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Abstract

Multiple Instance Learning (MIL) is a weakly supervised paradigm that has

been successfully applied to many different scientific areas and is particu-

larly well suited to medical imaging. Probabilistic MIL methods, and more

specifically Gaussian Processes (GPs), have achieved excellent results due

to their high expressiveness and uncertainty quantification capabilities. One

of the most successful GP-based MIL methods, VGPMIL, resorts to a vari-

ational bound to handle the intractability of the logistic function. Here, we

formulate VGPMIL using Pólya-Gamma random variables. This approach

yields the same variational posterior approximations as the original VGP-

MIL, which is a consequence of the two representations that the Hyperbolic

Secant distribution admits. This leads us to propose a general GP-based
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MIL method that takes different forms by simply leveraging distributions

other than the Hyperbolic Secant one. Using the Gamma distribution we

arrive at a new approach that obtains competitive or superior predictive

performance and efficiency. This is validated in a comprehensive exper-

imental study including one synthetic MIL dataset, two well-known MIL

benchmarks, and a real-world medical problem. We expect that this work

provides useful ideas beyond MIL that can foster further research in the

field.

Keywords: Multiple Instance Learning, Gaussian Processes, Jaakkola

bound, Pólya-Gamma, Hyperbolic Secant distribution, Variational

Inference, Intracranial hemorrhage detection

1. Introduction

Multiple Instance Learning (MIL) [1] is a type of weakly supervised

learning that has become very popular due to the reduced annotation effort it

requires. In MIL binary classification [2] the training set consists of instances

grouped into bags. Both bags and instances have labels, but we only observe

them at the bag level while instance labels remain unknown. It is assumed

that a bag label is positive if and only if it contains at least one positive

instance. The goal is to achieve a method capable of accurately predicting

both bag and instance labels using only bag labels.

The MIL approach has been successfully applied to many different sci-

entific domains [1], being particularly well suited to medical imaging [3].

In this work, we are particularly interested in the problem of IntraCranial

Hemorrhage (ICH) detection. ICH is a severe life-threatening emergency

with high mortality and morbidity rates caused by blood leakage inside the

brain [4]. Computed Tomography (CT) scans are widely used to diagnose
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ICH because it is an inexpensive and non-invasive technique for patients.

Each scan is made up of a significant number of slices, each representing a

section of the head at a given height. A CT scan is labeled as ICH if at least

one of its slices shows evidence of the injury, otherwise, it is normal. To

apply a supervised learning approach, radiologists have to manually label

every single slice in the dataset [5, 6, 7], which is a costly and tedious pro-

cess. In contrast, the MIL approach significantly reduces the radiologists’

workload as only one label for each scan is needed.

To learn in the MIL scenario, Deep Learning (DL) methods have become

popular in practice due to their ability to deal with highly structured data [3,

8, 9, 10] The most successful models combine DL architectures with attention

mechanisms to weigh the relevance of each instance, see [11]. However,

these methods do not model the instance label explicitly (they just have

an attention weight for each instance), which hampers the quantification

of uncertainty at the instance level. Note that this is essential in MIL

since instance labels are unknown. As a consequence, plenty of attention

has been paid to probabilistic MIL methods in recent years. Among them,

Gaussian Processes (GPs) have achieved very competitive results [12, 13, 14,

15, 16, 17], due to their high expressiveness and uncertainty quantification

capabilities. Most of these GP-based MIL methods build on the popular

VGPMIL [14], which formulates the MIL problem through sparse GPs for

classification using the logistic function.

In order to achieve mathematical tractability of the logistic function,

VGPMIL introduces a variational bound known as the Jaakkola bound.

Therefore, the training objective becomes a lower bound of the real one. As

recently shown in [16], this theoretical approximation degrades the predictive

performance in practice. An alternative and exact treatment of the logistic
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function has recently been introduced in the context of GPs for supervised

classification, see [18, 19, 20]. The idea is to augment the model using

Pólya-Gamma variables, obtaining an equivalent and tractable formulation.

However, to the best of our knowledge, these ideas have never been adapted

to the MIL scenario.

In this work, we first reformulate the VGPMIL model using Pólya-

Gamma random variables. We find that this new model, called PG-VGPMIL,

is equivalent to the existing VGPMIL when performing closed-form varia-

tional inference updates (they lead to the same update equations). This

phenomenon, which was also observed in supervised classification [18, 19],

finds its justification in the properties of the Hyperbolic Secant density [21].

Thanks to them, the logistic observation model admits two representations

[22], as a Super Gaussian and as a Gaussian Scale Mixture (GSM), that lead

to the same variational optimization objective [18, Theorem 2.1]. We build

upon the GSM representation to formulate ψ-VGPMIL, a general model

where ψ is a differentiable GSM density. When ψ is the Hyperbolic Secant

density, we recover the original VGPMIL. Although ψ-VGPMIL is formu-

lated using GPs, it can be extended to other related probabilistic frame-

works, such as Relevance Vector Machines [23, 24].

Inspired by the above connection and by the definition of Pólya-Gamma

variables [20], we replace the Pólya-Gamma distribution with the Gamma

distribution, obtaining a new GSM density and thus a new particularization

of ψ-VGPMIL, which we refer to as G-VGPMIL. The proposed algorithm

is evaluated through a comprehensive set of experiments involving differ-

ent datasets, baselines and metrics (both at the instance and bag level).

First, we focus on the G-VGPMIL method in a controlled experiment built

around the MNIST dataset. This allows us to understand its behavior in
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practice and devise its main properties. Second, we utilize two historically

important MIL benchmark datasets (MUSK1 and MUSK2). This second

experiment again shows that G-VGPMIL improves the existing VGPMIL

approach in terms of efficiency and performance. Third, we show that G-

VGPMIL achieves better results than state-of-the-art methods for the ICH

detection problem.

In summary, the main contributions of this work are the following:

• We introduce PG-VGPMIL, a new probabilistic MIL model based on

Pólya-Gamma random variables. To the best of our knowledge, Pólya-

Gamma variables have never been used before in the context of MIL.

We observe that PG-VGPMIL is equivalent to the existing VGPMIL

when performing closed-form variational inference updates.

• Building on the theory behind this equivalence, we develop ψ-VGPMIL,

a general inference framework for the logistic observation model. New

inference models can be obtained using different GSM densities, de-

noted by ψ. PG-VGPMIL (and hence VGPMIL) becomes a particular

case of this framework when ψ is the Hyperbolic Secant density.

• We use the Gamma distribution to obtain a new GSM density, which is

used in the aforementioned general framework to obtain G-VGPMIL,

a new inference model for MIL. To the best of our knowledge, the

Gamma distribution has never been used in the context of MIL.

• The newly proposed G-VGPMIL is compared to state-of-the-art ap-

proaches using different metrics and datasets, including a real-world

ICH detection problem. The experiments conducted show enhanced

predictive performance and efficiency.
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The rest of the paper is organized as follows. In Section 2 we introduce

the MIL problem and its GP-based formulation. In Section 3 we introduce

PG-VGPMIL and investigate its equivalence to VGPMIL. In Section 4 we

devise ψ-VGPMIL, a new general framework of which VGPMIL is a par-

ticular realization. In Section 5 we introduce our new model G-VGPMIL

as another particular realization of ψ-VGPMIL. In Section 6 we empirically

validate the newly proposed method. In Section 7 we summarize the main

conclusions of this work.

2. Gaussian Processes for Multiple Instance Learning

The goal of this section is to introduce the MIL problem and how GPs

are used to address it.

2.1. Problem formulation: Multiple Instance Learning

We consider a dataset {(xn, yn) : n ∈ {1, . . . , N}} ⊂ RD × {0, 1}, which
consists of the training instances xn and their binary labels yn. We ex-

press this set in a matrix X = [x1, . . . ,xN ] ∈ RD×N and a vector y =

[y1, . . . , yN ]⊤ ∈ {0, 1}N .

