.4 0.6479 0.4863 0.7254 0.8071 0.1050 0.5560 0.6781
0.5 0.6874 0.4488 0.7371 0.7907 0.1217 0.6103 0.7248
0.6 0.7213 0.4470 0.7492 0.7899 0.1367 0.6513 0.7577
0.7 0.7446 0.4360 0.7541 0.7805 0.1488 0.6849 0.7833
0.8 0.7641 0.4177 0.7574 0.7764 0.1604 0.7119 0.8027
0.9 0.7790 0.4167 0.7586 0.7715 0.1707 0.7340 0.8176

Mean 0.6441 0.4679 0.7022 0.7975 0.1135 0.5593 0.6645

We now evaluate the methods on the real images from the TCGA dataset. The
results are presented in table table 4. The proposed approach also performs well on
these images. Although HSV achieves a higher AUC, its detection capability is reduced
when a threshold is required. In contrast, the proposed approach achieves a fair AUC
value and outperforms all other methods in terms of the Jaccard index and F1-score.

Figure 3 provides visual insight. It depicts some of the TCGA images along with
their binary masks and plotted together with the resulting blood-mask using the meth-
ods with the thresholds as in table 4. The RGB, CMYK, and HSV approaches include
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Table 3: F1-score for different approaches to blood detection on the SBD images.

Amount Method

of blood C:,3 Error Prior Proposed R-RGB M-CMYK S-HSV

0.1 0.5113 0.6952 0.6476 0.9014 0.0619 0.3485 0.4443
0.2 0.6608 0.6719 0.7715 0.9001 0.1133 0.5361 0.6312
0.3 0.7311 0.6472 0.8096 0.8821 0.1574 0.6365 0.7337
0.4 0.7782 0.6468 0.8354 0.8893 0.1894 0.7032 0.7933
0.5 0.8082 0.6089 0.8446 0.8797 0.2164 0.7488 0.8290
0.6 0.8328 0.6129 0.8533 0.8804 0.2399 0.7815 0.8530
0.7 0.8491 0.6025 0.8570 0.8736 0.2584 0.8069 0.8711
0.8 0.8624 0.5824 0.8595 0.8722 0.2758 0.8266 0.8845
0.9 0.8725 0.5839 0.8606 0.8689 0.2910 0.8423 0.8946

Mean 0.7674 0.6280 0.8155 0.8831 0.2004 0.6923 0.7705

Table 4: Detection metrics for different approaches to blood detection on TCGA Images

Method C:,3 Error Prior Proposed R-RGB M-CMYK S-HSV

ROC AUC 0.8080 0.8594 0.8519 0.9010 0.6106 0.8000 0.9371
Jaccard 0.3248 0.2553 0.1783 0.3256 0.0923 0.1254 0.1722
F1 score 0.4358 0.3735 0.2891 0.4480 0.1584 0.2105 0.2665

a significant amount of false positives. Among these, HSV is the most accurate, pro-
ducing precise masks for some of the images. RGB is less effective, particularly when
images feature a white background, as it results in pixels with elevated values in all
RGB channels. This figure is particularly interesting to illustrate the behavior of the
error and prior terms. In the case of the error term, it can be seen that most blood
pixels are detected. However, there is also a notable presence of false positives, indicat-
ing that some pixels intended to be represented solely with H&E are erroneously using
the blood channel. The prior may not be as effective at detecting blood, but it detects
non-sparse pixels that either use multiple channels or exhibit unusually high values.
The combination of both terms in the proposed approach leads to the most accurate
masks, closely followed by C:,3, which is more unstable across images, therefore leading
to lower figures of merit in table 4.

Finally, the proposed method is evaluated on the patches from the Camelyon Blood
dataset. For this dataset, the processing is made on a per-image basis. A single color-
vector matrix is calculated for all patches in the image, and the same threshold for
AS (8) is used to calculate B for each patch. In accordance with the labeling protocol,
a patch is predicted as blood if it contains more than 25% of predicted blood pixels.

Within this framework, the proposed method achieves a mean AUC value of 0.89,
with a sensitivity of 0.91 for the blood patches, and a specificity of 0.86. A visual
inspection of the false positives revealed that some of them contain small amounts of
blood or other artifacts such as blur, or cauterized or folded tissues. This observation
suggests that the proposed method might be valuable in detecting such elements. The
prior term assigns a high score to excessively dark pixels, which are typically not sparse
as they use all channels. This probably explains the detection of cauterized or folded
tissues. Similarly, blurred pixels blend with their neighbors, which probably requires
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Figure 3: Blood detection qualitative comparison on images from the TCGA dataset. From left to
right: Observed image, ground truth mask, and predicted masks for the different methods. The binary
masks are displayed using python viridis color map for better visualization. Purple and yellow represent
0 and 1, respectively.

the use of multiple channels to represent their observed value. Figure 4 provides visual
examples of these cases.

