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A B S T R A C T

Background: Currently, prostate cancer (PCa) diagnosis relies on the human analysis of prostate biopsy
Whole Slide Images (WSIs) using the Gleason score. Since this process is error-prone and time-consuming,
recent advances in machine learning have promoted the use of automated systems to assist pathologists.
Unfortunately, labeled datasets for training and validation are scarce due to the need for expert pathologists
to provide ground-truth labels.
Methods: This work introduces a new prostate histopathological dataset named CrowdGleason, which consists
of 19,077 patches from 1045 WSIs with various Gleason grades. The dataset was annotated using a
crowdsourcing protocol involving seven pathologists-in-training to distribute the labeling effort. To provide a
baseline analysis, two crowdsourcing methods based on Gaussian Processes (GPs) were evaluated for Gleason
grade prediction: SVGPCR, which learns a model from the CrowdGleason dataset, and SVGPMIX, which
combines data from the public dataset SICAPv2 and the CrowdGleason dataset. The performance of these
methods was compared with other crowdsourcing and expert label-based methods through comprehensive
experiments.
Results: The results demonstrate that our GP-based crowdsourcing approach outperforms other methods for
aggregating crowdsourced labels (𝜅 = 0.7048 ± 0.0207) for SVGPCR vs.(𝜅 = 0.6576 ± 0.0086) for SVGP with
majority voting). SVGPCR trained with crowdsourced labels performs better than GP trained with expert
labels from SICAPv2 (𝜅 = 0.6583 ± 0.0220) and outperforms most individual pathologists-in-training (mean
𝜅 = 0.5432). Additionally, SVGPMIX trained with a combination of SICAPv2 and CrowdGleason achieves the
highest performance on both datasets (𝜅 = 0.7814 ± 0.0083 and 𝜅 = 0.7276 ± 0.0260).
Conclusion: The experiments show that the CrowdGleason dataset can be successfully used for training and
validating supervised and crowdsourcing methods. Furthermore, the crowdsourcing methods trained on this
dataset obtain competitive results against those using expert labels. Interestingly, the combination of expert and
non-expert labels opens the door to a future of massive labeling by incorporating both expert and non-expert

pathologist annotators.
1. Introduction

Prostate cancer is a prevalent cancer and the fifth leading cause
of cancer-related deaths worldwide [1]. Timely and precise diagnosis
is crucial for effective treatment and reducing mortality rates [2].
Currently, the gold standard for diagnosis and prognosis is to analyze
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a biopsy of prostate tissue by the Gleason grading (GG) system which
assesses the cancer stage and aggressiveness based on gland morphol-
ogy. However, the assessment of GG is inherently subjective with high
intra- and inter-observer variability [3,4].
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Computer-Aided Diagnosis (CAD) systems assist pathologists and
im to minimize human variability in decision-making. These systems

utilize WSIs and computer vision and machine learning (ML) algorithms
to detect and grade cancerous regions. The main bottleneck in train-
ing and validating ML methods for GG prediction is the scarcity of
large-scale public datasets [5]. Creating these datasets is costly and
ime-consuming and, together with the scarcity of expert pathologists,
xplain why there are few annotated datasets and even fewer public

datasets.
Crowdsourcing has emerged as a cost-effective and efficient method

or labeling histopathological datasets by leveraging a large pool of
nnotators with varying levels of expertise [6,7]. While crowdsourcing

has shown success in tasks like nuclei detection [8] and cancer cell
identification [9], the labels generated are frequently noisy, limiting
heir direct application to complex tasks such as GG. To address this
hallenge, probabilistic models like GPs have become popular [10,11].

GPs for crowdsourcing have demonstrated excellent performance in
various tasks [12–14] and have been successfully applied in histopatho-
ogical image classification studies, including breast cancer [15,16]
nd skin cancer detection [17]. These methods offer competitive per-

formance compared to methods trained with expert labels, indicating
hat crowdsourced labeling of histopathological images could be a
easible option for cancer classification with minimal reliance on expert
athologists. Regarding GG classification, there are no previous studies
nvolving non-expert annotators. However, it has been shown that
earning from the opinion of multiple expert pathologists, despite high

inter- and intra-observer variability, results in strong performance when
effectively modeling this variability [18,19].

The objective of this work is twofold. First, we present and make
ublicly available the first prostate dataset labeled by non-experts for

GG prediction. Second, we explore the learning from crowds framework
with this novel dataset, assessing and analyzing two state-of-the-art
methods based on GP for crowdsourcing. This paper also demonstrates
the viability of integrating this new dataset with existing datasets
containing expert labels, to create a larger and more diverse dataset.
Our experiments indicate that the noisy non-expert labels from the
presented dataset can improve previous models in the literature. Below,
we outline our contributions in detail:

• Introduction of new crowdsourcing protocol for the annotation of
patches from WSIs, outlined in Fig. 1, which cheapens and speeds
up the labeling process by dramatically reducing the intervention
of expert pathologists.

• Creation of a new dataset, called CrowdGleason, comprising
19,077 patches from 1045 WSIs of PCa with different GG. This
dataset was annotated by seven pathologist-in-training without
expert supervision. Note that not all annotators labeled all patches.
To the best of our knowledge, this is the first PCa dataset anno-
tated by non-expert pathologists.

