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A B S T R A C T

Automated semantic segmentation of histopathological images is an essential task in Computational Pathology
(CPATH). The main limitation of Deep Learning (DL) to address this task is the scarcity of expert annotations.
Crowdsourcing (CR) has emerged as a promising solution to reduce the individual (expert) annotation cost
by distributing the labeling effort among a group of (non-expert) annotators. Extracting knowledge in this
scenario is challenging, as it involves noisy annotations. Jointly learning the underlying (expert) segmentation
and the annotators’ expertise is currently a commonly used approach. Unfortunately, this approach is frequently
carried out by learning a different neural network for each annotator, which scales poorly when the number
of annotators grows. For this reason, this strategy cannot be easily applied to real-world CPATH segmentation.
This paper proposes a new family of methods for CR segmentation of histopathological images. Our approach
consists of two coupled networks: a segmentation network (for learning the expert segmentation) and an
annotator network (for learning the annotators’ expertise). We propose to estimate the annotators’ behavior
with only one network that receives the annotator ID as input, achieving scalability on the number of
annotators. Our family is composed of three different models for the annotator network. Within this family,
we propose a novel modeling of the annotator network in the CR segmentation literature, which considers
the global features of the image. We validate our methods on a real-world dataset of Triple Negative Breast
Cancer images labeled by several medical students. Our new CR modeling achieves a Dice coefficient of 0.7827,
outperforming the well-known STAPLE (0.7039) and being competitive with the supervised method with expert
labels (0.7723). The code is available at https://github.com/wizmik12/CRowd_Seg.
1. Introduction

Computational Pathology (CPATH) has made a breakthrough by
incorporating Deep Learning (DL) to automatize relevant tasks in the
analysis of histopathological Whole-Slide Images (WSIs) (Litjens et al.,
2017; Aatresh et al., 2021; Van der Laak et al., 2021; Khaliliboroujeni
et al., 2022). Among others, automated semantic segmentation has
become a crucial task in CPATH (Foucart et al., 2022). Semantic
segmentation decomposes the image’s semantic content into multiple
segments, e.g., which pixels belong to the tumor region. This estima-
tion can quantify established biomarkers used in clinical practice for
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diagnosis and prognosis, thus assisting and supporting pathologists in
decision-making (Salgado et al., 2015).

The main limitation of DL methods for segmentation in CPATH
is the scarcity of expert annotations (Ben Hamida et al., 2022). The
labeling process is time-consuming, challenging, and demanding for
expert pathologists, who have limited availability. Crowdsourcing (CR)
has emerged as a promising approach to labeling histopathological
images. CR distributes the labeling effort by involving a large crowd
with varying degrees of expertise. This strategy speeds up the la-
beling process and significantly reduces the expert’s workload at the
vailable online 5 January 2024
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Fig. 1. General overview of the proposed framework for one-stage crowdsourcing segmentation. We propose two coupled networks: segmentation and annotator networks. The
segmentation network aims to generate latent (expert) segmentation, and the annotator network provides the estimated confusion matrix for the annotator. Combining pixel-wise
both outcomes, we generate the observed noisy masks of the multiple participants.
expense of introducing noisy labels by less experienced annotators.
CR approaches have been utilized for labeling histological images and
successfully applied to different tasks in CPATH (Grote et al., 2018;
Amgad et al., 2019; Le et al., 2020; Amgad et al., 2022). However,
expert pathologists reviewed and approved manual annotations in all
cases, which is still tedious and challenging.

The need for experts can be avoided by directly learning the DL
model using the (non-expert) CR annotations. In this case, the DL
method has to be adapted to cope with the noisy labels provided by
multiple annotators (Rodrigues and Pereira, 2018; Yang et al., 2022;
Jiang et al., 2022). There are two big groups of methods to tackle this:
two-stage and one-stage (end-to-end) methods. The two-stage methods
aggregate the labels in a previous step, and then apply a supervised
method. The most straightforward way to perform this approach is
Majority Voting (MV). Notice that MV assumes that every annotator
is equally reliable. When the crowd is not equally reliable and contains
noisy annotators, methods achieve better results by estimating the
expertise of the different annotators. For example, the well-known
STAPLE iteratively estimates the annotators’ expertise and the latent
(expert) segmentation for each image independently (Warfield et al.,
2004). STAPLE is widely applied to generate ground-truth annotations
from several noisy annotators in segmentation tasks (Commowick et al.,
2018; Nir et al., 2018).

In the two-stage CR methods, such as STAPLE and MV, label aggre-
gation and model training are isolated processes. In contrast, one-stage
CR methods jointly learn the model and the annotators’ expertise,
yielding better performance (Tanno et al., 2019; Karimi et al., 2020).
This enhancement has been widely described in histopathological tissue
classification with CR labels (Nir et al., 2018; Albarqouni et al., 2016;
López-Pérez et al., 2021, 2023). Regarding CR segmentation, which is
more complex than classification, one-stage approaches are challenging
to implement. The first and only study proposing a one-stage CR
method for segmentation was (Zhang et al., 2020), where the authors
applied the method to toy examples and Computerized Tomography
(CT) scan images. This method cannot be easily extended to real-world
CPATH datasets because the proposed architecture scales poorly with
the number of annotators. Specifically, they introduce a different neural
network to model the behavior of each annotator, which hampers its
application beyond a few annotators (up to five are used in their paper).
Therefore, a scalable one-stage CR method has yet to be proposed and
studied for real-world CPATH segmentation.

This paper proposes a new framework for one-stage CR semantic
segmentation applied to real-world histopathological images. We pro-
pose a framework composed of two coupled networks: a segmentation
network based on the U-Net architecture (Ronneberger et al., 2015)
and an annotator network, see Fig. 1. The segmentation network aims
to provide the expert (latent) segmentation. The annotator network
predicts the confusion matrices (CMs), which model annotators’ biases
on the annotation. Since annotator modeling is a challenging and open
problem, we propose three approaches with the following hierarchy:
2

1. CR Global: there is one CM for each annotator, but the CM does
not depend on the patch or image that is being analyzed.