In the MIL scenario, the instance labels yn are not observed. Instead,

they are grouped into bags and only the maximum of the labels of the

instances in a bag is observed. Formally, the index set {1, . . . , N} is parti-

tioned into B non-overlapping bags {Bag1, . . . ,BagB} and the operator {·}b
is used to refer to the elements in bag b, so {y}b = {yi : i ∈ Bagb}. The

operator {·}b\n is used to refer to the elements in bag b except for the n-th

element, so {y}b\n = {y}b \ {yn}. Finally, for a bag b, the only observed

label is Tb = max {y}b. The goal is to predict the label for any new bag, as

well as the labels of the instances in the bag.
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Notice that the ICH detection problem presented in the introduction

can be cast as an MIL one. A full scan is treated as a bag and slices are

treated as instances. Only bag labels Tb are observed, while slice labels yn

are unobserved. A CT scan presents hemorrage (positive class) if at least

one of its slices show evidence of hemorrhage. A negative scan contains only

normal slices.

2.2. Variational Gaussian Processes for Multiple Instance Learning

Before considering the GP MIL problem, we briefly summarize the gen-

eral framework for GP Logistic classification [25]. Given a training dataset

(X,y), GP classification assumes the existence of a latent function f : RD →
R that determines the class of an instance. The model places a GP prior

over this function, p(f) = N (f | 0,KXX), and uses the observation model

p(yn | fn) = Bernouilli (yn | logit(fn)) , p(y | f) =
N∏

n=1

p(yn | fn), (1)

where logit(t) = 1/(1 + e−t) is the logistic function and f = [f1, . . . , fN ]⊤ =

[f(x1), . . . , f(xN )]⊤ are the realizations of the latent function f over the

training set. The matrix KXX is defined as (KXX)ij = k(xi,xj), where

k : RD × RD → R is a positive-definite kernel [25]. In this work, we will

use the popular Radial Basis Function (RBF) kernel, which is defined as

k(x,x′) = v exp
(
−∥x−x′∥

2l

)
, where v, l > 0 will be treated as hyperparame-

ters. In the following, we denote λ = {v, l}.
GP inference requires inverting an N ×N matrix related to the kernel.

This has a cost of O(N3), so the full model can not be used for large datasets.

This has motivated the popularization of sparse GP methods. Following the

fully independent training conditional (FITC) approximation [26], we intro-

duce a set of M inducing points Z = [z1, . . . , zM ] and their corresponding
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output via f , u = f(Z). Mirroring the relation between X and f , we have

p(u) = N (u | 0,KZZ) , (2)

p(f | u) = N (f | a, K̃), (3)

where a = KXZK
−1
ZZu and K̃ = KXX − KXZK

−1
ZZKZX. Here, (KZZ)ij =

k(zi, zj), (KXZ)ij = k(xi, zj) and KZX = K⊤
XZ. This approach reduces the

cost to O
(
M2N

)
.

In the MIL scenario, instead of instance labels {yn} we have only bag

labels Tb. To adapt the previous classifier to this setting, VGPMIL [14]

introduces the following expression of the bag label likelihood given the

labels of the instances,

p(Tb | {y}b) =
HGb

H + 1
, p(T | y) =

B∏
b=1

p(Tb | {y}b), (4)

whereH > 0 (set to 100 in [14]) andGb = Tbmax {y}b+(1−Tb) (1−max {y}b).
This replaces the deterministic value of Tb given max{y}b by a noisy prob-

abilistic one. If max{y}b = 1, then p(Tb = 1 | {y}b) = H/(H + 1) and

p(Tb = 0 | {y}b) = 1/(H + 1) (a very small number). On the contrary, if

max{y}b = 0, then p(Tb = 0 | {y}b) = H/(H + 1) and p(Tb = 1 | {y}b) =
1/(H + 1) (again, a very small number). The complete VGPMIL model is

given by the product of the distributions in Eq. (1), (2), (3), and (4).

In order to make predictions in VGPMIL it is necessary to compute

the posterior distribution p(u, f ,y | T), which is not analytically tractable.

The original work [14] resorts to mean-field variational inference [27] to

approximate it by a variational distribution q(u, f ,y) = q(u)p(f | u)q(y)
with q(y) =

∏N
n=1 q(yn), that is selected minimizing the Kullback-Leibler

(KL) divergence between the variational distribution approximation and the

true posterior. The solution for each factor is given by [27, Eq. (10.9)].
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Since the logistic function used in Eq. (1) is not conjugate to the Gaus-

sian distribution, it is impossible to obtain tractable expressions for the vari-

ational factors. To deal with this, VGPMIL uses the Jaakkola bound [28].

In the next subsection we explore an augmented version of VGPMIL based

on Pólya-Gamma random variables [20], in which inference is tractable.

3. Pólya-Gamma variables for GPMIL

The class of Pólya-Gamma random variables was introduced in [20] to

propose a data augmentation approach for stochastic Bayesian inference

in models with binomial likelihood. Later, the multinomial distribution

was reformulated in terms of Pólya-Gamma variables considering GPs with

multinomial observations [29]. Finally, [19] proposed a stochastic variational

approach to GP classification using an augmented model based on Pólya-

Gamma variables and inducing points. Next, we consider the Pólya-Gamma

trick in the context of MIL GP classification.

The Pólya-Gamma distribution PG (b, c), with b > 0 and c ∈ R, has an

important property that is closely related to our problem,

logit(x) = 2−1 exp (x/2)EPG(ω|1,0)
[
exp

(
−x2ω/2

)]
, ∀x ∈ R. (5)

This equality ensures that the following joint density is well defined

p(yn, ωn | fn) = 2−1 exp ((yn − 1/2)fn) exp
(
−f2nωn/2

)
PG(ωn | 1, 0), (6)

and that p(yn | fn) =
∫∞
0 p(yn, ωn | fn)dωn is the logistic observation model.

Writing ω = [ω1, . . . , ωN ]⊤, Ω = Diag (ω1, . . . , ωN ), and assuming indepen-

dence between instances, we have

p(y,ω | f) = 2−N exp
(
(y − 2−11)⊤f − 2−1f⊤Ωf

) N∏
n=1

PG(ωn | 1, 0), (7)
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where 1 = [1, . . . 1]⊤. Note that we are considering an equivalent model

where we have removed the use of the logistic function without introduc-

ing any approximation. The augmented VGPMIL model is defined by the

product of the distributions in Eq. (2), (3), (4) and (7). We will refer to

this model by Pólya Gamma Variational Gaussian Process Multiple Instance

Learning (PG-VGPMIL).

Inference in PG-VGPMIL. We mimic the inference procedure fol-

lowed by VGPMIL. We approximate the posterior distribution p(u, f ,y,ω |
T) with a variational distribution q(u, f ,y,ω) = q(u)p(f | u)q(y)q(ω),

where q(y) =
∏N

n=1 q(yn), and q(ω) =
∏N

n=1 q(ωn), minimizing the KL

divergence between them. Applying [27, Eq. (10.9)], we obtain

q(u) = N (u | m,S) , (8)

q(yn) = Bernouilli (yn | πn) , (9)

q(ωn) = PG (ωn | 1, cn) , (10)

πn = logit
[
KxnZK

−1
ZZm+ logH (2Tb − 1)

(
1− E

[
max {y}b\n

])]
, (11)

m = SK−1
ZZKZX

(
π − 2−11

)
, (12)

S =
(
K−1

ZZKZXΘKXZK
−1
ZZ +K−1

ZZ

)−1
, (13)

Θ = Diag (θ(c1), . . . , θ(cn)) , cn =
√

Eq(fn)[f
2
n], θ(c) =

tanh (c/2)

2c
(14)

where q(fn) =
∫
RM q(u)p(fn | u)du and π = [π1, . . . , πn]

⊤. It is worth

mentioning that θ(cn) = Eq(ωn) [ωn]. The derivation of these equations can

be found in Appendix A. Note that training PG-VGPMIL boils down to

iterating over the above equations. If we compare these updates with the

ones from VGPMIL, we find that they are identical. We explore this in the

following subsection.
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3.1. On the equivalence between PG-VGPMIL and VGPMIL

We observe that the update equations for PG-VGPMIL are equivalent

to those of VGPMIL. In both models, m and πn have the same expressions,

recall [14, Eq. (12), Eq. (14)]. Also, the update for ξn in VGPMIL is the

same as cn here. Finally, from logit(x) = (tanh(x/2) + 1)/2, we have that

Λ = Θ and so the covariance matrix S is also the same [14, Eq. (11)].

This phenomenon was also observed in the context of supervised clas-

sification [18, 19], as a consequence of two different representations of the

Hyperbolic Secant density, and generalizes naturally to our setting of MIL.