• Development of a curated test set annotated by each pathologist-
in-training and two expert PCa pathologists to evaluate auto-
mated ML methods and assess bias, expertise, and discrepancies
between participants.

• Comprehensive experiments to evaluate two GP-based methods
for GG prediction: SVGPCR [7] and SVGPMIX [14]. SVGPCR
learns from the CrowdGleason dataset, while SVGPMIX combines
expert labels from the public SICAPv2 [20] dataset with the
CrowdGleason dataset. Results demonstrate that these GP-based
crowdsourcing methods outperform popular techniques for label
aggregation, with SVGPMIX achieving the best performance in
both datasets.

The remainder of the work is organized as follows. Section 2 de-
scribes related work. Section 3 presents the CrowdGleason dataset and
ts annotation protocol. Section 4 describes the experimental setup

and the methods evaluated. The experimental results are shown in
Section 5, and Section 6 discusses them. Finally, Section 7 presents the
conclusions and future work. For further information on the code and
ataset: https://github.com/vipgugr/CrowdGleason.
2 
2. Related work

Public datasets are essential to develop precise ML methods for GG
prediction. Hence, Section 2.1 delves into the current publicly available
PCa datasets and Section 2.2 provides an overview of the core work of
crowdsourcing and its applications in the context of histopathology.

2.1. Public PCa histopathological datasets

The current publicly available PCa histopathological datasets have
been typically created by staining tissue biopsies with hematoxylin
and eosin (H&E) and scanning them as WSI for histopathological ex-
amination. In clinical practice, a WSI usually contains one or a few
tissue samples. The use of Tissue Micro Arrays (TMAs) allows many
issue samples to be arranged on a grid and processed simultaneously
o obtain a single slide. These datasets are labeled at pixel, patch, or

WSI levels. The labeling process at pixel level consists of manually
delineating tumor areas and assigning GG classes. This meticulous
procedure provides comprehensive tumor information but it is time-
consuming. In WSI level labeling, pathologists assign a label to the
entire image without specific tumor location information. Patch level
labeling divides WSIs into small regions, named patches, and a label is
assigned to a selected set of patches, thus reducing the need to examine
the entire WSI.

We briefly examine popular public datasets for GG prediction, in-
cluding Arvaniti, SICAP, GLEASON2019, and PANDA. Table 1 provides
an overview of these datasets and our proposed CrowdGleason. Arvaniti
et al. [21] dataset comprises TMAs annotated at pixel level by an
expert pathologist, while SICAPv1 [11] and SICAPv2 [20] datasets offer
ixel-level annotations on WSIs. The WSIs were downsampled at 10×

magnification and divided into patches of 5122 pixels with 50% overlap
btaining patch-level annotations. To our knowledge, SICAPv2 is the
argest fully annotated dataset at patch level in the literature.

Challenges, such as Gleason2019 and PANDA, have been a popular
way of promoting research in GG prediction by providing benchmark
datasets for evaluating ML algorithms. The Gleason2019 challenge [18]
dataset provides TMA images annotated by a panel of 5 expert pathol-
ogists, and the PANDA Challenge [22] dataset includes WSIs annotated
at the WSI level by consensus among a large panel of highly ex-
perienced expert pathologists, with some samples annotated at pixel
level.

2.2. Crowdsourcing

To the best of our knowledge, all works for GG prediction from
atches addressed the problem with ground-truth labels provided by
ither a single expert or a panel of expert pathologists. Crowdsourcing

presents an opportunity to scale datasets by engaging non-expert an-
notators in computational pathology-related tasks [8]. Various studies
explored the use of labels from non-expert annotators for tasks like
mitosis detection [23] or histopathological image classification [24].
Previous works [25,26] have demonstrated promising results in the
field of histopathology using crowdsourcing, but they required strong
supervision from senior pathologists to review the annotations provided
by the crowd. To reduce the need for expert supervision, label aggre-
gation techniques [27] have been developed to automatically curate
crowdsourcing labels, enabling the creation of datasets suitable for ML
without expert supervision. Various label aggregation methods have
been proposed, including majority voting (MV) and more elaborated
methods that consider the biases of the different annotators, yielding a
better-calibrated set of training labels [7]. They include Dawid-Skene
(DS) [28], GLAD [29] and MACE [30] models.

Recent studies show that jointly learning ground-truth labels, an-
otator expertise, and the latent classifier leads to superior perfor-

mance [31]. Models like SVGPCR [7] have successfully combined

https://github.com/vipgugr/CrowdGleason
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Fig. 1. Dataset creation and annotation protocol. We collect 1045 WSIs, of which 783 are used exclusively for crowd labeling and 262 for crowd and expert labeling. We divide
all WSIs into patches and distribute them among the non-expert annotators to obtain the training set. We create a curated test set with patches where the experts and majority
of the non-experts agree.
Table 1
Publicly available datasets for GG prediction. MA refers to multiple annotators.

Biopsy # Samples Annotations Experts MA

Arvaniti [21] TMA 895 Pixel-level Yes No
SICAPv1 [11] WSI 79 Pixel-level Yes No
SICAPv2 [20] WSI 182 Patch-/pixel-level Yes No
GLEASON19 [18] TMA 331 Pixel-level Yes Yes
PANDA [22] WSI 12,625 WSI-/pixel-level Yes No
CrowdGleason (proposed) WSI 1,045 Patch-level No Yes
sparse GPs with a crowdsourcing probabilistic framework, demon-
strating competitive performance to GPs trained with expert labels in
breast cancer detection from histopathological images [32]. Moreover,
SVGPMIX method [14] is the first probabilistic approach based on
GPs for fusing expert and non-expert labels, leveraging the confidence
offered by expert labels and the larger volume of data provided by non-
expert annotators. To the best of our knowledge, this model has not yet
been applied in the biomedical domain.