Figure 4: Examples of false positives from the Camelyon Blood dataset. They present cauterized
tissue, small amounts of blood, folded tissue, or blur. These patches were detected to have more than
25% of blood pixels by the proposed method.

As a conclusion for this section, the proposed approach effectively identifies blood
in the images. The results from the experiments presented above highlight the su-
perior performance of the proposed approach compared to commonly used domains
(RGB, CMYK, and HSV) in synthetic and real images. We have also shown a promis-
ing performance on blood detection at a patch level. Blood detection methods often
involve a combination of thresholding with logical operators, morphology, or region-
growing [31, 33, 34]. In this work, however, we focused on assessing the detection
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capability of the different color channels. While RGB, CMYK, and HSV channels
might potentially benefit from more complex segmentation techniques, the same holds
true for the proposed approach. Exploring further filtering and enhancements for the
detection mask is a task that should be addressed in future research.

3.2. Color vector estimation in the presence of blood

As discussed earlier, the presence of blood and other artifacts hinders the estima-
tion of the color-vector matrix and its associated concentrations. In this experiment,
we study this effect and assess the resilience of various BCD methods when blood is
present in the image. First, we evaluate how blood affects the estimation of the color
vector-matrix, then how it affects the concentration structure. We compare our pro-
posed method with the methods by Macenko et al.[13] (MAC), the robust method by
Vahadane et al.[6] (VAH), Alsubaie et al.[14] (ALS), the reference-prior based Bayesian
methods using Total Variation (TV) [16], and Super Gaussian (SG) [5], the recent Deep
Bayesian approach in [23] (BCDNet), and BKSVD [4]. In this section, we use the SBD
images, as they include the stain-separation ground truth.

Table 5: Mean Euclidean distance between ground truth MGT and obtained M color-vector matrix
for different BCD methods.

Amount Method
of blood MAC VAH ALS TV SG BCDNet BKSVD Proposed

0 0.2428 0.1019 0.3059 0.3328 0.3119 0.2748 0.0838 0.0719
0.1 0.3004 0.0972 0.3291 0.3783 0.3119 0.2749 0.2427 0.0727
0.2 0.3074 0.1116 0.3983 0.3889 0.3119 0.2766 0.2484 0.0595
0.3 0.3090 0.1227 0.3824 0.3971 0.3119 0.2778 0.2487 0.0879
0.4 0.3099 0.1340 0.4116 0.4061 0.3119 0.2784 0.2515 0.1023
0.5 0.3101 0.1398 0.4305 0.4141 0.3119 0.2788 0.2510 0.1146
0.6 0.3096 0.1893 0.4272 0.4244 0.3119 0.2791 0.2525 0.1328
0.7 0.3091 0.2494 0.4012 0.4321 0.3119 0.2794 0.2489 0.1233
0.8 0.3089 0.2710 0.5008 0.4417 0.3119 0.2798 0.2481 0.1449
0.9 0.3090 0.3002 0.5228 0.4503 0.3119 0.2799 0.2492 0.1612

Mean 0.3016 0.1717 0.4110 0.4066 0.3119 0.2780 0.2325 0.1071

To evaluate the estimated H&E color-vector matrix M̂ we compare it with the
expectedMGT using the Euclidean distance. The comparison of the competing methods
is presented in Table 5. The results demonstrate that the current state-of-the-art stain
separation methods struggle when blood is present in the image. MAC, ALS, and
BKSVD methods show a noticeable degradation in their estimations as soon as blood
appears. The similarity prior in TV, SG, and BCDNet helps mitigate the impact of
blood, but their reliance on the standard matrix from [12] as a reference, keeps them
distant from the ground truth. Only VAH is capable of dealing with blood up to a
certain extent. VAH redundantly estimates the color-vector matrix and chooses the
median value for the whole image. However, this would not be as effective if blood
pixels were distributed throughout the images. In contrast, the proposed method not
only shows an excellent performance even with the increasing amount of blood present
in the images, but it also achieves the most accurate estimation when blood is absent.
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Ground truth

Figure 5: Qualitative comparison of color-matrices on an SBD image. The first row corresponds to
the clean image and the amount of blood increases with the row number. Each column depicts the
obtained M for different state-of-the-art methods.

A qualitative comparison of the methods for an example image, adding increasing
amounts of blood is shown in figure 5. The color-vector matrix obtained by the different
methods is depicted as a tuple where each square shows the normalized color vector for
each stain, H and E, respectively. Small amounts of blood affect most of the methods.
The effect of blood is similar for non-robust methods and most appreciated in the E
channel, which becomes reddish as the amount of blood increases. The E channel
changes to represent blood rather than eosin, and the H channel shifts to represent the
mix of H&E which are closer in color between them than with blood.