2. CR Image: the CM additionally depends on the patch or image
being analyzed, but the same CM is applied to all the pixels of
the patch/image.

3. CR Pixel: the CM depends on the annotator and the patch/image
being analyzed, and one CM is obtained for each pixel.

Whereas the first and last ones had already been used in Zhang et al.
(2020), the second one is a novel contribution that provides a trade-off
between the other two. In the experiments, we will analyze the three
approaches.

The contributions of this paper are summarized as follows:

• We propose a novel family of one-stage scalable CR methods
for the segmentation of images labeled by multiple noisy an-
notators in CPATH. In contrast to widely used two-stage ap-
proaches (Warfield et al., 2004), our family is the first one in
CPATH that learns the expert (latent) segmentation and the CM
of the annotators jointly from noisy masks.

• Our novel CR family estimates the CM of every annotator with
only one network. This modeling has two great advantages: (i) it
enables involving a large crowd; (ii) it optimizes the annotator
network with the information provided by every annotator. In
contrast, other works resort to building several networks (one per
annotator) (Zhang et al., 2020). This approach is not feasible in
real-world CPATH tasks where a large crowd is hired (the method
quickly goes out of memory), and each network would only be fed
by the data of their respective annotator.

• We propose a novel modeling of the annotator network (CR
Image). This modeling predicts a common CM for all the pixels
within the same image. With this paradigm, we suggest that
global features influence the annotators on the image. In contrast,
other works estimate the CM for each pixel independently (Zhang
et al., 2020).

• We apply our family of CR methods to a real-world Triple Nega-
tive Breast Cancer (TNBC) dataset labeled by 20 medical students.
This is out of the scope for previous approach (Zhang et al.,
2020), yielding memory overflow. A comprehensive evaluation
of our methods on this real-world dataset demonstrates superior
performance than the state-of-the-art STAPLE. Furthermore, our
methods with noisy crowdsourcing annotations are competitive
with the supervised model with expert annotations.

The remainder of the paper is structured as follows. Section 2
presents the proposed family of crowdsourcing methods. Section 3 de-
tails the experimental setup. Section 4 shows the experimental results.
Section 5 provides the conclusions and outlines future lines of work.
Appendix includes additional figures for better visualization of the
results.
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2. Methodology

2.1. Problem formulation

In this work, we address the use of crowdsourcing semantic segmen-
tation techniques in CPATH. We have observed a training noisy dataset
 = (𝐗, 𝐘̃) = {(𝐱𝑛, 𝐲̃𝑟𝑛) ∶ 𝑛 = 1,… , 𝑁 ; 𝑟 ∈ 𝑅𝑛}, where 𝐱𝑛 ∈ R𝑊 ×𝐻×3 is
the histopathological patch and 𝐲̃𝑟𝑛 ∈ 𝑊 ×𝐻 is the segmentation mask
provided by the 𝑟th annotator for the 𝑛th instance. We represent by
 = {1,… , 𝐿} the set of classes for our problem. Since each annotator
may have annotated only some patches, we denote by 𝑅𝑛 ⊆ {1,… , 𝑅}
the subset of annotators that provided the label for the 𝑛th patch. We
assume that every patch has been annotated by at least one participant,
i.e., |𝑅𝑛| ≥ 1. We also assume that there exists a true (expert) label for
each patch 𝐘 = {𝐲𝑛 ∈ 𝑊 ×𝐻}𝑛=1,…,𝑁 but this is not available during
training, only in test to validate the models. The final goal is to jointly
estimate each annotator’s expertise and a segmentation model that
predicts the expert (latent) segmentation 𝐘 from the observed noisy
dataset (𝐗, 𝐘̃).

2.2. Probabilistic model

First, we make two assumptions of independence on the observed
crowdsourcing labels (Zhang et al., 2020). Given the input patches: (1)
the annotators independently provide crowdsourcing labels; (2) anno-
tations over different pixels are independent. Hence, the observation
model is given by

p(𝐘̃|𝐗) =
𝑁
∏

𝑛=1

∏

𝑟∈𝑅𝑛

𝑊
∏

𝑤=1

𝐻
∏

ℎ=1
p(𝑦̃(𝑟)𝑛,𝑤,ℎ|𝐱𝑛). (1)

Second, we assume that those observed noisy masks depend on the
pixel’s expert class and the annotator’s expertise (Zhang et al., 2020;
Tanno et al., 2019). Then, the likelihood of the observed noisy mask
𝑦̃(𝑟)𝑛 is modeled pixel-wise,

p(𝑦̃(𝑟)𝑛,𝑤,ℎ|𝐱𝑛) =
𝐿
∑

𝑙=1
p(𝑦̃(𝑟)𝑛,𝑤,ℎ|𝑦𝑛,𝑤,ℎ = 𝑙, 𝐱𝑛)p(𝑦𝑛,𝑤,ℎ = 𝑙|𝐱𝑛), (2)

where p(𝑦𝑛,ℎ,𝑤|𝐱𝑛) represents the expert label distribution over the
(𝑤, ℎ)th pixel of the 𝑛th patch and p(𝑦̃(𝑟)𝑛,𝑤,ℎ|𝑦𝑛,𝑤,ℎ, 𝐱𝑛) how the 𝑟th an-

notator generates the noisy label given the expert (latent) label and
the observed patch. To encode this distribution, we utilize a pixel-wise
Confusion Matrix (CM) of size 𝐿×𝐿 per annotator, denoted by 𝐀(𝑟)(𝐱𝑛) ∈
[0, 1]𝑊 ×𝐻×𝐿×𝐿. For each pixel, the 𝑖𝑗th element of the CM represents
p(𝑦̃(𝑟)𝑛,𝑤,ℎ = 𝑖|𝑦𝑛,𝑤,ℎ = 𝑗, 𝐱𝑛). The probability that the 𝑟th annotator labels

as class 𝑖 a pixel whose expert (latent) class is 𝑗.
Our CR approach couples two networks: a segmentation network

and an annotator network. For each patch 𝐱𝑛, the segmentation net-
ork, parametrized by 𝜃, provides an estimation, 𝐩𝜃(𝐱𝑛) ∈ R𝑊 ×𝐻×𝐿, of

the expert (latent) segmentation while the annotator network,
parametrized by 𝜙, provides an estimation, {𝐀(𝑟)