3. CrowdGleason dataset

The dataset presented in this paper, named CrowdGleason, has been
partially annotated by different pathologists in-training with varying
degrees of expertise. A subset of the dataset was also annotated by
expert pathologists, which helped to obtain a test set.

3.1. Data acquisition and annotation by expert pathologists

To create CrowdGleason, 1045 WSIs of H&E-stained prostate tissue
samples from different patients, were collected by medical experts
from the archive of the Hospital Universitario San Cecilio (HUSC) in
Granada. All WSIs were digitally scanned at 40× magnification factor.
Two expert pathologists exhaustively annotated 262 of those 1045
WSIs at the pixel level. Each image was annotated by only one of
the pathologists independently, using the online application described
in [20]. Experts thoroughly marked all pathological areas with their GG
and delineated artifacts.

3.2. Patch extraction

All WSIs were divided into patches of size 2048 × 2048 pixels at
a magnification of 40x, without overlapping. This size and magnifi-
cation were selected in agreement with expert pathologists to provide
sufficient context and detail to facilitate the identification of cancerous
3 
lesions. Patches containing less than 20% of tissue were discarded, as
they do not contain enough tissue to make an accurate diagnosis. Tissue
presence was detected by thresholding the magenta channel by the
Otsu method [33]. From images with pathological areas marked by the
experts, we selected patches containing at least 15% of pathological
tissue, labeled with GG of the area marked by the expert: Gleason
grade 3 (G3), Gleason grade 4 (G4), or Gleason grade 5 (G5). Patches
containing more than one pathological area were discarded since it was
not possible to assign a single label to the patch. From images labeled
as non-cancerous (NC) by the expert pathologist, on the other side,
we could use all tissue to extract patches. To reduce the number of
candidate patches, we discarded patches having less than 30% of tissue.
A total of 4573 patches, which form the so called expert-labeled set, were
obtained from the 262 images annotated by experts.

For the remaining 783 images not annotated by expert pathologists,
a large number of patches without ground-truth labels were extracted
to be annotated by non-expert pathologists at a later stage. To ex-
pedite the labeling process, we reduced the number of patches. As
gland structure is crucial in PCa diagnosis, we chose patches with a
substantial presence of nuclei as representative of tissue with glands.
Since nuclei stain with hematoxylin, which is prominent in the cyan
component, to extract patches rich in nuclei, we selected those patches
where at least 40% of the tissue’s pixels had a high cyan value. Still the
number of patches was overwhelming. Due to the huge class imbalance
in histopathological data, with large areas of non-pathological tissue,
and cancerous tissue that is only sparsely represented, to select a set of
patches representing the different PCa grades, we proceeded as follows.
We trained the classification algorithm in [34] that combines semi-
supervised and multiple instance learning on the public PANDA dataset
for PCa classification, following the successful setting in [34]. Note
that the PANDA dataset is labeled at the WSI level; hence, standard
supervised learning techniques cannot be used. Although segmentation
masks are provided for some images, they can be only used to de-
velop strategies for selecting the most significant subsamples of the
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Fig. 2. Examples of patches and annotations by each participant.
Table 2
Metrics for the patch selection algorithm in a small set of patches
extracted from the expert-labeled set.

Accuracy F1 score Kappa

0.732 0.648 0.606

images [35]. The algorithm in [34] uses an EfficientNet-B5 neural
network architecture [36] that was trained with a learning rate of 0.01
for 10 epochs on the classes NC, G3, G4, and G5. To validate this
approach, we classified a small set of patches extracted from the expert-
labeled set. Note that these patches were only used to obtain the metrics
shown in Table 2 and were not used in model training. These figures of
merit show that the method is good enough to distinguish patches from
the different classes. Using the learned model, the patches from non-
annotated WSIs were classified in the class with the highest probability,
selecting a total of 16,151 patches. This collection constitutes a roughly
balanced set that will serve as training set of our study. Since this set was
designed for annotation by non-expert pathologists, the labels provided
by the classification algorithm were discarded after patch selection and
not further used in this study.

3.3. Annotation by non-expert pathologists

Seven pathologists in-training with different expertise levels partici-
pated in the annotation of the dataset. Two of them were in their fourth
year of medical residency, two in their third, two in their second, and
one was a first-year medical resident. Following the Spanish Official
Specialist Training Program in Anatomic Pathology, third and fourth-
year pathologists in-training have completed specific training in the
subspecialty of Uropathology, which includes the study of the prostate,
with an approximate duration of 2–3 months. First and second-year
students do not have specific training in this subspecialty. In collab-
oration with expert pathologists, we designed an annotation protocol
based on the well-known PCa grading of the Gleason Score, originally
introduced by Donald F. Gleason [37] for grading prostatic carcinoma
based solely on the architectural pattern of the tumor. Non-expert
pathologists were instructed to label as NC, G3, G4, or G5 the patches in
the expert-labeled and training sets, described in the previous section,
rather than thoroughly examine the WSI and exhaustively delineate the
tumor areas. Patches that could not be labeled due to the presence of
artifacts, blurriness, tissue from other organs, folded tissue, etc. have
been labeled as ‘‘Other’’. Patches with more than one GG, which have
not a clear label, have also been labeled as ‘‘Other’’.