Finally, we evaluate the quality of the structure for the H&E stain separation in
terms of Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM). Tables 6
and 7 include the comparison of the H&E stain separation obtained for the images in
the WSSB dataset. In this case, the estimation and separation are calculated with
the synthetic image including blood, but only the original pixels are considered when
calculating the metrics, as the ground truth is only available for those pixels.

The superior color-vector estimation achieved by the proposed method results in
the highest fidelity in terms of PSNR and SSIM for the reconstructed H-only and E-
only images. For VAH and BKSVD, the values significantly decrease when blood is
present. For MAC and ALS the impact is less pronounced, possibly due to their initial
estimation not being too close to the ground truth. The effect of the similarity prior,
as discussed earlier for TV, SG, and BCDNet, is also evident in these results.

16



Figure 6 depicts the H-only and E-only images for the ground truth, the BKSVD,
and the proposed method for an example image. To illustrate the effect of blood, we
have selected a patch with 0.5 of synthetically added blood. In comparison to the ground
truth, the shift of the estimated colors for the BKSVD can be clearly appreciated. The
eosin channel is more reddish and does not correctly capture the connective tissue. This
information is moved to the hematoxylin channel, which captures more information than
expected. On the contrary, the proposed method accurately separates the tissue into
their respective channels. The blood mask presented in figure 6.d.2 shows that very
few tissue pixels are marked as blood.

Table 6: PSNR for the H-only and E-only images obtained using the different methods on the synthetic
WSSB dataset.

Amount Method
of blood MAC VAH ALS TV SG BCDNet BKSVD Proposed

0 18.16 19.90 19.57 20.10 20.11 24.53 30.70 31.06
0.1 18.47 20.18 21.57 19.98 20.11 24.54 23.68 29.18
0.2 18.42 19.75 21.53 19.74 20.11 24.52 23.51 31.37
0.3 18.39 19.10 21.38 19.56 20.11 24.51 23.09 31.04
0.4 18.37 18.86 21.60 19.32 20.11 24.51 23.17 29.95
0.5 18.35 18.82 21.03 19.14 20.11 24.49 23.10 29.52
0.6 18.33 18.57 21.15 18.91 20.11 24.49 22.84 27.20
0.7 18.32 18.44 21.83 18.75 20.11 24.49 22.81 27.33
0.8 18.32 18.28 21.17 18.55 20.11 24.49 22.80 25.85
0.9 18.32 18.16 20.03 18.39 20.11 24.48 22.61 25.75

Mean 18.35 19.01 21.09 19.24 20.11 24.50 23.83 28.83

Table 7: SSIM for the H-only and E-only images obtained using the different methods on the synthetic
WSSB dataset.

Amount Method
of blood MAC VAH ALS TV SG BCDNet BKSVD Proposed

0 0.6522 0.8085 0.6717 0.6842 0.6922 0.8652 0.9296 0.9584
0.1 0.7084 0.8130 0.6894 0.6791 0.6922 0.8651 0.8385 0.9399
0.2 0.7049 0.7544 0.6943 0.6686 0.6922 0.8649 0.8346 0.9617
0.3 0.7028 0.6987 0.7019 0.6604 0.6922 0.8647 0.8410 0.9601
0.4 0.7011 0.6791 0.6930 0.6508 0.6922 0.8647 0.8350 0.9596
0.5 0.7002 0.6752 0.7209 0.6432 0.6922 0.8648 0.8329 0.9424
0.6 0.6987 0.6620 0.7001 0.6336 0.6922 0.8648 0.8208 0.9339
0.7 0.6983 0.7005 0.7441 0.6268 0.6922 0.8648 0.8329 0.9371
0.8 0.6992 0.6978 0.7143 0.6182 0.6922 0.8648 0.8294 0.9233
0.9 0.7000 0.7041 0.6770 0.6112 0.6922 0.8648 0.8289 0.9186

Mean 0.6966 0.7193 0.7007 0.6476 0.6922 0.8648 0.8424 0.9435

3.3. Cancer classification

The ultimate objective of histological image preprocessing is to facilitate the auto-
mated diagnosis task. In this final experiment, we evaluate the impact of the proposed
method on breast cancer classification using the Camelyon-17 dataset. Following [4]
all images are deconvolved and the resulting concentrations are employed to feed a
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a) Observed image d.2) Blood mask

b) Ground Truth c)BKSVD d.1) Proposed

Figure 6: Effect of blood in the estimated stain separation. a) Observed image with synthetically
added blood. b) H-only and E-only ground truth for the tissue pixels of the observed image in a. c)
Stain separation by the BKSVD method. d.1) Stain separation by the proposed method. d.2) Blood
mask obtained by the proposed method for those pixels.