𝜙 (𝐱𝑛)}𝑅𝑟=1, of the annota-
tors’ CMs. Subscripts 𝜃 and 𝜙 are employed to represent the estimated
values derived from neural networks, while if they do not appear, they
will refer to the true unknown values. Then, the product 𝐩(𝑟)𝜃,𝜙(𝐱𝑛) ∶=
(𝑟)
𝜙 (𝐱𝑛) ⋅ 𝐩𝜃(𝐱𝑛) defines the estimated segmentation probability mask
f each annotator. The ‘‘.’’ refers to the element-wise matrix mul-
iplications in the spatial 𝑊 ,𝐻 dimensions. At inference time, the
utput of the segmentation network 𝐩𝜃(𝐱𝑛) yields the estimation of the
xpert (latent) segmentation mask p(𝐱𝑛). In the following subsections,
e describe the architecture of both networks and how the model is

rained.
3

a

.3. Segmentation network

The segmentation network aims to estimate the expert (latent) seg-
entation. Here, we rely on state-of-the-art segmentation architectures

or supervised problems. We choose an encoder–decoder architecture
ased on the U-Net because of its success in biomedical domains (Ron-
eberger et al., 2015). Its combination of feature maps at multiple
cales makes it a suitable option for CPATH segmentation tasks. We
lso consider ResNet34 as the backbone for the encoder part (He
t al., 2016). ResNet is a prominent family of deep Neural Network
rchitectures. They introduced the skip connection, also known as
esidual connections, to avoid information loss during the training of
eep networks. Skip Connections enable to train very deep networks
nd boost the network’s performance. Since segmentation problems in
PATH are challenging, we fine-tune the segmentation network with
re-trained weights on ImageNet.

.4. Annotator network

The annotator network aims to estimate the annotators’ CM, 𝐀(𝑟)(𝐱𝑛)
i.e., the expertise of each annotator). We utilize a deep neural network
(𝑟)
𝜙 (𝐱𝑛) to parametrize the CMs. In contrast to Zhang et al. (2020),
e only build one network to model every annotator. This network

eceives as an input the one-hot encoding ID of the annotator and,
epending on the modeling, also the feature map of the last decoder
ayer of the segmentation network. The one-hot encoding ID is just a
ector with all zeros except for a one in the position corresponding
o the annotator whose CM we want to predict. By providing this
nnotator-dependent input to the network, a different CM is obtained
or each annotator, removing the need for having one branch for each
nnotator as in Zhang et al. (2020). This paradigm is useful in real-
orld CPATH tasks because of the large number of annotators that may
e involved.

Our annotator network 𝐀(𝑟)
𝜙 (𝐱𝑛) is composed of three branches, one

or the annotator, another for the features, and the final one that
ombines both outputs. The annotator branch, which is common to
very annotator, outputs an embedding for the annotator,

𝜙ann (𝐞𝑟) = 𝐡𝑟, (3)

here 𝐞𝑟 is the one-hot encoding of the 𝑟th annotator ID and 𝜙ann ⊂
are the weights for the branch corresponding to the annotators.

his embedding 𝐡𝑟 only depends on the 𝑟th annotator and contains
nformation about this annotator’s ‘general’ expertise. For example, if
he annotator is prone to confuse two specific classes.

Assuming that an annotator may behave differently for every sam-
le, we utilize an image feature branch that outputs an embedding for
he patch,

𝜙feat (𝐱𝑛) = 𝐨𝑛, (4)

here 𝜙feat ⊂ 𝜙 are the weights for the image feature branch. This
mbedding 𝐨𝑛 only depends on the 𝑛th patch and contains information
bout the difficulty to annotate of this patch. Notice that some samples
ay be more ambiguous and more difficult to categorize, while others
ay be trivial to annotate.

Finally, both embeddings are stacked together, and the final branch
omposed of fully connected layers is used to output the final CM for
his annotator and patch,

𝜙final (𝐡𝑟, 𝐨𝑛) = 𝐀(𝑟)
𝜙 (𝐱𝑛), (5)

here 𝜙final ⊂ 𝜙 are the weights for the final branch. This final branch
earns the CM from the patch and annotator embeddings. It identifies
ow the annotator will behave on that patch.

Since annotator behavior modeling is challenging, we define a
amily composed of three different models that follow the previous
rchitecture (see Fig. 2):
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Fig. 2. The family of three proposed architectures for the annotator network. (i) CR Global: it does not consider the features to estimate the annotator expertise; (ii) CR Image:
the annotator network has two modules. One is to compute an embedding for the annotator and another for the features of the patch from the segmentation network. Then, it
combines both embeddings to estimate the CM for the patch; (iii) CR Pixel also has two modules, but in this case, it estimates a per-pixel CM.
CR Global. This model is the least complex. It assumes that CMs
do not depend on the patch features but only on the annotators. In this
model, we use only the annotator embedding to compute the CM of the
annotator. The annotator will share the same CM for every patch,

𝐀(𝑟)
𝜙 (𝐱𝑛) ≡ 𝐀(𝑟)

𝜙 ∶= 𝑧𝜙final (𝐡𝑟), ∀𝑛 ∈ 𝑁. (6)

CR Image. This novel model in the literature has never been
proposed for crowdsourcing segmentation. This model depends on the
image features and assumes that every pixel within the patch shares
the same CM (for each annotator). That is, the CM only depends on the
global features of the patch and the annotator. Now, the CM may vary
across different patches and annotators,

𝐀(𝑟)
𝜙 (𝐱𝑛)𝑤,ℎ ≡ 𝐀(𝑟)