Namely, note that the logistic likelihood can be written as

p(yn | fn) = π exp
(
(yn − 2−1)fn

)
ϕ(fn), (15)

where ϕ(x) = (2π cosh (x/2))−1 is the Hyperbolic Secant density proposed

in [21]. This density prevents us from calculating variational updates an-

alytically. It admits two representations: as a Super Gaussian (SG), and

as a Gaussian Scale Mixture (GSM), the former being a consequence of the

latter [22, 30]. The SG representation leads to the Jaakkola bound used in

VGPMIL. The GSM representation leads to PG-VGPMIL and is obtained

from Eq. (5),

ϕ(x) =

∫ +∞

0
N
(
x | 0, ω−1

)
ϕ̂(ω)dω, ∀x ∈ R, (16)

where ϕ̂(ω) = (2πω)−1 PG(ω | 1, 0). These representations produce infer-

ence schemes that may appear different. However, both approaches lead to

optimize the same objective, as demonstrated in [18, Theorem 2.1] for the

supervised logistic regression model. This result follows straightforwardly

for our setting involving MIL and GPs.
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Besides being responsible for the equivalence between the two approaches

presented so far, the Hyperbolic Secant density ϕ plays a fundamental role

in the VGPMIL variational updates. Recall that the matrix Θ in Eq. (14)

is computed using the function θ, which is completely determined by ϕ, see

Appendix A. As pointed out in previous works, one could try to improve

the inference procedure by modifying θ [31]. In the following section, we

formalize this idea, and show that it corresponds to replacing ϕ by a different

GSM density.

4. A general inference framework for the logistic observation model

The GP logistic observation model can be written as

p(u, f ,y) = Z−1N (f ,u) exp
((

y − 2−11
)⊤

f
)
ϕ(f), (17)

where Z = π−N , ϕ(f) =
∏N

n=1 ϕ(fn), and N (f ,u) = N (f | u)N (u) denotes

the joint distribution given by equations (2) and (3). To extend this model,

first we consider a differentiable density ψ : R → R that admits a GSM

representation. Next, we replace ϕ by ψ,

p(u, f ,y) = Z−1N (f ,u) exp
(
(y − 2−11)⊤f

)
ψ(f), (18)

where ψ(f) =
∏N

n=1 ψ(fn) and the normalization constant is

Z =
∑

y∈{0,1}N

∫
RN

N (f) exp
(
(y − 2−11)⊤f

)
ψ(f)df , (19)

where N (f) =
∫
RM N (f ,u) du. Using

∑
y∈{0,1}N exp

(
(y − 2−11)⊤f

)
=

π−Nϕ(f)−1, we can write

Z = π−N

∫
RN

N (f)ψ(f)ϕ(f)−1df . (20)
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Given that ψ must be bounded, the above integral must be dominated by∫
RN N (f)ϕ(f)−1df . As N (f) is a Gaussian and ϕ(f)−1 is analytic (as a

product of analytic functions), then N (f)ϕ(f)−1 is integrable [32]. There-

fore, the integral in Eq. (20) is finite.

In our new framework, p(y | f) remains the same as in Eq. (1), but the

GP prior distribution change according to

p(f | u) ∝ N (f ,u)ψ(f)ϕ(f)−1, (21)

p(f) ∝ N (f)ψ(f)ϕ(f)−1. (22)

This means that we no longer consider a GP prior on p(f), which is now

a Gaussian weighted by the ratio ψ(f)ϕ(f)−1. This new approach increases

the flexibility of our model, since we can explore different options for ψ and

subsequently select the best for our problem. One way to accomplish this

is considering a parametric family and looking for the optimal parameters.

Recall that the original model can be recovered by setting ψ = ϕ, which

highlights that the new framework is an extension of the previous one.

To adapt this new framework to MIL, we multiply the joint distribution

in Eq. (18) by the bag likelihood defined in Eq. (4). We will refer to

this extended model as ψ Variational Gaussian Processes Multiple Instance

Learning (ψ-VGPMIL).

Inference in ψ-VGPMIL. We leverage the GSM representation of ψ

and perform inference in the augmented model, similar to PG-VGPMIL.

Thus, we approximate the posterior distribution p(u, f ,y | T) with a varia-

tional distribution q(u, f ,y) = q(u)q(f | u)q(y), where q(f | u) = N (f | u),
and q(y) =

∏N
n=1 q(yn).

Our choice of q(f | u) is not optimal, but it allows us to derive tractable

expressions for the variational updates. Note that q(f | u) = p(f | u) is a

13



better approximation [33], but yields intractable expressions since p(f | u)
is no longer a Gaussian, see Eq. (21). Our approach could be improved by

giving more flexibility to q(f | u), e.g. using normalizing flows [34].

The optimal expressions for q(u) and q(y) are obtained minimizing the

KL divergence between the posterior and the variational distributions. Ap-

plying [27, Eq. (10.9)], we obtain

q(u) = N (u | m,S) , (23)

q(yn) = Bernouilli (yn | πn) , (24)

πn = logit
[
KxnZK

−1
ZZm+ logH (2Tb − 1)

(
1− E

[
max {y}b\n

])]
, (25)

m = SK−1
ZZKZX

(
π − 2−11

)
, (26)

S =
(
K−1

ZZKZXΘKXZK
−1
ZZ +K−1

ZZ

)−1
, (27)

Θ = Diag (θ(c1), . . . , θ(cN )) , cn =
√
Eq(fn)[f

2
n], θ(c) = − ψ′(c)

cψ(c)
, (28)

where q(fn) =
∫
RM q(u)p(fn | u)du and π = [π1, . . . , πn]

⊤. The expression

of θ(cn) reveals why ψ must be differentiable. As in PG-VGPMIL, θ(cn)

represents the expectation of the augmenting variables. We provide more

details on the derivation of these equations in Appendix A. Again, note that

if ψ = ϕ, we recover the original VGPMIL model

Kernel hyperparameters estimation in ψ-VGPMIL. The varia-

tional framework allows us to estimate the kernel hyperparameters λ. Fol-

lowing [35], we aim to maximize the ELBO with respect to them. This is

computationally equivalent to placing a flat improper prior p(λ) ∝ const,

and taking the mode of the approximated posterior q(λ) as an estimate.
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The objective to be maximized is

J (λ) =−KL (q(u), p(u)) +
(
π − 2−11

)⊤
µ+

+

N∑
n=1

Eq(fn) [logψ(fn)]− logZ, (29)

where µ = KXZK
−1
ZZm is the mean of q(f). We optimize J (λ) using gra-

dient ascent for a fixed number of iterations, for which we approximate the

expectation on the third and fourth terms using Monte Carlo sampling [36].

Note that Z depends on the kernel hyperparameters through N (f). Since

logZ requires sampling from N (f), which is costly, we decide to further

approximate those samples using Random Fourier Features [37].

It is worth mentioning that the hyperparameter estimation procedure

was not implemented in the original VGPMIL. Thus, our work strictly gen-

eralizes the model proposed in [14].

The training procedure of ψ-VGPMIL is detailed in Algorithm 1. An

iteration updates the variational parameters using Eq. (25) - (28), and then

updates the kernel hyperparameters optimizing the objective in Eq. (29).

Making predictions in ψ-VGPMIL. Given a new bag
{
x∗
1, . . . ,x

∗
N∗

}
,

we are interested in both instance and bag level predictions, which are de-

noted by y∗ =
{
y∗1, . . . , y

∗
N∗

}
and T ∗, respectively. To predict the latent

function value f∗ of an instance x∗, we substitute the approximate posterior

into the predictive distribution,

p(f∗ | T) ≈ N
(
f∗ | µ∗, σ∗2

)
, (30)

where µ∗ = Kx∗ZK
−1
ZZm and σ∗2 = Kx∗x∗ + Kx∗ZK

−1
ZZ

(
SK−1

ZZ − I
)
KZx∗ .

To compute the distribution of the test label y∗, we integrate with respect
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Algorithm 1: Training procedure of ψ-VGPMIL.
Input: Training instances X = {x1, . . . ,xN}, bag indices {Bag1, . . . ,BagB},

bag labels T = {T1, . . . , TB}, number of inducing points, number of

iterations K, kernel hyperparameters λ, function ψ.