VGG19 classifier. For training, we use data from four centers, while the last center is
kept for testing. The choice of the testing center was based on the higher color devia-
tion observed in [4]. This configuration allows the classifier to serve as a benchmark for
assessing the stain separation quality. Using the results from the proposed method, we
explore two different classification approaches: (i) feeding the classifier with the H&E
concentrations as a 2-channel image, and (ii) normalizing the images, following [4], be-
fore feeding them to the classifier. We compare these approaches to BKSVD, which
was the best-performing method in [4], and the use of original images.

Table 8: Classification performance of the VGG19 classifier in Camelyon-17 test center.

Original BKSVD BKSVD Proposed Proposed
Images H&E Normalized H&E Normalized

AUC 0.9491 0.9835 0.9818 0.9857 0.9857
F1-score 0.8852 0.9349 0.9103 0.9175 0.9405
Accuracy 0.8876 0.9364 0.9163 0.9229 0.9405

The results are presented in table 8. Interestingly, even though blood is not explicitly
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mentioned as a relevant feature of the Camelyon-17 dataset [44], taking it into account
leads to a better classification performance. The proposed method not only enhances
classification when compared to the use of the original images but also outperforms the
non-robust BKSVD. Both approaches, using H&E concentrations and the normalized
images, achieve the highest AUC scores, with the latter obtaining better F1-score and
accuracy figures.

4. Limitations and future work

This study introduces, for the first time, the use of BCD techniques for blood
detection in histological images. Therefore, it is not exempt from limitations. In this
section we highlight areas where additional research is needed.

• We have focused this study on blood detection. As previously discussed, this
common artifact has a severe impact on the estimation of the color-vector matrix.
Our results hint that the method could be suitable for the detection of other
types of artifacts such as blur, folds, or cauterized tissue. Further evaluation
and research to address these artifacts is of interest to the field of computational
pathology.

• Our results are tested with H&E staining only. This is the most common protocol
and it is certainly the most used in computational pathology. However, it is
interesting to extend this research to other staining protocols such as H&E and
Saffron or immunohistopathology. The BKSVD method can be easily extended
to other staining protocols if the Beer-Lambert law is satisfied, just by changing
the initial normalized matrix. If the proposed approach is suitable for detecting
blood and artifacts on other staining protocol is yet to be investigated.

• This paper presents evaluations on blood detection, stain separation and cancer
classification. Our experiments cover three different tissue types and up to 5
different laboratories. However, we have only evaluated the classification perfor-
mance on the Camelyon-17 dataset for breast cancer. It would be interesting to
further assess the effect of blood detection on other pathologies and CAD-related
tasks such as segmentation. This requires datasets with classification labels where
the presence of artifacts is acknowledged at least, if not labeled.

• The computational cost of the BKSVD method is significantly lower than other
similar approaches [4] and it is designed to scalate when working with large images.
However, the proposed method requires two stages to refine the quality of the stain
separation, which raises the computational cost of the proposed approach. In the
future, we plan to integrate both stages achieving blood detection and accurate
stain separation simultaneously rather than sequentially.
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5. Conclusions

In this work, we have extended the BKSVD method for stain separation to account
for the presence of blood in histological images. Through this novel Bayesian frame-
work, it is possible to detect blood and achieve a robust estimation of the stains. The
proposed approach leverages the estimated posterior distribution for the concentration,
which incorporates the reconstruction error and a prior term. The estimation proce-
dure is split into two stages. The initial stage uses three channels to correctly represent
all elements in the image. After identifying the blood pixels using the posterior, the
subsequent stage uses only two channels and focuses on accurately estimating the color
and concentrations of the H&E stains.

This work introduces the use of BCD techniques for blood detection, establishing
a connection between the fields of color-preprocessing and artifact detection. This
intersection benefits both domains. On the one hand, the presence of blood hampers
the estimation of the stains in the images and achieving correct stain separation. On
the other hand, BCD stain separation provides a valuable framework for the effective
detection of blood.

Our method has been tested on synthetic and real images containing blood, showing
excellent performance. It exhibits the capability to identify blood pixels, accurately es-
timate the color-vector matrix, and separate the stains. This ensures tissue fidelity, even
with the presence of artifacts, while also providing a mask for potentially anomalous
pixels.

We have also evaluated the impact of considering blood on breast cancer classifi-
cation, which resulted in a substantial enhancement in the performance of a VGG19
classifier when applied to the Camelyon-17 dataset.

We believe that our work remarks on an important issue of stain separation tech-
niques that are the basis for the color-preprocessing of histopathological images. They
are severely affected by blood in the images, leading to unexpected results. In future
research, we plan to extend these results and address various other types of artifacts in
histological images, such as blur, cauterized, or folded tissue.
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