𝜙 (𝐱𝑛) ∶= 𝑧𝜙final (𝐡𝑟, 𝐨𝑛), 1 ≤ 𝑤 ≤ 𝑊 , 1 ≤ ℎ ≤ 𝐻. (7)

CR Pixel. This model is the most complex. It assumes that CMs
depend on the annotator and the patch features as CR Image but
estimates a CM per pixel. The CM may vary across different pixels and
annotators:

𝐀(𝑟)
𝜙 (𝐱𝑛)𝑤,ℎ ∶= 𝑧𝜙final (𝐡𝑟, 𝐨𝑛)𝑤,ℎ, 1 ≤ 𝑤 ≤ 𝑊 , 1 ≤ ℎ ≤ 𝐻. (8)

To predict the behavior of the 𝑟th annotator on the 𝑛th image, a
forward pass is performed using the image and the one-hot encoding ID
as the inputs of the segmentation and annotator networks, respectively.
In the CR Image and CR Pixel models, the final map of the segmentation
network will also be fed to the annotator network.

2.5. Loss function

This section presents how to learn the optimal parameters of both
networks {𝜃̂, 𝜙̂}. Every model of the proposed family is learned using
the same procedure. We minimize the loss function, the sum of the neg-
ative log-likelihood (NLL) plus a regularizer. The optimization process
is performed by using a method based on stochastic gradient descent.

First, the NLL is given by the sum of cross-entropy (CE) losses
between the observed noisy segmentations and the estimated annotator
label distributions,

− log p𝜃,𝜙(𝐘̃(1),… , 𝐘̃(𝑅)) =
𝑁
∑

𝑛=1

𝑅
∑

𝑟=1
I(𝐲̃(𝑟)𝑛 ∈ 𝑅𝑛) ⋅ CE

(

𝐀(𝑟)
𝜙 (𝐱𝑛) ⋅ 𝐩𝜃(𝐱𝑛), 𝐲̃(𝑟)𝑛

)

,

(9)
4

where I is the indicator function. Remember that not all annotators may
label the same patches. Minimizing the NLL encourages to make 𝐩(𝑟)𝜃,𝜙(𝐱𝑛)
as close as possible to the true distribution of the noisy annotators
𝐩(𝑟)(𝐱𝑛). However, this procedure may not lead to the expert (latent) seg-
mentation since many combinations of the estimated CM 𝐀(𝑟)

𝜙 (𝐱𝑛) and
the expert (latent) segmentation 𝐩𝜃(𝐱𝑛) can match the true annotators’
distribution. To overcome this issue, some works (e.g., Zhang et al.,
2020; Tanno et al., 2019) have added the trace of the estimated CMs
to the loss function as a regularization term. Intuitively, the bigger the
trace term the more reliable this annotator. Then, the combined loss is
given by,

(𝜃, 𝜙) ∶ =
𝑁
∑

𝑛=1

𝑅
∑

𝑟=1
I
(

𝐲̃(𝑟)𝑛 ∈ 𝑅𝑛
)

⋅
[

CE
(

𝐀(𝑟)
𝜙 (𝐱𝑛) ⋅ 𝐩𝜃

(

𝐱𝑛
)

, 𝐲̃(𝑟)𝑛

)

+ 𝜆 ⋅ tr
(

𝐀(𝑟)
𝜙

(

𝐱𝑛
)

)]

, (10)

where tr(⋅) is the trace operator. We aim to find the optimal 𝜙̂ and 𝜃̂ as
the solution to

{𝜃̂, 𝜙̂} = arg min
{𝜃,𝜙}

(𝜃, 𝜙). (11)

Then, the training process is the following, firstly, it is widely ex-
tended to set 𝜆 to a negative number for maximizing the CMs trace
(i.e., the annotators’ are reliable). Otherwise, there may be identifiability
issues (Ruiz et al., 2023). Namely, the crowdsourcing method could
consider the annotators unreliable and learn an incorrect concept.
Secondly, after several steps during the training stage, some works
have introduced setting 𝜆 to non-negative to encourage annotators to
be as unreliable as possible (Tanno et al., 2019; Zhang et al., 2020).
Intuitively, once the CE is optimized by relying on the annotators’
labels, this loss finds the maximum confusion that adequately explains
the noisy observations. We will study in the experimental section if
minimizing the trace term is effective for our CR models.

3. Experimental setup

3.1. Data

We evaluate the proposed method for crowdsourcing segmentation
of histopathological images with a public dataset of Triple Negative

Breast Cancer images (Amgad et al., 2019). This dataset contains 151
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Fig. 3. Diagram of the architecture of the annotator network used in the CR Global
model.

different Whole Slide Images stained with Hematoxylin and Eosin. Each
WSI has a delineated Region of Interest (ROI) that contains represen-
tative tissue of predominant region classes and textures within each
slide. In total, 161 ROIs are extracted and annotated by 20 medical
students: ten of the ROIs are annotated by everyone, and the rest by
only one participant. Furthermore, two senior pathologists provided
curated labels that represent the ground-truth. We extract patches of
512 × 512 (training: 10,173; validation: 1264; test: 399) from the
ROIs. We consider five classes: Other, tumor, stroma, inflammation, and
necrosis. The dataset is imbalanced. Regions containing areas of tumor
and stroma are over-represented. Necrosis and the Other class are rare.
For this reason, class-wise metrics are essential to validate the methods.

3.2. Model hyperparameters

We set 𝜆 = −1 (maximize the trace regularizer) and a learning rate
of 10−3 for five epochs to warm up the annotator network. Following
the fifth epoch, we study the impact of the regularizer term (in the first
experiment) and adjust the learning rate to 10−4. We utilize a learning
rate of 10−4 for the segmentation network during the whole training
process. We utilize the Adam optimizer, a mini-batch size of 16, and
run the methods three times with varying seeds. We train the models
for 20 epochs.