1 Initialize the locations of the inducing points Z. Compute the kernel matrices

KXX,KXZ,KZX,KZZ,K
−1
ZZ, K̃ using λ.

2 Initialize the components of m and S and to random values drawn from N (0, 1).

Initialize the components of π to random values drawn from Uniform(0, 1).

3 for k = 1, . . . ,K do

4 Update Θ using Eq. (28).

5 Update S using Eq. (27).

6 Update m using Eq. (26).

7 For each n ∈ {1, . . . , N}, update πn using Eq. (25).

8 Estimate λ̂ = argmaxλ J (λ), with J (λ) given in Eq. (29). Recompute the

kernel matrices using λ̂.

Output: Kernel hyperparameters λ̂, distributions q(u) and q(y) =
∏N

n=1 q(yn)

as in Eq. (23) and (24).
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to f∗ in p(y∗, f∗ | T) to obtain

p(y∗ = 1 | T) =

∫ +∞

−∞
p(f∗ | T) logit(f∗)df∗ = Ep(f∗|T) [logit(f

∗)] , (31)

which allows us to make instance-level predictions having trained the model

exclusively with bag labels. As the expectation cannot be calculated in

closed form, we approximate it by sampling from the GP predictive distri-

bution,

p(y∗ = 1 | T) ≈ p̂ =
1

L

L∑
l=1

logit(f∗l ), (32)

Varp(f∗|T) [logit(f
∗)] ≈ 1

L

L∑
l=1

(logit(f∗l )− p̂)2 , (33)

where {f∗1 , . . . , f∗L} ∼ p(f∗ | T). To obtain the bag label, we apply the

MIL hypothesis,

p(T ∗ = 1 | T) = 1−
N∗∏
n=1

p(y∗n = 0 | T) = (34)

= Eν(f∗|T)

[
1−

N∗∏
n=1

(1− logit(f∗n))

]
, (35)

where ν(f∗ | T) =
∏N∗

n=1 p(f
∗
n | T). Again, we estimate the above expecta-

tion using samples from the GP predictive distribution,

p(T ∗ = 1 | T) ≈ p̃ =
1

L

L∑
l=1

(
1−

N∗∏
n=1

(1− logit(f∗nl))

)
, (36)

Varν(f∗|T)

[
1−

N∗∏
n=1

(1− logit(f∗n))

]
≈ 1

L

L∑
l=1

(
p̃−

(
1−

N∗∏
n=1

(1− logit(f∗nl))

))2

,

(37)

where {f∗n1, . . . , f∗nL} ∼ p(f∗n | T) for each n ∈ {1, . . . , N∗}.
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5. Gamma variables for GP-MIL

As explained in the previous section, new models that generalize VGP-

MIL can be obtained by replacing the Hyperbolic Secant density with a

different density that also admits a GSM representation. In this section, we

focus on a concrete realization of ψ-VGPMIL, which uses Gamma variables

and will prove to work better in practice.

Our motivation to use Gamma variables is as follows. A Pólya-Gamma

variable ω ∼ PG(1, 0) is defined as an infinite weighted sum of independent

Gamma variables [20, Definition 1], ω = (2π2)−1
∑∞

m=1 gm/(m−0.5)2, where

gm ∼ Gamma(1, 1). We alternatively consider gm = g ∼ Gamma(1, 1) for

every m, which leads to ω = g/4 and, therefore, ω ∼ Gamma(1, 4). Thus,

we replace the Pólya-Gamma density in Eq. (16) by a Gamma density with

parameters α and β, obtaining

ψ(x) = Z(α, β)−1
(
β + x2/2

)−α
, ∀x > 0, (38)

where Z(α, β) is the normalization constant. It is worth mentioning that

although this constant can be calculated, it is not needed to carry out the

updates in Algorithm 1. Thus, we arrive at a concrete realization of ψ-

VGPMIL, which we call Gamma Variational Gaussian Processes Multiple

Instance Learning (G-VGPMIL).

We note that G-VGPMIL differs from PG-VGPMIL in the function θ

used to compute the Θ matrix. In PG-VGPMIL this function is defined

as θPG(x) = tanh(x/2)/(2x), while in G-VGPMIL we obtain θG(x;α, β) =

α/(β+x2/2). Both functions are plotted in Figure 1 for α = 1 and different

values of β. We leave the estimation of α and β for future work.
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Figure 1: Plot of the functions θPG(x) = tan(x/2)/(2x) (black) and θG(x;α, β) = α/(β +

x2/2) for α = 1 and β ∈ {1, 2, 4, 8} (blue, orange, green, purple).

6. Results

In this section, we carry out an empirical validation of the newly for-

mulated G-VGPMIL model by means of three different experiments. Ta-

ble 1 summarizes the five datasets that we use. First, using an MIL ver-

sion of the well-known MNIST dataset, we perform a controlled and vi-

sual experiment to understand the behavior of our method at both the in-

stance and bag levels. Second, we employ two classical benchmark datasets

for MIL algorithms, the MUSK1 and MUSK2 datasets. Third, we tackle

the real-world medical problem of ICH detection, showing enhanced per-

formance against state-of-the-art approaches. We compare VGPMIL (Al-

gorithm 1 with ψ = ϕ) and G-VGPMIL (Algorithm 1 with ψ as in Eq.

(38)). To ensure a fair comparison, both models were trained with identi-

cal set-ups, initial parameters, and grid-searches in every experiment. Both

models have been implemented in JAX1, and will be available at https:

//github.com/Franblueee/psi-VGPMIL upon the acceptance of the paper.

1https://jax.readthedocs.io/en/latest/
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Num. instances Positive instances Negative instances Num. bags Positive bags Negative bags

MNIST 70000 8774 61226 7000 3500 3500

MUSK1 476 N/A N/A 92 47 45

MUSK2 6598 N/A N/A 102 39 63

RSNA 39750 5782 33968 1150 483 667

CQ500 193317 N/A N/A 490 205 285

Table 1: Label distribution at the instance and bag level for each dataset considered.

6.1. MNIST

Overview. In this section we analyze the behavior of the newly pro-

posed G-VGPMIL in a controlled environment. To this end, we transform

the MNIST dataset [38] into an MIL one. This experiment allows us to

understand the performance of our method at both instance and bag level.

The results show that G-VGPMIL performs, at least, as well as the state-

of-the-art VGPMIL [14] while taking less time to complete the training.

Dataset description. The MNIST dataset consists of 70000 images

(60000 for training and 10000 for testing) of handwritten digits. We choose

the digits 2 and 9 to be the positive class, while the rest of the digits belong

to the negative class. This way, a bag is positive if it contains at least a 2 or

a 9, and negative otherwise. We randomly group the digits into bags of 10

instances each, ensuring that there is a balanced distribution of positive and

negative bags, with each positive bag containing 1 to 4 positive instances.

The resulting dataset has 61226 positive instances, 8774 negative instances

and 7000 bags. Figure 2 shows two of the generated bags, as well as the

predictions obtained by G-VGPMIL. We also show the standard deviation

for each prediction, which was calculated from equations (33) and (37).

We consider two versions of this dataset. In the first one, called MNIST

RAW, we use all the 28×28 = 784 features of the instances without any kind
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0.11± 0.09 0.22± 0.16 0.23± 0.16 0.10± 0.08 0.19± 0.12 0.07± 0.05 0.19± 0.13 0.29± 0.14 0.25± 0.15 0.67± 0.15

True bag label: 1
Predicted probability: 0.95 ± 0.04

(a) Positive bag with one positive instance.

0.13± 0.07 0.22± 0.08 0.16± 0.08 0.78± 0.15 0.80± 0.14 0.32± 0.19 0.25± 0.17 0.24± 0.16 0.70± 0.18 0.50± 0.18

True bag label: 1
Predicted probability: 1.00 ± 0.00

(b) Positive bag with four positive instances.

Figure 2: MNIST bags and G-VGPMIL predictions (probability to be positive). Positive

instances are highlighted with a red frame.

of preprocessing. Given that shallow models may perform poorly when deal-

ing with high-dimensional data, in the second version, i.e., MNIST PCA, we

apply Principal Component Analysis (PCA) and retain the first 30 principal

components of each instance.