All pathologists in-training labeled the 4573 patches in the expert-
labeled set. Table 3 presents a summary of the distribution of the labels
in this set. Note that some patches were labeled as ‘‘Other’’ by some
residents and, hence, the total of each column may not add up to the
total number of patches. An example of patches and the annotations
4 
provided by the crowd and the experts is shown in Fig. 2. To minimize
the influence of inherent pathologist variability in labeling, we created
a curated test set where the ground-truth label for each sample was es-
tablished by consensus between the majority of pathologists in-training
and the expert pathologist. Using this curated set, whose distribution of
samples for each class is shown in Table 4, we will estimate the degree
of reliability of each resident as well as evaluate ML methods. Recall
that expert intervention has only been necessary for the creation of the
curated test set, not for the training set.

The 16,151 patches in the training set were labeled, on average,
by more than two resident pathologists, with each pathologist in-
training labeling approximately 5000 patches. Table 5 summarizes the
training set. Patches were provided to the residents in 4 batches of
approximately equal size over a 6-month period.

Finally, as a post-processing step, the patches of both the training set
and the curated test set were downsampled using bicubic interpolation
to a size of 512 × 512 pixels. This is equivalent to obtaining the patches
at a magnification factor of 10×, and it was necessary to accommodate
the patches into the GPU memory.

In summary, the CrowdGleason consists of a crowdsourcing anno-
tated training set with 16,151 patches of size 512 × 512 extracted
from 783 WSIs, annotated by one or more of the seven pathologists
in-training, and a curated test set with 2926 patches of size 512 × 512
extracted from other 262 WSIs, annotated by expert pathologists and
all the pathologists in-training. Ground-truth labels for the curated test
set were obtained by consensus between the expert pathologists and
the majority of the pathologists in-training.

3.4. Ethical consent and data availability

The Research Ethics Committee of the Universidad de Granada
approved the study with code 4096/CEIH/2024 as part of the project
P20_00286, funded by FEDER/Junta de Andalucía, following the princi-
ples established in international and national biomedical international
and national legislation in the field of biomedicine, bioethics and
bioethics, as well as the rights derived from the protection of personal
data.

The complete CrowdGleason dataset is available in the Zenodo
repository at https://doi.org/10.5281/zenodo.14178894.

4. Materials and methods

Datasets. We present and utilize the dataset, described in Sec-
tion 3.1, and combine it with the public dataset SICAPv2 [20]. We
normalize both datasets via the BKSVD method [38], and use them
for training and evaluation to demonstrate the utility of the proposed
CrowdGleason dataset with respect to another popular dataset in the
literature. Our approach also allows for the generalization ability of

https://doi.org/10.5281/zenodo.14178894
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Table 3
Distribution of labels in the expert-labeled set labeled by each resident pathologist and the expert. We refer to each annotator
as A#, where the number is an anonymized ID.

Class A1 A2 A3 A4 A5 A6 A7 Expert Total

NC 1891 2290 2968 2983 2941 2868 389 2438 14,439
G3 1024 1267 507 601 763 693 1402 1498 5233
G4 1155 674 808 663 413 666 1513 449 4737
G5 503 341 281 308 431 317 1074 188 2752

Total 4573 4572 4564 4555 4548 4544 4378 4573 27,161
b

w
d
F

m

Table 4
Distribution of patches in each class of the curated test set.

NC G3 G4 G5 Total

2157 548 164 57 2926

the classifiers on an external cohort. The task is to learn the GG of each
atch, i.e. to classify the patches as ‘NC’, ‘G3’, ‘G4’ and ‘G5’.
Feature extraction. A reduced set of features is extracted and used

as input to the GP-based methods. For this, we utilize the 18-layer
variant of ResNet [39], i.e., ResNet18, pre-trained on Imagenet and
ine-tuned on SICAPv2. We use the output of the last convolutional

layer as a feature extractor. Since SICAPv2 is the largest publicly
available PCa dataset with patch labels, we assume that the learned
feature extractor generalizes well to other datasets. The experimental
results will validate this assumption. We utilize these 512-dimensional
feature vectors as input to the GP classifiers and also report the results
of the end-to-end training of ResNet18 for comparison. We perform five
independent runs of all the presented experiments, including the mean
performance and 95% confidence interval (CI). Note that for each run,
we also run the feature extractor to obtain a different set the features
and ensure the robustness of the whole pipeline proposed in this work.
To train the network, we use the SGD optimizer with a learning rate of
10−3, a momentum of 0.9, and a batch size of 32 patches. Common
data augmentation transformations, such as horizontal and vertical
flips, blur, and brightness, contrast, hue, and saturation variations, are
applied to the training dataset. The CNN is implemented using Pytorch
.0.1 and is run on an NVIDIA GeForce RTX 3090 GPU.
Supervised Learning: Gaussian Processes. We use the features ex-

racted by ResNet18 and the ground-truth label as inputs of a stochastic
ariational Gaussian process (SVGP) model to learn the GG from the

SICAPv2 dataset. SVGPs are scalable GP models that use variational
inference to approximate the posterior distribution. See a detailed
description in [40] and an intuitive review in [32]. We utilize a squared
exponential kernel to compute the correlation matrix. We initialize
the kernel hyperparameters, lengthscale and variance, to 2. We train
the SVGP for 50 epochs and save the parameters that obtain the best
Cohen’s Quadratic Kappa (𝜅) on the validation set. In all cases, we use
the Adam Optimizer with a learning rate of 10−2 and a batch size of 128.

ased on the experimental results (see Section 5.1), we fixed a value
of 512 inducing points, which provides a good trade-off between the
generalization and complexity of the model, for all GP based methods.
SVGP is implemented using GPflow 1.2.0 and is run on an NVIDIA
GeForce RTX 3090 GPU. The code will be released in GitHub upon
acceptance of the paper.