3.3. Implementation details

Segmentation Network architecture. The encoder (i.e., ResNet34)
downsamples the 512 × 512 × 3 image 5 times to 16 × 16 × 512. The
number of channels scales up progressively, starting from 64, then to
64 again, 128, 256, and finally reaching 512. The decoder part is built
symmetrically with upsampling modules and skip connections accord-
ing to the U-Net architecture. We integrate this popular architecture
in the literature through the utilization of the package of pre-trained
U-Net backbones in Pytorch (Iakubovskii, 2019).

Annotator Network architecture. The practical implementation of
the annotator network is as follows:

• CR Global. This method makes only use of the annotator branch.
This branch applies a fully connected layer to the one-hot encod-
ing ID associated to the annotator. This procedure makes the con-
fusion matrices only annotator-aware. Fig. 3 depicts graphically
this architecture.

• CR Image. This method uses the annotator, image, and final
branches. The annotator and image branches operate in parallel.
The annotator branch applies a fully connected layer to the one-
hot encoding ID. The image branch applies a convolutional neural
network to the last feature map of the segmentation network. Sub-
sequently, embeddings from the annotator and image branches
are stacked together. The confusion matrix is obtained by apply-
ing fully connected layers to this new embedding. This procedure
makes the confusion matrices image- and annotator-aware. Fig. 4
depicts graphically this architecture.
5

• CR Pixel. This method comprises the annotator, image, and final
branches. The annotator branch is defined as in the previous
model. The image branch applies a convolutional neural network
with no pooling layers. Consequently, the image branch yields
an output shape of 𝑊 × 𝐻 × 𝐶 ′, being 𝐶 ′ the dimension of
the pixel-wise features. As before, the outputs of the image and
annotator branches are stacked together, and the final branch
applies fully connected layers to predict the confusion matrix for
each pixel. This procedure makes the confusion matrices pixel-
and annotator-aware. This method obtains the most fine-grained
confusion matrices of the CR family. Fig. 5 depicts graphically this
architecture.

Software. All our methods are implemented in Pytorch 1.10.1 and
for the segmentation networks we use a specific library for loading
architectures and pretrained models (Iakubovskii, 2019). All the models
are run using an NVIDIA GeForce RTX 3090 GPU. The code will be
available on GitHub upon acceptance.

3.4. Baseline methods

We compare the proposed CR methods against three well-known
methods: (i) the Supervised Expert method, which is trained with
expert labels provided by senior pathologists; (ii) Majority Voting (MV);
and (iii) STAPLE. The latter two are well-known in the two-stage crowd-
sourcing literature and widely applied to histopathological images.
They aggregate the noisy crowdsourcing masks in a previous step and
then train the segmentation methods with these aggregated labels. The
MV computes the mode of the annotations while the STAPLE performs
a weighted average. STAPLE computes blindly the expertise of each
annotator for every patch. For these three models, the hyperparameters
and training process are the same as in the segmentation network of the
proposed CR methods.

3.5. Evaluation metrics

Since the DICE coefficient is very extended in the semantic segmen-
tation literature, we use it to evaluate the methods. The DICE measures
the (pixel-wise) agreement between the predicted segmentation mask
and the ground-truth. We assume the masks provided by senior pathol-
ogists to be the ground-truth in this problem. The formula of the DICE
is given by

DICE(𝐗,𝐘) ∶= 2|𝐗 ∩ 𝐘|
|𝐗| + |𝐘|

(12)

In our experiments, we calculate the DICE coefficient for each class.
e also report two global metrics: the micro- and macro-average DICE.

he micro-average DICE is computed pixel-wise across all the classes.
otice that missing a minority class will not hamper this metric. For the
acro-average metric, the average of the DICE coefficients per class is

omputed. Each class contributes the same to the metric regardless of
ts representativity on the test set. The metrics are averaged through
he three runs and the standard error 𝑆 = 𝜎∕

√

3 is also reported.

4. Results

This section presents the empirical results of our family of CR
methods. First, Section 4.1 analyzes the effect of the regularizer on
the loss function. Then, we evaluate the studied methods with two
complementary approaches: (i) quantitative (Section 4.2) provides the
DICE coefficients for the studied methods; (ii) qualitative (Section 4.3)
conducts a human evaluation by asking three expert pathologists to rate
the predicted masks. Additionally, we assess the CR methods depending
on the subjectivity across the different classes (Section 4.4) and through

different sizes of the training set (Section 4.5).



Computerized Medical Imaging and Graphics 112 (2024) 102327M. López-Pérez et al.

o
u
b
a
𝜆
F
h
p
t
t
v
r
i
w
f

r
l
t
T
b
c

o
p
n
w

Fig. 4. Diagram of the architecture of the annotator network used in the CR Image model. The feature map comes from the last convolutional layer of the segmentation network.
Fig. 5. Diagram of the architecture of the annotator network used in the CR Pixel model. The feature map comes from the last convolutional layer of the segmentation network.
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4.1. Analyzing the weight 𝜆 for the regularizer

This section studies the impact of the regularizer on the loss function
f our family of CR methods. As we discussed earlier, some works have
sed this regularizer to estimate the CM of the annotators. The idea
ehind this is that a higher weight for the regularizer will force the
nnotators to be more unreliable. We warm up every method with
= −1 and then choose between several values for 𝜆 = {0, 0.01, 0.1, 0.5}.
ig. 6 shows the micro- and macro-average DICE. A high value of 𝜆
ampers the performance of more complex methods, CR Image and CR
ixel. This fact makes sense since these methods have more flexibility
o estimate the annotators’ CM and are more influenced by the trace
erm. See that CR Global is robust to different values of 𝜆 with low
ariability ranges. However, the three CR methods achieve the best
esults when 𝜆 is low. These results show that the trace term does not
mprove our CR methods. By making the annotators more unreliable,
e find identifiability issues, learning the wrong concept because of the

lexibility of the more complex models, CR Image and CR Pixel.
Table 1 depicts the per-class DICE values, showing that less rep-

esented classes, such as necrosis or inflammation, are more chal-
enging to detect. High 𝜆 values also hamper the performance on
hese classes. The three CR models perform well with low 𝜆 values.
he best-performing model is CR Image, which generally achieves the
est per-class results and outperforms the rest at necrosis, the most
hallenging class to detect.