Experimental details. For both VGPMIL and G-VGPMIL models, we

fix H = 100 and choose the RBF kernel. The initial kernel hyperparameters

are (v, l) = (0.5, 30) for MNIST PCA and (v, l) = (0.5, 784) for MNIST

RAW. We conduct a grid search considering {50, 100, 200} for the number

of inducing points, {0.5, 1.0} for the α hyperparameter and {1.0, 2.5, 4.0}
for the β hyperparameter. We create five different train-test stratified splits

in which we evaluate all previous configurations. To guide training, we

monitor the Bag AUC score in a validation subset and halt the process if

no improvement occurs during ten epochs (an epoch is a complete update

of the variational parameters). Based on the Bag Accuracy score, we select

the best model and report the corresponding cross-validation metrics.

Result 1: competitive performance and training time. In Figure
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3 we have selected, for each number of inducing points, the best model ac-

cording to the Bag Accuracy score, and plotted it against the training time in

seconds. VGPMIL and G-VGPMIL exhibit similar traning times. They per-

form comparably in MNIST PCA, while G-VGPMIL is superior in MNIST

RAW, suggesting enhanced performance in handling high-dimensional data.

Overall, applying PCA improves the performance as it eliminates the ex-

isting redundancy in MNIST. Notice that, as theoretically expected, both

the training time and the model performance increase with the number of

inducing points.

200 400 600
Time (s)

0.80

0.85

0.90

0.95

A
U

C

G-VGPMIL

VGPMIL

MNIST PCA

MNIST RAW

50 ind. points

100 ind. points

200 ind. points

Figure 3: Training time vs AUC in the MNIST dataset.

Result 2: instance level results and other metrics. In the previous

result, we focused on the Bag AUC metric. Now, we analyze the AUC,

Accuracy and F1-score performance at bag and instance levels. This is

especially important given the high imbalance of the instance labels (61226

negatives vs 8774 positives, recall Table 1). In Figure 4 we collect the

metrics corresponding to the best model in each scenario. These metrics are

also available in tables 4 and 5. In MNIST PCA there are few differences

between VGPMIL and G-VGPMIL, while in MNIST RAW the differences

are significantly higher in favor of G-VGPMIL, at both the instance and bag
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level.
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(a) MNIST RAW.
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(b) MNIST PCA.

Figure 4: Bag level and instance level performance in MNIST.

6.2. MUSK (1 and 2)

Overview. In this section, we evaluate G-VGPMIL in two historically

important MIL benchmark datasets. Notice that these datasets come from a

real problem (see next paragraph). Yet, we show that G-VGPMIL performs

similarly to the previous experiment, achieving once again better perfor-

mance in a similar training time as VPGMIL.

Dataset description. MUSK1 and MUSK2 [2] are two tabular datasets

that belong to the domain of drug activity prediction. The goal of this prob-

lem is to predict if a molecule will bind to a target binding site (a cavity

into which the molecule fits). This is determined by the shapes that the

molecule can adopt by rotating its bonds. If at least one of these shapes

actually binds to the binding site, the molecule is labeled as positive. Other-

wise, it is labeled as negative. This way, a bag represents a whole molecule,

while an instance is each of the shapes that the molecule can adopt. MUSK1

has 476 instances and 92 bags (47 positive and 45 negative). MUSK2 has
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6598 instances and 102 bags (39 positive and 63 negative). Instances are

represented by a 166-dimensional real vector and their labels are unknown,

so we will only analyze the metrics at the bag level.

Experimental details. Again, we fix H = 100 and choose the RBF

kernel. The initial kernel hyperparameters are (v, l) = (0.5, 166). We per-

form a grid search considering {50, 100, 200} for the number of inducing

points, {0.5, 1.0} for the α hyperparameter and {1.0, 2.5, 4.0} for the β hy-

perparameter. We create five different train-test stratified splits in which we

evaluate each of the previous configurations. To guide the training process

we monitor the AUC metric in a validation subset and halt the training

when it has not improved for ten epochs (an epoch is a complete update

of the variational parameters). Based on the Bag Accuracy score, we select

the best model and report the corresponding cross-validation metrics.

Result 1: better performance in similar training time. In Figure

5 we show a plot analogous to that of the MNIST experiment. We have

selected the best model (according to the Bag AUC metric) for each number

of inducing points considered, and have plotted it against the training time

in seconds. For easier comparison, MUKS1 and MUSK2 results are shown

together. Observe that the blue dots (G-VGPMIL) are above the red ones

(VGPMIL), which means that our method shows superior performance. In

terms of the training time, G-VGPMIL is clearly faster in MUSK1, while it

is competitive with VGPMIL in MUKS2.

Result 2: other bag level metrics. Remember that in the MUSK1

and MUSK2 datasets we do not have the instance level labels (recall Table

1), so we cannot assess the performance at this level. However, we analyze

other bag level metrics to ensure that our method performs correctly in all

aspects. For MUSK2 the F1 metric is very important given the imbalance
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Figure 5: Training time vs AUC for MUSK1 and MUSK2.
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Figure 6: Bag level metrics for MUSK1 and MUSK2.

between positive bags and negative bags (see Table 1). Figure 6 shows

the metrics corresponding to the best model for each of the datasets (also

available in tables 6 and 7). Observe that G-VGPMIL attains better values

than VGPMIL, especially in MUSK2. The superiority of G-VGPMIL are

consistent with the behavior we observed in MNIST: our approach performs

better when dealing with high-dimensional data, which is exactly the case

here.
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6.3. Intracranial hemorrage detection (RSNA, CQ500)

Overview. So far, we have focused on understanding the behavior of

G-VGPMIL (we have compared only with VGPMIL) and we have worked

with two relatively easy problems.

Here, we consider a more complex real-world medical problem of detect-

ing ICH from brain CT scans, for which we need to perform a more complex

feature extraction process, which will be explained below. Moreover, we will

provide a wider comparison against various state-of-the-art approaches that

have been used in this same task. In summary, we will see that G-VGPMIL

achieves very good results in predictive performance, efficiency and stability.

Dataset description. We will use two datasets to train and evaluate

our method. The first one was published by the Radiological Society of

North America (RSNA)2 in 2019. It includes a total of 39750 slices from 1150

patients. The slice (instance) labels are known: there are 5782 abnormal

slices (positive) and 33968 normal slices (negative). Regarding the scans

(bags), there are 483 abnormal scans (positive) and 667 normal scans. The

slices are of size 512 × 512 and the number of them in each scan varies

from 24 to 57. The results for this dataset are shown in Subsection 6.3.1.

We will also use the CQ500 dataset [6], which was acquired from different

institutions in New Delphi, India, as an independent test set. It includes

193317 slices and 491 bags, with only labels at bag level (205 abnormal and

286 normal). The number of slices in each scan varies from 16 to 128. The

results for this dataset are shown in Subsection 6.3.2.

Preprocessing. We follow the same approach as in [15]. To imitate

the way radiologists read CT images we apply three windows to each CT

2https://www.kaggle.com/competitions/rsna-intracranial-hemorrhage-detection/
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slice to enhance the display of the brain, blood, and soft tissue. These

three windows are concatenated to form a three-dimensional matrix and

normalized to [0, 1] (see Figure 7).

Feature extraction for the ICH problem. In Sections 2, 3 and 5

we have discussed different GP-based MIL methods, including our novel G-

VGPMIL. Although these methods can be directly applied to tabular data,

in the case of medical images (and more in general, high dimensional or

highly structured data), it is convenient to extract a few meaningful features

as a previous step. For the ICH detection problem we use an attention-based

CNN that has been employed in previous work [15, 17]. The interested

reader may consult [15] for details. The architecture is named AttCNN and

corresponds to the composition of three functions,

AttCNN(Xb) = (fc ◦ fAtt ◦ fCNN)
(
Xb
)
, (39)

where Xb ∈ RNb×3HW is a matrix where the preprocessed instances of bag b

are collected. First, a CNN fCNN : R3HW → RD is applied to each instance

in the bag to obtain the latentD dimensional representation of each instance.