Label aggregation. We utilize and compare Majority Voting (MV),
S [28], MACE [30], and GLAD [29] aggregation methods to curate the

multiple noisy labels available in the CrowdGleason dataset. The aggre-
ated labels can be used as the single ground-truth label and, therefore,

used by supervised learning methods. All methods, implemented in
he popular Python library for crowdsourcing tasks crowd-kit [41], are

run with the default hyperparameters. The aggregated labels and the
features extracted by ResNet18 are fed to SVGP to learn a GG classifier.

Crowdsourcing models. We utilize, as an enhancement of the label
aggregation methods, the learning from crowds model based on GPs,
SVGPCR [7]. This model extends the GPs to the crowdsourcing scenario
5 
and jointly learns the expertise of the annotators and the GP classifier.
The main assumption is that multiple annotators provide noisy labels
that are corrupted observations of the ground-truth label. This corrup-
tion is modeled with a confusion matrix for each annotator, which
reflects the probability of providing a given label for each ground-truth
class (as in the DS model [28]). Once trained, the model can predict
ground-truth labels in unseen instances using the GP classifier.

Furthermore, we analyze how crowdsourcing labeled datasets can
e used in conjunction with expert labeled datasets to learn a classifier.

For this purpose, we use the SVGPMIX model [14]. This model, used
here for the first time in medical imaging, generalizes SVGPCR to cases
where labels have been provided either by a noisy annotator or by an
expert. We utilize this model to study the combination of CrowdGleason
with SICAPv2. SVGPCR and SVGPMIX use the same training procedure
and software framework as supervised GPs.

Evaluation Metrics. To assess the quality of the learned models,
we report the numerical results of three different metrics: Accuracy,
Cohen’s Quadratic Kappa (𝜅), and the F1-score. The accuracy is the
rate of success of the classifiers. The F1 can be defined per class as the
harmonic mean between precision and recall. We only report multiclass
F1, which can be defined as the average across class-wise F1. Recall that
this score is of special importance in imbalanced scenarios, which are
common in medical imaging. Finally, the 𝜅 score is increasingly popular
for GG assessment [20,21,42,43]. It measures the level of agreement
between the output of the classifier and the ground-truth label [44].
We can also use it to measure the agreement between annotators.
The 𝜅 metric ranges from −1 to 1, being directly proportional to the
level of agreement between observers (−1 complete disagreement, 0
no agreement beyond what would be expected by chance, 1 total
agreement). It is commonly argued that a moderate agreement is
achieved if 𝜅 is higher than 0.6, whereas a strong agreement is attained

hen 𝜅 is higher than 0.8. Furthermore, this metric also penalizes
isagreements depending on class differences (in a quadratic manner).
or example, a disagreement between classes NC and G5 implies a

stronger penalization than between classes NC and G3.

5. Experimental results

In this section, we report the results of a set of experiments. They
compare different GP-based approaches that learn from expert labels,
crowdsourcing labels, and a combination of both.

5.1. Experiment 1: Expert labels

In this experiment, we present the results of models trained on
expert SICAPv2 labels. The model is validated using the validation set
of SICAPv2. For comparison purposes, we also train the CNN-based

ethod ResNet18 with the same data.
To select the number of inducing points for the SVGP method, we

run the method with several values: 64, 128, 256, 512, and 1024. Fig. 3
shows that the F1 and Kappa scores are stable in the SICAPv2 validation
set across different numbers of inducing points. This result means that
the information can be summarized in a few points of the feature
space, and adding more flexibility does not improve the performance.
Furthermore, we can see that a large number of inducing points does
not lead to overfitting. Hence, we fix a value of 512 inducing points for
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Table 5
Distribution of patches in the training set labeled by each resident pathologist. We refer to each annotator as A#, where the
number is an anonymized ID.

Class A1 A2 A3 A4 A5 A6 A7 Total

NC 2165 2747 3659 4186 3476 3452 866 20,551
G3 1462 1618 604 149 1024 667 682 6206
G4 995 510 544 580 405 641 2580 6255
G5 400 205 140 111 250 337 677 2120

Total 5022 5080 4947 5026 5155 5097 4805 35,132
Table 6
Results of the methods trained on SICAPv2 (expert labels) when tested on SICAPv2 and CrowdGleason test sets.