In conclusion, in this first experiment, we find that our family
f CR methods is competitive, especially our novel CR Image, which
erforms remarkably well. Furthermore, the trace regularizer term does
ot benefit our CR methods. For the rest of the experimental section,
e remove this term, i.e., fixing 𝜆 = 0 after the warm-up period.
6

.2. Comparison with other methods

Here, we assess the performance of the proposed CR family against
ther well-known methods. The objective of this comparison is twofold.
irst, we aim to determine how well our CR family performs compared
o the supervised expert method trained with expert segmentation
asks. These masks are assumed to be the ground-truth in histopatho-

ogical images. Second, we would like to discern if our methods perform
etter than two-stage well-known CR methods (i.e., MV and STAPLE).
n contrast to our framework, these methods combine the labels in a
revious stage.

Table 2 and Fig. A.13 depict the DICE coefficients for this com-
arison. In this case, the supervised expert method achieves the best
esults in the micro-average (DICE: 0.7953 ± 0.0057), while the CR
mage stands out in terms of the macro-average metric (DICE: 0.7827±
.0046). CR Image is also robust to different initializations, presenting
inor variability. The rest of our CR models (CR Global and CR Pixel)

utperform the crowdsourcing competitors, MV and STAPLE.
Table 3 and Fig. A.14 present the results per class for further anal-

sis. Our family of CR methods performs well across all the classes and
utperforms MV and STAPLE. CR Image is the best in more challenging
lasses, i.e., necrosis (DICE: 0.7364 ± 0.0162) and inflammation (DICE:
.7556 ± 0.0180), and even superior to the supervised expert method
DICE in necrosis: 0.6819 ± 0.1216; DICE in inflammation: 0.7434 ±
.0237).

We provide further insights about the results in Fig. 7. This figure
hows the predicted segmentations obtained for different patches. The
upervised expert method performs consistently well in the four exam-
les (as it is expected). Then, our CR family exhibits a competitive
ehavior, specifically the CR Image. In the first row, our CR Image
learly detects the Other (cyan) class, in contrast to MV and STAPLE. In
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Fig. 6. DICE coefficients in the test set for the CR methods. The hyperparameter 𝜆 is varied in {0,0.01,0.1,0.5}. The results are averaged, and the bars represent the standard
error, through three different runs. As 𝜆 grows, the performance of the CR methods does not improve.
Table 1
DICE coefficients per class in the test set for the CR methods. The hyperparameter 𝜆 is varied in {0,0.01,0.1,0.5}. The results are averaged,
and the intervals represent the standard error, through three different runs. As the weight of the regularizer grows, the performance of the
CR methods does not improve. CR Image performs better than the rest across almost all the classes. CR Image performs remarkably well at
necrosis, the most challenging class to detect.

𝜆 Other Tumor Stroma Inflammation Necrosis

CR global

0 0.8327 ± 0.0081 0.8364 ± 0.0030 0.7434 ± 0.0074 0.7146 ± 0.0405 0.6621 ± 0.0724
0.01 0.8294 ± 0.0094 0.8311 ± 0.0077 0.7404 ± 0.0057 0.7228 ± 0.0235 0.662 ± 0.0616
0.1 0.834 ± 0.0096 0.8367 ± 0.0041 0.7468 ± 0.0121 0.7061 ± 0.055 0.6955 ± 0.0361
0.5 0.8069 ± 0.0069 0.8322 ± 0.0062 0.7461 ± 0.0082 0.7418 ± 0.0057 0.615 ± 0.0629

CR image

0 0.8423 ± 0.0048 0.8292 ± 0.0075 0.7501 ± 0.0062 0.7556 ± 0.0180 0.7364 ± 0.0162
0.01 0.8492 ± 0.0021 0.8252 ± 0.0140 0.7478 ± 0.0059 0.7169 ± 0.0534 0.6113 ± 0.1020
0.1 0.8343 ± 0.0150 0.8299 ± 0.0073 0.7505 ± 0.0075 0.774 ± 0.0074 0.7167 ± 0.0445
0.5 0.6315 ± 0.1922 0.7738 ± 0.0202 0.6130 ± 0.0541 0.3021 ± 0.2096 0.2374 ± 0.2374

CR pixel

0 0.8145 ± 0.0198 0.8323 ± 0.0071 0.7290 ± 0.0235 0.7285 ± 0.0042 0.6176 ± 0.0987
0.01 0.8298 ± 0.0049 0.8146 ± 0.0066 0.7300 ± 0.005 0.7336 ± 0.0024 0.6777 ± 0.0432
0.1 0.7475 ± 0.0573 0.8253 ± 0.0039 0.6913 ± 0.0228 0.7184 ± 0.0136 0.3977 ± 0.1269
0.5 0.0255 ± 0.0116 0.1519 ± 0.0657 0.1035 ± 0.0186 0.0212 ± 0.0062 0.03 ± 0.0180
the second row, STAPLE fails to identify ‘‘Inflammation’’ (green) when
it is actually ‘‘Necrosis’’ (purple). Our CR methods detect the ‘‘Necrosis’’
and CR Image and CR pixel can even distinguish the small ‘‘Other’’ class
in between ‘‘Necrosis’’ and ‘‘Tumor’’ (red). In the third row, CR Image
and CR Pixel detect the ‘‘Inflammation’’ and MV does not. Finally, in
the fourth row, most methods underestimate the tumoral area while CR
Image provides an accurate prediction.