In this work, we have considered the values 8, 32, and 128 for D (the num-

ber of features extracted). Then, an attention layer fAtt : RNb×D → RD

computes an aggregated representation of the bag. Lastly, a fully connected

layer with a sigmoid output, fc : RD → [0, 1], is applied to obtain bag level

predictions of p(Tb = 1 | Xb). AttCNN is trained to minimize the cross-

entropy between its predictions and the true bag labels. Following [15, 17],

after the training procedure has been completed, we remove fAtt and fc

and replace them with our G-VGPMIL model, obtaining the architecture

represented in Figure 7.

Experimental details. We fix H = 100 and choose the RBF ker-
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Figure 7: Attention based CNN (adapted from [15]).

nel. The initial kernel hyperparameters are (v, l) = (0.5, D), where D ∈
{8, 32, 128} is the number of features extracted. We perform a grid search

considering {50, 100, 200} for the number of inducing points, {0.5, 1.0} for

the α hyperparameter and {1.0, 2.5, 4.0} for the β hyperparameter. We use

the same five train-test splits that were used in [15] and [17]. To guide the

training process we monitor the AUC metric in a validation subset and halt

the training when it has not improved for ten epochs (an epoch is a complete

update of the variational parameters). Based on the Bag Accuracy score, we

select the best model and report the corresponding cross-validation metrics.

6.3.1. Training and testing on RSNA

As we have already mentioned, we first extract relevant features using

AttCNN for D ∈ {8, 32, 128}. With these features, we train the different

configurations of VGPMIL and G-VGPMIL. In this section, we report and

analyze the results when testing in the RSNA test splits.

Result 1: competitive performance and training time. Figure 8

show an AUC vs time plot analogous to those discussed in previous experi-

ments. For each value of the number of features (D) and inducing points, we
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Figure 8: Training time vs AUC in the RSNA dataset.

have selected the best model according to Bag AUC. In term of the bag AUC

score, G-VGPMIL and VGPMIL demonstrate comparable performance, be-

ing VGPMIL slightly ahead whenD = 8. As for the training time, significant

differences are present when D ∈ {32, 128}, with G-VGPMIL showing lower

training times retaining similar discriminative performance.

Result 2: robustness to other metrics. Once we have examined

the behavior of our method using the AUC metric, we now focus on other

classification metrics. As before, the metrics corresponding to the best model

of each type (according to the Bag AUC metric) are collected in Figure 9.

Notice that we are also considering AttCNN as a baseline. As expected,

AttCNN performs much worst than the probabilistic solutions based on

GPs. Clearly, VGPMIL is the most effective method, being closely followed

by the proposed G-VGPMIL. This is also true for each of the values of D

we have considered (see Table 8).

Result 3: an example of a scan prediction. Figure 10 shows an ex-

ample of how our method predicts a positive scan from RSNA. As in Figure

2, the standard deviation is calculated via sampling. Our method assigns

a high probability to almost all positive instances. When the presence of
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Figure 9: Results obtained by the best model of each type in the RSNA dataset.

hemorrhage is clear, uncertainty levels (standard deviation) are very low.

In slices where there is hardly any visible hemorrhage, the uncertainty is

higher. Also, as a considerable number of slices are predicted as positive,

uncertainty at the bag level is almost zero. Note that, in addition to the

prediction, the associated uncertainty is a very important piece of informa-

tion for the user. This exemplifies the type of information that our model

can provide to radiologists.

0.03± 0.01 0.02± 0.01 0.02± 0.01 0.04± 0.02 0.07± 0.04 0.07± 0.04 0.04± 0.01 0.13± 0.07 0.18± 0.07 0.85± 0.14

0.77± 0.13 0.87± 0.13 0.33± 0.15 0.98± 0.01 0.99± 0.02 0.99± 0.02 0.99± 0.01 0.97± 0.03 0.94± 0.06 0.97± 0.04

1.00± 0.00 0.99± 0.01 0.99± 0.02 0.96± 0.03 0.23± 0.08 0.13± 0.09 0.02± 0.01 0.03± 0.01 0.02± 0.03 0.03± 0.01

True scan label: 1
Predicted probability: 1.00 ± 0.00

Figure 10: RSNA scan and G-VGPMIL predictions (probability to be positive). Positive

slices are highlighted with a red frame.

Result 4: comparison with the state of the art. We complete the
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analysis of the RSNA dataset by comparing our method to other approaches

in the literature. In Table 2 we collect information about other methods

in the literature: the size of the dataset they use, a brief description of

the method, and the Bag AUC obtained when evaluating in their test set.

In our case, we report the metrics obtained when evaluating RSNA. Our

method outperforms the others although it uses very few scans (only [39]

uses less) and a relatively simple architecture (compared to 3D CNNs and

Autoencoders). Also, observe that GP-based models (VGPMIL, DGPMIL,

G-VGPMIL) obtain the best performance.

Source Dataset size Labeling type Method Bag AUC

Saab et al. [40] 4340 scans Scan MIL 0.91

Jnawali et al. [41] 40357 scans Scan 3D CNNs 0.87

Titano et al. [42] 37236 scans Scan 3D CNNs 0.88

Sato et al. [39] 126 scans Scan 3D Autoencoder 0.87

Arbabshirani et al. [43] 45583 scans Scan 3D CNNs 0.85

VGPMIL (Wu et al. [15]) 1150 scans Scan MIL 0.9644± 0.0086

DGPMIL2 (López-Pérez et al. [17]) 1150 scans Scan MIL 0.957

G-VGPMIL 1150 scans Scan MIL 0.966± 0.0065

Table 2: Comparison of different approaches for binary ICH detection. VGPMIL, DGP-

MIL and G-VGPMIL results are obtained using the RSNA dataset for training and testing.

6.3.2. Evaluation on CQ500

To finish, we evaluate our recently trained models using an external

database called CQ500. We discuss how well our model generalizes to ex-

amples never seen before and of a different nature from the ones it was

trained with.

Result 1: better performance with less training time. Figure

11 shows a plot similar to that of RSNA, now focusing on the Bag AUC in
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the CQ500 dataset. G-VGPMIL is always above VGPMIL, which indicates

better performance. Also, for D ∈ {8, 128}, G-VGPMIL appears to the left,

which implies reduced training time.
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Figure 11: Training time vs AUC in the CQ500 dataset.

Result 2: other classifications metrics. As in the case of RSNA,

we report other classification metrics at bag level in Table 9. For each value

of D, G-VGPMIL obtains the best value. In general, the gap between G-

VGPMIL and VGPMIL increases as the number of used features grows.

Figure 12 represents the metrics of the best model of each type (according

to Bag AUC). G-VGPMIL and VGPMIL remain at a competitive perfor-

mance (being G-VGPMIL one step ahead), while the top performance of

AttCNN drops significantly compared to the behavior observed in RSNA.

This suggests that the generalization ability of AttCNN is worst than that

of the models built upon GPs.

Result 3: comparison with the state of the art. Finally, we com-

pare our approach with other methods using the Bag AUC metric in the

CQ500 dataset, see Table 3. Among the methods that use only bag labels

to train the models [44, 15, 17], our method obtains the highest score. Also,

it is highly competitive with those approaches that are trained using the
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Figure 12: Results obtained by the best model of each type in the CQ500 dataset.

slice labels [45, 46]. Notice that using instance-level information turns this

problem into a much easier one, but it requires additional effort from the

radiologists. Our model is able to compete with those methods in a less

demanding manner.

Source Labeling type Method AUC

Chilamkurthy et al. [45] Slice 2D CNNs 0.94

Nguyen et al. [46] Slice 2D CNN + LSTM 0.96

Monteiro et al. [44] Scan voxel-based CNN 0.83

VGPMIL (Wu et al. [15]) Scan MIL 0.9062± 0.007

DGPMIL2 (López-Pérez et al. [17]) Scan MIL 0.909

G-VGPMIL Scan MIL 0.923± 0.0066

Table 3: Performance of different approaches in the CQ500 dataset. VGPMIL, DGPMIL2

and G-VGPMIL use the RSNA dataset for training.

33



7. Conclusion

Motivated by the problems associated with the logistic observation model

in the GP-based MIL formulation, we have reformulated VGPMIL using

Pólya-Gamma random variables. We found that this new model, PG-

VGPMIL, leads to the same update equations as VGPMIL. This is a con-

sequence of the two equivalent representations that the Hyperbolic Secant

density admits. This reveals that VGPMIL/PG-VGPMIL is a realization of

a more general framework, ψ-VGPMIL, which is achieved by replacing the

Hyperbolic Secant density by a general GSM density ψ.