Method SICAPv2 CrowdGleason

Accuracy F1 score Kappa Accuracy F1 score Kappa

ResNet18 𝟎.𝟕𝟔𝟒𝟖 ± 𝟎.𝟎𝟏𝟎𝟐 𝟎.𝟕𝟏𝟒𝟓 ± 𝟎.𝟎𝟏𝟒𝟑 0.6611 ± 0.0149 𝟎.𝟖𝟖𝟑𝟗 ± 𝟎.𝟎𝟏𝟐𝟐 𝟎.𝟔𝟔𝟗𝟖 ± 𝟎.𝟎𝟑𝟏𝟕 𝟎.𝟕𝟎𝟗𝟓 ± 𝟎.𝟎𝟒𝟐𝟔
SVGP-SICAP 0.7515 ± 0.0048 0.6912 ± 0.0119 𝟎.𝟕𝟕𝟑𝟔 ± 𝟎.𝟎𝟏𝟑𝟗 0.8736 ± 0.0075 0.6628 ± 0.0061 0.6583 ± 0.0220
Table 7
Results of the methods trained on CrowdGleason (crowdsourcing labels) when tested on SICAPv2 and CrowdGleason test sets.

Method SICAPv2 CrowdGleason

Accuracy F1 score Kappa Accuracy F1 score Kappa

ResNet18-MV 0.5910 ± 0.0568 0.5251 ± 0.0694 0.4139 ± 0.0763 0.8815 ± 0.0149 0.6791 ± 0.0316 0.6958 ± 0.0415
SVGP-DS 0.4960 ± 0.0233 0.4345 ± 0.0282 0.4965 ± 0.0283 0.8402 ± 0.0121 0.5499 ± 0.0360 0.6152 ± 0.0236
SVGP-MACE 0.4980 ± 0.0212 0.4345 ± 0.0263 0.4759 ± 0.0347 0.8486 ± 0.0070 0.5363 ± 0.0300 0.5574 ± 0.0325
SVGP-GLAD 0.4909 ± 0.0256 0.4342 ± 0.0344 0.5052 ± 0.0533 0.8539 ± 0.0091 0.5410 ± 0.0260 0.5776 ± 0.0338
SVGP-MV 0.6861 ± 0.0138 0.6331 ± 0.0169 0.6242 ± 0.0277 0.8649 ± 0.0016 0.6287 ± 0.0123 0.6576 ± 0.0086
SVGPCR 𝟎.𝟕𝟏𝟐𝟑 ± 𝟎.𝟎𝟎𝟕𝟐 𝟎.𝟔𝟖𝟓𝟎 ± 𝟎.𝟎𝟎𝟕𝟓 𝟎.𝟔𝟗𝟓𝟑 ± 𝟎.𝟎𝟏𝟕𝟔 𝟎.𝟗𝟎𝟐𝟑 ± 𝟎.𝟎𝟎𝟑𝟕 𝟎.𝟕𝟎𝟔𝟖 ± 𝟎.𝟎𝟏𝟒𝟐 𝟎.𝟕𝟎𝟒𝟖 ± 𝟎.𝟎𝟐𝟎𝟕
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Fig. 3. Variation of the F1 and Kappa scores with the number of inducing points for
the SVGP model trained on the SICAPv2 dataset. These results are reported on the
alidation set.

all experiments as a trade-off between complexity and generalization
capability.

Table 6 shows the results of the SVGP method trained on SICAPv2
(denoted as SVGP-SICAP) tested on the SICAPv2 and CrowdGleason
urated test sets. Additionally, Table 6 includes the test results of the
nd-to-end trained ResNet18 network for comparative analysis. The
VGP-SICAP classifier achieves better figures-of-merit for the Kappa
core in SICAPv2 than using ResNet18 and is competitive in the rest

of the metrics.

5.2. Experiment 2: Crowdsourcing labels

In this experiment, we train the methods with the CrowdGleason
dataset. The dataset is split into 13824 training samples and 2327 vali-
dation samples. For validation, we use the MV strategy for aggregating
he labels.

We first use different label aggregation strategies (DS, MACE, GLAD,
and MV) to train the SVGP classifier. Note that the input features, as
6 
we have already indicated, are extracted using ResNet18 trained on
SICAPv2. Results in Table 7 show that MV produces the best result
mong the label aggregation strategies followed by DS. For comparison
urposes, we also report the results on ResNet18 trained end-to-end
ith the MV labels. Finally, we report the results of the SVGPCR
ethod trained with the crowdsourcing labels of CrowdGleason. From

Table 7 it is clear that SVGPCR outperforms the rest of the methods in
the literature in both datasets. The MV aggregation strategy can reduce
the bias of the annotations but the noisy labels hinder the classifier’s
performance.

5.3. Experiment 3: Combining expert and crowdsourcing labels

Until now, information from experts and crowds was not used
imultaneously. In this experiment, we explore the possibility of en-
ancing expert-labeled datasets with crowdsourcing-labeled ones. We

add the CrowdGleason training set to the SICAPv2 training set for this
urpose. For supervised methods (SVGP and ResNet18), we consider
V aggregation, since it achieved the best results in experiment 2. All
ethods use SICAPv2 as the validation set since it already provides

round-truth labels.
Results are shown in Table 8. SVGPMIX outperforms the competing

methods on the SICAPv2 and CrowdGleason test datasets, showing
that the combination of expert and crowdsourcing labels is feasible
and beneficial. Although ResNet18-MV achieves a slightly higher F1
score value than SVGPMIX on SICAPv2 (F1 = 0.7137 ± 0.0119 vs. F1
 0.7216 ± 0.0152), its Kappa value is much lower (𝜅 = 0.6748 ± 0.0085)
ompared to SVGPMIX (𝜅 = 0.7814 ± 0.0083). We observe a similar
ehavior in the SVGP-MV performance. We believe that this is due
o the presence of noisy labels in the combined dataset. In contrast,

SVGPMIX achieves a satisfying Kappa value on the SICAPv2 (𝜅 =
0.7814 ± 0.0083) and CrowdGleason (𝜅 = 0.7276 ± 0.0260) datasets,
demonstrating its robustness.