To summarize this section, our family of CR methods outperforms
widely known methods in the literature, MV and STAPLE. Our methods
benefit from one-stage learning in line with previous studies in the
literature for classification (Karimi et al., 2020; López-Pérez et al.,
2023; Tanno et al., 2019). Specifically, our CR family is an effective
framework for dealing with multiple annotators in segmentation tasks
in CPATH. Furthermore, our new modeling of the annotator network
(i.e., CR Image) stands out in the problem of TNBC tissue segmentation.
This novel modeling is a model between the previously formulated CR
Pixel and CR Global in terms of complexity. These results show that CR
Image satisfies a trade-off between complexity and performance. These
results also highlight the potential of our crowdsourcing methods, with
noisy masks being a feasible alternative to single expert labeling.

4.3. Expert evaluation

Semantic segmentation is a subjective task in histopathology, with
high inter-observer variability. Even expert pathologists may disagree
on the segmentations. To provide further insights, we conduct an
additional human evaluation of the methods with expert pathologists.
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This evaluation is qualitative and differs from the previous one since it
Table 2
Dice coefficients micro- and macro-average in the test set. The results represent the
average through three different runs and the intervals are the standard error.

Micro Macro

MV 0.7687 ± 0.0056 0.7355 ± 0.0103
STAPLE 0.7549 ± 0.0053 0.7039 ± 0.0120
Supervised 0.7953 ± 0.0057 0.7723 ± 0.0120
CR Global 0.7812 ± 0.0067 0.7578 ± 0.0120
CR Image 0.7884 ± 0.0073 0.7827 ± 0.0046
CR Pixel 0.7721 ± 0.0116 0.7444 ± 0.0214

considers the global features of the patches instead of exhaustively the
value of every pixel.

In this experiment, we randomly selected nine patches and pre-
sented them, along with predictions generated by six different methods
(MV, STAPLE, Expert, CR Global, CR Image, and CR Pixel), to three
expert pathologists. These patches mainly contained tumor patterns,
which is the majority class in our setting. To ensure unbiased evalu-
ation, the predictions were anonymized and shuffled. The experts were
given two tasks: (i) determine whether each prediction was acceptable
or not; (ii) rank the acceptable masks in order of quality, from the
best to the worst. By following this approach, we aimed to assess the
performance of the six methods and gather insights from the expert
evaluations.

We measure the agreement level using Krippendorff’s Alpha (Krip-
pendorff, 2018). The value of this estimator ranges between −1 and
1, with −1 meaning total disagreement, 0 meaning randomness and 1
meaning total agreement. The three pathologists have a Krippendorff’s
Alpha value of 0.2729 across all the images for acceptable or not, which
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Table 3
Dice coefficients per class in the test set. The results represent the average through three different runs and the intervals are
the standard error.

Other Tumor Stroma Inflammation Necrosis

MV 0.8113 ± 0.0109 0.8252 ± 0.0045 0.7462 ± 0.0127 0.6650 ± 0.0079 0.6297 ± 0.0460
STAPLE 0.8257 ± 0.0038 0.8089 ± 0.0050 0.7512 ± 0.0007 0.6224 ± 0.0356 0.5111 ± 0.0371
Supervised 0.8309 ± 0.0064 0.8322 ± 0.0038 0.7731 ± 0.0035 0.7434 ± 0.0237 0.6819 ± 0.01216
CR Global 0.8327 ± 0.0081 0.8364 ± 0.0030 0.7434 ± 0.0074 0.7146 ± 0.0405 0.6621 ± 0.0724
CR Image 0.8423 ± 0.0048 0.8292 ± 0.0075 0.7501 ± 0.0062 𝟎.𝟕𝟓𝟓𝟔 ± 𝟎.𝟎𝟏𝟖𝟎 0.7364 ± 0.0162
CR Pixel 0.8145 ± 0.0198 0.8323 ± 0.0071 0.7290 ± 0.0235 0.7285 ± 0.0042 0.6176 ± 0.0987
Fig. 7. Segmentation masks of the six studied methods in four different patches for visualization. The color legend is red: tumor, pink: stroma; green: inflammation; purple:
necrosis; cyan: other. The ground-truth mask is the curated mask provided by Senior Pathologists. The supervised expert method is the only one which was trained with expert
labels. The rest only had access to noisy masks provided by medical students. We see that the family of CR methods (Ours) performs fairly well and is competitive with the
supervised expert method.
Fig. 8. Number of times the methods have been considered acceptable for each pathologist. The right figure represents the average and standard error of the three.
shows a low agreement. This result highlights the notable subjectivity
and difficulty of this task.

We first analyze if the pathologists found the methods acceptable or
not. Fig. 8 shows how often they said a method is acceptable. The last
column summarizes this information with the average and the standard
error across the three pathologists. We can see clearly that generally,
they find CR Global satisfying most of the time. Also, CR Image is
competitive, which agrees with the good results obtained in previous
sections. Notice that CR Pixel does not achieve good performance on
this evaluation. This may be due to the higher error through the three
runs.

Since this task is very subjective, Fig. 9 shows the number of times
that a method was found acceptable by the three of them, unanimously.
CR Global outperforms the rest, while CR Image and MV are compet-
itive. This result confirms the competitiveness of our CR family, and
specifically of CR Global in this expert evaluation.
8

Finally, Fig. 10 shows the number of times each method was ranked
first for each pathologist. On average, CR Global was systematically
ranked first, while the rest were not too appealing to the pathologists.
Indeed, the two first pathologists prefer CR Global most of the time.

From this experiment, we conclude that our CR family is compet-
itive and obtains remarkable results according to three expert pathol-
ogists. Especially, CR Global performs remarkably well, which aligns
with the previous experiment since this method was the best in tumor
performance. Furthermore, CR Image is very competitive. We cannot
strongly conclude which method is better because they were evaluated
on only nine patches. These results complement those of the previous
section and confirm that our CR Global and CR Image provide satisfying
segmentation masks according to the visual analysis of three different
pathologists. However, CR Pixel does not produce worthy segmentation
masks for expert pathologists. The main problem of CR Pixel is the
complex annotator network which outputs a Confusion Matrix per
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:

Fig. 9. Number of times that the methods have been considered acceptable by the
three expert pathologists unanimously.

pixel. The number of classes, patches, and the difficulty/subjectivity
inherent to this problem can harm this CR method.