An interesting challenge that arises is the choice of a convenient density.

In this work, we have explored the natural choice of the Gamma distribution,

arriving at the newly proposed G-VGPMIL. Our experiments show that G-

VGPMIL improves upon VGPMIL in terms of predictive performance and

training time. G-VGPMIL shows competitive results with fully supervised

models, thus closing the gap with them. As the features used to train G-

VGPMIL may not be optimal (they have been extracted in two phases), we

believe that there is still room for improvement.

Another interesting challenge is the extension of our model to a multi-

class problem, where one has to deal with the intractable term that the

softmax function introduces. Following the line of our work, we would need

to express the partition function of the softmax as a GSM, which is not

obvious and requires further investigation.

Finally, we believe that this work provides interesting ideas that can

be useful beyond MIL and leaves open questions of both theoretical and

practical nature. We hope that our ideas will be useful to the rest of the

community and can enhance further research.
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Appendix A ψ-VGPMIL variational updates

In this section, we derive the variational updates for the ψ-VGPMIL

model presented in Section 4. The updates for PG-VGPMIL, from Section

3, are obtained by setting ψ to the Hyperbolic Secant distribution defined by

Eq. (15). Similarly, for G-VGPMIL, as discussed in Section 5, the updates

are obtained by defining ψ as the density specified in Eq. (38).

To perform inference, we consider the augmented ψ-VGPMIL model. Re-

call that ψ is a GSM density, so there exists a mixing density ψ̂ : [0,+∞[ →
R such that,

ψ(x) =

∫ +∞

0
N
(
x | 0, ω−1

)
ψ̂(ω)dω, ∀x ∈ R. (40)

The augmented ψ-VGPMIL model is given by

p(u, f ,y,ω,T) = p(u, f ,y,ω)p(T | y), (41)

p(u, f ,y,ω) = Z−1N (f ,u) exp
(
(y − 2−11)⊤f

)
N (f | ω) ψ̂(ω), (42)

where Z = π−N
∫
N (f ,u)ψ(f)ϕ(f)−1d(f ,u), ψ̂(ω) =

∏N
n=1 ψ̂(ωn),N (f | ω) =

N
(
f | 0,Ω−1

)
, Ω = Diag (ω), and p(T | y) is the bag likelihood given by

Eq. (4).

Following the variational inference approach, we approximate the poste-

rior p(u, f ,y,ω | T) with a variational distribution q(u, f ,y,ω) = q(u)N (f |
u)q(y)q(ω), where q(y) =

∏N
n=1 q(yn) and q(ω) =

∏N
n=1 q(ωn). We achieve

this by minimizing the KL divergence between the posterior and the vari-

ational distributions. Using [27, Eq. (10.9)], we can compute the optimal

solution for each distribution keeping the others fixed,

log q = EQ\q [log p(T,u, f ,y,ω)] + const, (43)

where Q denotes the joint variational distribution.

42



Update of q(yn). We denote q(yj ̸=n) =
∏

j ̸=n π
yj
j (1 − πj)

yj . Let n be

fixed and let b be the index of the bag to which instance n belongs. We have

log q(yn) =Eq(u)N (f |u)q(yj ̸=n)

[(
y − 2−11

)⊤
f
]

︸ ︷︷ ︸
A1

+ (44)

+ Eq(yj ̸=n) [log p(T | y)]︸ ︷︷ ︸
A2

+const. (45)

We analyze each term separately,

A1 = Eq(yj ̸=n) [y]
⊤ Eq(u)p(f |u) [f ] + const (46)

= ynEq(u)p(f |u) [fn] + const = (47)

= ynKxiZK
−1
ZZm+ const (48)

A2 = logHEq(yj ̸=n) [Gb] + const = (49)

= logH(2Tb − 1)Eq(yj ̸=n) [max {y}b] + const = (50)

= yn logH(2Tb − 1)
(
1− E

[
max {y}b\n

])
+ const, (51)

where we have used [14, Eq. 13] to compute the expected value involved.

Putting it all together,

log q(yn) = yn

[
KxiZK

−1
ZZm+ logH(2Tb − 1)

(
1− E

[
max {y}b\n

])]
+ const,

(52)

from which we deduce q(yn) = Bernouilli (yn | πn) with

πn = logit
[
KxiZK

−1
ZZm+ logH(2Tb − 1)

(
1− E

[
max {y}b\n

])]
(53)

Update of q(u).

log q(u) = logN (u)︸ ︷︷ ︸
B1

+EN (f |u)q(y)q(ω)

[(
(y − 2−11)⊤f

)
+ logN (f | ω)

]
︸ ︷︷ ︸

B2

+const.

(54)
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We analyze each term separately,

B1 =− 2−1u⊤K−1
ZZu+ const, (55)

B2 =EN (f |u)q(y)q(ω)

[
(y − 1/2)⊤ f − 2−1f⊤Ωf

]
+ const = (56)

=EN (f |u)q(ω)

[(
π − 2−11

)⊤
f − 2−1f⊤Ωf

]
+ const = (57)

=
(
π − 2−11

)⊤
KXZK

−1
ZZu− 2−1u⊤K−1

ZZKZXΘKXZK
−1
ZZu+ const,

(58)

where Θ = Diag(θ1, . . . , θN ) and θn = Eq(ωn) [ωn]. Putting all together

log q(u) =
(
π − 2−11

)⊤
KXZK

−1
ZZu + (59)

− 2−1u⊤ (K−1
ZZKZXΘKXZK

−1
ZZ +K−1

ZZ

)
u+ const. (60)

This proves that q(u) = N (u | m,S) with

m = SK−1
ZZKZX

(
π − 2−11

)
(61)

S =
(
K−1

ZZKZXΘKXZK
−1
ZZ +K−1

ZZ

)−1
(62)

Update of q(ωn). Let n be fixed.

log q(ωn) = Eq(fn)

[
logN

(
fn | 0, ω−1

n

)]
+ log ψ̂(ωn) = (63)

= logN
(
cn | 0, ω−1

n

)
+ log ψ̂(ωn), (64)

where cn =
√

Eq(fn) [f
2
n]. Thus, if ψ(cn) ̸= 0,

q(ωn) = ψ(cn)
−1N

(
cn | 0, ω−1

n

)
ψ̂(ωn). (65)

In the PG-VGPMIL scenario, we can deduce q(ωn) = PG (ωn | 1, cn) using
that the general Pólya-Gamma density PG (· | b, c) is a exponential tilting

of the PG (· | b, 0) density [20]. However, in the general case, we only need
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the expectection of q(ωn). To calculate it, we first differentiate under the

integral sign in Eq. (40),

ψ′(x) = −x
∫ +∞

0
ωN

(
x | 0, ω−1

)
ψ̂(ω)dω. (66)

Then, we evaluate this expression in x = cn and use Eq. (65),

ψ′(cn) = −cnψ(cn)Eq(ωn) [ωn] , (67)

from where we conclude that θn = −ψ′(cn)/(cnψ(cn)).

Appendix B Tables

The top value of each metric within each group is highlighted in bold,

and the best in each column is underlined.