To assess the statistical significance of our results, we apply the
lmost Stochastic Order (ASO) test [45,46] (implemented in the deep
ignificance library1) on the five random runs of both SVGP-SICAP and

1 https://deep-significance.readthedocs.io/en/latest/

https://deep-significance.readthedocs.io/en/latest/
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Table 8
Results of the methods trained on SICAPv2 and CrowdGleason (expert and crowdsourcing labels, respectively) combined when tested on SICAPv2
and CrowdGleason test sets.

Method SICAPv2 CrowdGleason

Accuracy F1 score Kappa Accuracy F1 score Kappa

ResNet18-MV 𝟎.𝟕𝟕𝟒𝟑 ± 𝟎.𝟎𝟎𝟓𝟔 𝟎.𝟕𝟐𝟏𝟔 ± 𝟎.𝟎𝟏𝟓𝟐 0.6748 ± 0.0085 0.8804 ± 0.0192 0.6843 ± 0.0355 0.7042 ± 0.0381
SVGP-MV 0.6861 ± 0.0138 0.6331 ± 0.0169 0.6242 ± 0.0277 0.8649 ± 0.0016 0.6287 ± 0.0123 0.6576 ± 0.0086
SVGPMIX 0.7660 ± 0.0056 0.7137 ± 0.0119 𝟎.𝟕𝟖𝟏𝟒 ± 𝟎.𝟎𝟎𝟖𝟑 𝟎.𝟗𝟎𝟐𝟕 ± 𝟎.𝟎𝟎𝟗𝟔 𝟎.𝟕𝟏𝟕𝟔 ± 𝟎.𝟎𝟐𝟕𝟎 𝟎.𝟕𝟐𝟕𝟔 ± 𝟎.𝟎𝟐𝟔𝟎
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the proposed SVGPMIX models. The test was performed on the F1 score
metric since it takes into account the imbalanced scenario presented in
his paper. The ASO test outputs a value between 0 and 1 indicating
he degree of violation in stochastic order, where a value below 0.5
ndicates that the SVGPMIX model performs statistically better than
VGP-SICAP. Using ASO with a confidence level 𝛼 = 0.05, we found

the score distribution of SVGPMIX to be stochastically dominant over
SVGP-SICAP (𝜖min = 0.0615 in SICAPv2 and 𝜖min = 0.0 in CrowdGlea-
son). In conclusion, the proposed CrowdGleason dataset outperforms
the model trained on SVGP-SICAP.

5.4. Ablation studies on the quality of the labels and the number of
annotators

We have seen how well the models perform on the test set but
ave not analyzed in-depth the role of the non-expert annotators in
he crowdsourcing model. In this subsection, we provide an ablation
tudy on the crowdsourcing models, highlighting the impact of crowd-
ourced annotations into the final performance. First, we assess the
ffect of experience on pathologists in training by dividing them into
wo groups: junior (residents in their first or second year) and senior
third or fourth year residents). We train the SVGPCR model using the
ame configuration as in previous experiments, but in two different
ettings: (i) using only samples labeled by junior participants and (ii)
sing only samples labeled by senior participants. This experiment is
onducted over five independent runs. The results are shown in Fig. 4

which includes the mean performance and 0.95 CI. The performance
is comparable across both datasets; however, the model trained with
junior-labeled samples performs better on the CrowdGleason dataset,
while the model trained with senior-labeled samples excels in the
SICAPv2 dataset. Since the junior residents were specifically trained
using the CrowdGleason dataset, the model trained with their annota-
tions tends to overfit. In contrast, the senior participants, with greater
experience, are able to recognize a broader range of patterns, allowing
the model to generalize more effectively to the SICAPv2 dataset.

Secondly, in the ablation study on the number of annotators, we
investigate how many annotators are sufficient to achieve a satisfactory
crowdsourcing model. For this, we trained the SVGPCR model with
varying numbers of annotators. For each number of annotators, we
performed eight independent runs, randomly sampling different subsets
of annotators. For each subset, we run the models five times to ensure
stability and consistency. Fig. 5 illustrates the results for the SICAPv2
and CrowdGleason datasets, showing the mean performance, the 95%

I, and the SVGPCR performance with all annotators. As we increase
he number of annotators, the CI narrows, indicating that the models

become more stable and less dependent on the specific annotators
selected. On both test datasets, the performance of the models trained

ith subsets of annotators overlaps with that of the model trained with
ll annotators. This suggests that fewer annotators can achieve compa-
able performance. Overall, for this experiment, about five annotators
ppear sufficient to achieve satisfactory results, although increasing the
umber of annotators leads to a more stable performance since the
esults are highly influenced by the expertise of the selected annotators.
7 
5.5. Ablation study on the impact of expert label datasets in the crowd-
ourcing scheme

This section analyzes the impact of the expert labels from SICAPv2
n the SVGPMIX model. We investigate how many expert-labeled sam-
les are necessary to achieve a robust SVGPMIX model. For this, we
rained the SVGPMIX model using CrowdGleason and different propor-
ions of expert-labeled samples from SICAPv2. For each proportion, we
erformed eight independent runs, randomly sampling different subsets
f expert-labeled data. For each sampled dataset, we run the model five

times to ensure stability and consistency. Fig. 6 illustrates the results
or each dataset, showing the mean performance, the 95% CI, and

both SVGPMIX and SVGP-SICAP performance with all expert-labeled
samples.