4.4. Analysis of the subjectivity across different classes

This subsection further analyzes the performance of the CR methods
depending on the subjectivity across the different classes. As indicated
in the previous study by Amgad et al. (2019), the discordance between
observers varies significantly by class. They computed the discordance
between annotators across the classes utilizing the following formula

∇𝑖,𝑗,𝑙 = 1 − 2 ×
|𝐼𝑙 ∩ 𝐽𝑙|
|𝐼𝑙| + |𝐽𝑙|

, (13)

where ∇𝑖,𝑗,𝑙 is the discordance between the annotators 𝑖 and 𝑗 for the
class 𝑙, with corresponding binary masks 𝐼𝑙 and 𝐽𝑙 for that class. This
coefficient ranges in [0, 1], with 1 indicating total discordance and 0
total agreement. They obtained that the median discordance for tumor,
stroma, inflammation, and necrosis between non-experts and experts
were 0.14, 0.27, 0.54, and 1.0, respectively.

Fig. 11 shows the performance of the CR methods against these
values of discordance. While in the tumor class, the three CR meth-
ods are almost coincident, when referring to more subjective classes,
i.e., Inflammation or Necrosis, CR Image outperforms the other two
methods. As the discordance grows, the DICE of CR Global and CR Pixel
drops and the gap between them and CR Image becomes wider.

We have shown through this analysis that CR Global performs
fairly well across classes with a high agreement between annotators,
especially in the tumor class, which is the dominant class (see DICE
in tumor and the micro-average DICE in Tables 2 and 3). However,
CR Image shows a remarkable performance across the different classes,
outperforming CR Global in more subjective classes (see macro-average
DICE and DICE in inflammation and necrosis in Tables 2 and 3). We
hypothesize that the more flexible annotator network of the CR Image
is important to learn the noisy annotators’ behavior in these classes.

4.5. Robustness to the size of the training set

We assessed our crowdsourcing segmentation family’s generaliza-
tion capability and robustness against the lack of labeled data, which
is a typical scenario in medical imaging. We used a random sample of
the training data with 10%, 25%, 50%, and 75% of the total training
data. We ran this experiment three times with different subsets.

Fig. 12 depicts the macro-average DICE coefficients for this ex-
periment. We used the macro-average to underline the performance
through the different classes. As expected, the supervised method
trained with expert masks performs best when the training set is
small. Conversely, the baseline methods that rely on mask aggregation
(i.e., STAPLE and MV) perform worse across various training set sizes.
Our CR family performs remarkably well under these varying training
size conditions.

Upon closer examination of this experiment, we see that the more
complex methods of our CR family (i.e., CR Image and CR Pixel) do not
9

perform well when trained with a small number of samples. The limited
number of labeled samples per annotator hinders obtaining reliable
parameters in more complex models. In contrast, CR Global, which
is the simplest method of our family, achieves satisfying performance
in this case. CR Global also achieves its best performance with the
50% of the training set. By adding more data, the performance does
not keep improving. Interestingly, CR Image’s performance improves
notably when trained with 75% of the dataset. The flexible annotator
network of CR Image takes advantage of having access to more labeled
data. Indeed, when trained with the entire dataset, CR Image stands
out in terms of the macro-average DICE metric.

In conclusion, the simple annotator network makes CR Global the
best option for scenarios involving a small training dataset because it
can estimate a reliable model with a small number of labeled samples.
The more flexible CR Image is the best when training with the entire
dataset, achieving the best macro-average DICE and better modeling of
more subjective classes.

5. Conclusion

This paper proposes a novel family of one-stage crowdsourcing
segmentation methods for histopathological tissue. The proposed CR
methods jointly estimate the annotators’ expertise and the segmenta-
tion method, scaling on the number of annotators, and can be applied
to real-world CPATH segmentation. We validate the methods in a real-
world dataset composed of Triple Negative Breast Cancer histopatho-
logical images. Through extensive and exhaustive experimentation and
evaluation, we show the effectiveness and potential of our CR methods
from several perspectives. The results are remarkable in quantitative
(reporting DICE metrics) and qualitative analysis (conducted with three
expert pathologists), outperforming state-of-the-art STAPLE and show-
ing comparable results against the supervised method trained with
expert masks. Within our CR family, the new CR Image stands out for its
remarkable performance in challenging and subjective classes, owing to
the flexibility of its annotator network. Furthermore, CR Global takes
advantage of its simplicity and achieves excellent results with small
training sets.

In this work, we have assumed independence among the annotators,
which is unreal. Future work will address new architectures for the
annotator network considering correlations in their behavior. We also
plan to consider how to introduce prior information on the annotators,
such as years of experience or confidence in the annotation. Further-
more, the proposed methods can potentially be leveraged in other
real-world medical imaging settings with multiple noisy annotators.
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Fig. 10. Number of times the methods have been ranked as the best one for each pathologist. The right figure represents the average and standard error of the three.

Fig. 11. Performance of the CR methods depending on the subjectivity of the classes. CR methods show a similar behavior in classes with less subjectivity. As the subjectivity
grows, CR Image outperforms the rest.

Fig. 12. Macro-average DICE coefficient in the test set of methods trained with a randomly selected subset of the training data. The results are averaged through three different
runs.
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Fig. A.13. Left, micro-average DICE coefficients in the test set. Right, macro-average DICE coefficients in the test set. The bars represent the average through three different runs
and the intervals are the standard error.
Fig. A.14. Per-class DICE coefficients in the test set. The results are reported for the six studied methods. The bars represent the average through three different runs and the
intervals are the standard error.
Appendix. Additional figures

This appendix includes some additional figures to better visualize
the results obtained in our work. Figs. A.13 and A.14 depict the
11
DICE values and standard error through the three runs for the studied

methods. These figures are commented on in the main text but we

included them here for better readability.
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