Num. ind. points Model Inst. Accuracy Inst. F1 Inst. AUC Bag Accuracy Bag F1 Bag AUC

50
G-VGPMIL 0.9342± 0.004 0.6769± 0.0305 0.9232± 0.0056 0.8481± 0.0153 0.843± 0.018 0.9166± 0.0136

VGPMIL 0.9296± 0.0013 0.6352± 0.0083 0.9246± 0.0071 0.8438± 0.011 0.8327± 0.0117 0.9125± 0.0098

100
G-VGPMIL 0.9431± 0.0029 0.7183± 0.0178 0.9559± 0.0032 0.8841± 0.0139 0.878± 0.0151 0.947± 0.0069

VGPMIL 0.9425± 0.0033 0.7171± 0.0209 0.95± 0.0032 0.8756± 0.0188 0.8699± 0.0203 0.9414± 0.0071

200
G-VGPMIL 0.9563± 0.0023 0.7962± 0.0137 0.972± 0.0009 0.9131± 0.0132 0.911± 0.014 0.9656± 0.003

VGPMIL 0.957± 0.004 0.8006± 0.0247 0.9695± 0.002 0.9147± 0.0137 0.9133± 0.0148 0.9654± 0.0056

Table 4: MNIST PCA

Num. ind. points Model Inst. Accuracy Inst. F1 Inst. AUC Bag Accuracy Bag F1 Bag AUC

50
G-VGPMIL 0.9016± 0.0036 0.5365± 0.0448 0.8703± 0.015 0.7384± 0.0193 0.75± 0.0274 0.8355± 0.0234

VGPMIL 0.8961± 0.0039 0.3636± 0.0346 0.8549± 0.0094 0.7016± 0.0189 0.6311± 0.0301 0.8035± 0.0168

100
G-VGPMIL 0.9113± 0.0018 0.5681± 0.0147 0.8827± 0.0056 0.7653± 0.0147 0.771± 0.0141 0.8581± 0.0114

VGPMIL 0.9052± 0.0016 0.4397± 0.0224 0.8737± 0.0059 0.7522± 0.0074 0.705± 0.0154 0.8408± 0.0079

200
G-VGPMIL 0.916± 0.0024 0.5764± 0.0241 0.8835± 0.0096 0.7822± 0.0114 0.7792± 0.016 0.863± 0.0152

VGPMIL 0.9051± 0.0016 0.4338± 0.0107 0.876± 0.0065 0.7491± 0.0075 0.6986± 0.0099 0.8476± 0.0082

Table 5: MNIST RAW
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Num. ind. points Model Bag Accuracy Bag F1 Bag AUC

50
G-VGPMIL 0.8832± 0.0202 0.8917± 0.0182 0.9607± 0.0133

VGPMIL 0.8832± 0.018 0.8916± 0.0175 0.958± 0.0136

100
G-VGPMIL 0.905± 0.0224 0.9078± 0.0209 0.9711± 0.016

VGPMIL 0.8886± 0.0178 0.8956± 0.0171 0.9682± 0.0137

200
G-VGPMIL 0.9023± 0.0258 0.908± 0.0233 0.9669± 0.0159

VGPMIL 0.8806± 0.0271 0.89± 0.0218 0.9617± 0.0141

Table 6: MUSK1

Num. ind. points Model Bag Accuracy Bag F1 Bag AUC

50
G-VGPMIL 0.8308± 0.0298 0.7806± 0.0382 0.9006± 0.0247

VGPMIL 0.8358± 0.0412 0.779± 0.0609 0.8978± 0.0219

100
G-VGPMIL 0.8603± 0.021 0.8228± 0.0174 0.9281± 0.0228

VGPMIL 0.853± 0.0316 0.797± 0.0492 0.923± 0.0303

200
G-VGPMIL 0.8971± 0.0293 0.8617± 0.0385 0.9605± 0.01

VGPMIL 0.88± 0.0234 0.834± 0.0365 0.9488± 0.0156

Table 7: MUSK2

Num. features Num. ind. points Model RSNA inst. Accuracy RSNA inst. F1 RSNA inst. AUC RSNA bag Accuracy RSNA bag F1 RSNA bag AUC

8

50
G-VGPMIL 0.9395± 0.002 0.7791± 0.0125 0.9508± 0.0053 0.8907± 0.0172 0.8855± 0.0154 0.9595± 0.0081

VGPMIL 0.941± 0.0016 0.7926± 0.0054 0.9592± 0.0034 0.884± 0.01 0.8823± 0.0095 0.9594± 0.0075

100
G-VGPMIL 0.9399± 0.0018 0.7823± 0.0123 0.9434± 0.0045 0.8867± 0.0202 0.8818± 0.019 0.9585± 0.008

VGPMIL 0.941± 0.0015 0.7903± 0.0049 0.9597± 0.0036 0.888± 0.016 0.8851± 0.0156 0.9594± 0.0076

200
G-VGPMIL 0.9401± 0.0018 0.7835± 0.0109 0.9408± 0.0052 0.8867± 0.0174 0.882± 0.0164 0.9585± 0.0079

VGPMIL 0.9411± 0.0013 0.7875± 0.0041 0.9603± 0.0037 0.8933± 0.0207 0.8883± 0.0211 0.9595± 0.0074

32

50
G-VGPMIL 0.9251± 0.0103 0.7554± 0.0307 0.9418± 0.0078 0.8613± 0.0229 0.8648± 0.0186 0.9572± 0.0044

VGPMIL 0.9337± 0.008 0.7647± 0.0292 0.9523± 0.0054 0.8933± 0.0189 0.8904± 0.0176 0.9573± 0.0049

100
G-VGPMIL 0.9254± 0.0105 0.7563± 0.0311 0.9425± 0.0075 0.86± 0.0276 0.8641± 0.0239 0.9568± 0.0053

VGPMIL 0.9329± 0.008 0.76± 0.0292 0.9527± 0.0053 0.8907± 0.0182 0.8873± 0.017 0.9571± 0.0053

200
G-VGPMIL 0.9266± 0.012 0.7562± 0.0344 0.9426± 0.0074 0.864± 0.0248 0.8657± 0.0204 0.9574± 0.005

VGPMIL 0.9325± 0.0079 0.7568± 0.0287 0.9531± 0.0052 0.8893± 0.0187 0.8854± 0.018 0.9573± 0.0049

128

50
G-VGPMIL 0.9245± 0.0069 0.7586± 0.0162 0.9407± 0.0044 0.8773± 0.0124 0.8793± 0.0119 0.9648± 0.0073

VGPMIL 0.9347± 0.007 0.7716± 0.0217 0.9529± 0.0047 0.908± 0.0154 0.9057± 0.0151 0.9658± 0.0067

100
G-VGPMIL 0.9276± 0.0057 0.7509± 0.0178 0.9412± 0.0061 0.9067± 0.0112 0.9029± 0.0121 0.9648± 0.0075

VGPMIL 0.9353± 0.007 0.7721± 0.0219 0.9532± 0.0046 0.912± 0.0129 0.9089± 0.013 0.9653± 0.0067

200
G-VGPMIL 0.9258± 0.0068 0.7601± 0.0171 0.9409± 0.0047 0.8853± 0.0181 0.8858± 0.0168 0.9652± 0.0065

VGPMIL 0.935± 0.0079 0.7683± 0.0254 0.954± 0.0047 0.9133± 0.0184 0.9097± 0.0186 0.9651± 0.0068

Table 8: RSNA
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Num. features Num. ind. points Model CQ500 bag Accuracy CQ500 bag F1 CQ500 bag AUC

8

50
G-VGPMIL 0.831± 0.0115 0.8115± 0.0108 0.9213± 0.0058

VGPMIL 0.8041± 0.0131 0.7923± 0.0122 0.9213± 0.0063

100
G-VGPMIL 0.8322± 0.0065 0.8105± 0.0073 0.923± 0.0066

VGPMIL 0.811± 0.0117 0.7966± 0.0109 0.9215± 0.0062

200
G-VGPMIL 0.831± 0.0093 0.8103± 0.0079 0.9208± 0.0058

VGPMIL 0.8265± 0.0082 0.8092± 0.0077 0.9217± 0.0062

32

50
G-VGPMIL 0.8233± 0.0271 0.79± 0.0394 0.8823± 0.0284

VGPMIL 0.8022± 0.0273 0.7752± 0.0377 0.8769± 0.0298

100
G-VGPMIL 0.8245± 0.0263 0.7904± 0.0391 0.8818± 0.028

VGPMIL 0.8063± 0.0284 0.7778± 0.0384 0.8772± 0.0294

200
G-VGPMIL 0.829± 0.023 0.7927± 0.0385 0.8825± 0.0288

VGPMIL 0.8127± 0.0309 0.7829± 0.0423 0.8783± 0.0293

128

50
G-VGPMIL 0.847± 0.021 0.8216± 0.0297 0.908± 0.0174

VGPMIL 0.8221± 0.0279 0.8044± 0.0328 0.903± 0.018

100
G-VGPMIL 0.8448± 0.017 0.8207± 0.0307 0.9113± 0.0185

VGPMIL 0.829± 0.0237 0.8096± 0.03 0.9029± 0.0181

200
G-VGPMIL 0.8485± 0.019 0.823± 0.0321 0.9113± 0.0185

VGPMIL 0.8327± 0.0235 0.8114± 0.0306 0.9039± 0.018

Table 9: CQ500
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