Unlike crowdsourced-labeled samples, increasing the number of
expert-labeled samples does not significantly narrow the CI, as expert
abels tend to have less variability and are inherently more robust.
otably, when 10% of the expert samples are used, the model stabi-

izes (and also surpasses the results from SVGP-SICAP in the SICAPv2
ataset), indicating that the samples are highly informative for training

the crowdsourcing model. Beyond this point, adding more samples
does not provide additional benefits, demonstrating that the model can
erform effectively with a relatively small amount of expert data.

5.6. Analysis of annotator behavior

We measure the performance of each non-expert annotator by
means of the Kappa score. The figures-of-merit, shown in Table 9,
indicate the degree of agreement between each annotator and the
urated test set. The best-performing annotator is A4 (𝜅 = 0.7765),
hile A7 presents the lowest agreement (𝜅 = 0.0899). The disparity
f performance among annotators highlights the crowd heterogeneity
nd complexity of the task.

We further depict the per-class behavior of the annotators in Fig. 7.
The confusion matrices are normalized row-wise for better visualization
nd comparison purposes. These matrices can be understood as an

estimation (on the test set) of the annotators’ expertise. The crowd-
sourcing methods aim to estimate these confusion matrices from the
noisy labeled training set. Recall that the ground-truth labels are not
bserved for these models. Figs. 8 and 9 show the estimated confusion

matrices estimated by SVGPCR and SVGPMIX, respectively. These ma-
trices closely approximate the annotators’ behavior, emphasizing the
xcellent performance of the crowdsourcing methods.

6. Discussion

Our experiments have shown (see Tables 6 and 7) that SVGP im-
roves the performance of ResNet18 tested on SICAPv2 and is compet-
tive or outperforms ResNet18 when tested on the new CrowdGleason.
hese results confirm the potential of GPs to perform GG classification.
he SVGPCR classifier, used in the learning from crowds framework,
chieved a value of 𝜅 = 0.7048 ± 0.0207 and 𝜅 = 0.6953 ± 0.0176
n CrowdGleason and SICAPv2 test sets, respectively (see Table 7),
utperforming label aggregation strategies, such as MV, DS, MACE, and

GLAD. The best label aggregation model (i.e., MV) obtains 𝜅 = 0.6576 ±
0.0086 and 𝜅 = 0.6242 ± 0.0277 (see Table 7) for CrowdGleason and
SICAPv2 test sets, respectively. This significant difference highlights the
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Fig. 4. Results of the SVGPCR model trained with labels provided by junior participants (first and second year) or senior participants (third and fourth year).
Fig. 5. Results of the SVGPCR model varying the number of annotators.
Fig. 6. Results of the SVGPMIX model varying the proportion expert-labeled samples from SICAPv2.
enormous impact of noisy labels provided by non-expert annotators on
the models performance and the need to use a suitable model to learn
from crowds. Furthermore, the SVGPCR results are competitive with
SVGP trained on SICAPv2 with expert labels that obtain 𝜅 = 0.6583 ±
0.0220 and 𝜅 = 0.7736 ± 0.0139 (see Table 6). Regarding the F1 metric,
SVGPCR can even improve the performance of SVGP trained with
 w

8 
expert labels on both test datasets. These results align with previous
works in crowdsourcing [12,15,16,18], and validate the use of the
proposed CrowdGleason dataset for further studies on crowdsourcing
and GG.

We have also explored the combination of the SICAPv2 dataset
ith our dataset. Recall that learning a model with samples from two



M. López-Pérez et al.

S

e
e
S
b
a
R
o
S
l

Computer Methods and Programs in Biomedicine 257 (2024) 108472 
Fig. 7. Normalized confusion matrices of the seven annotators in the CrowdGleason curated test set.
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Table 9
Cohen’s Quadratic Kappa (𝜅) coefficient of non-expert annotators on the CrowdGleason
curated test set.

A1 A2 A3 A4 A5 A6 A7

𝜅 0.4120 0.6283 0.5394 0.7765 0.7040 0.6520 0.0899

different centers is difficult due to the heterogeneity between samples
and labels. Additionally, noisy labels from non-expert annotators intro-
duce noise into the dataset, which worsens the classifier performance.
See, for instance, the decrease from 𝜅 = 0.7736 ± 0.0139 of SVGP-
ICAP in Table 6 to 𝜅 = 0.6242 ± 0.0277 of SVGP-MV in Table 8. In

this work, we propose using SVGPMIX to address this issue. SVGPMIX
xtends SVGPCR to the scenario where some labels are given by one
xpert and the rest are given by multiple non-experts. In this case,
VGPMIX improves the results of both SVGP-SICAP and SVGPCR on
oth datasets (see Table 8). Specifically, it achieves 𝜅 = 0.7276 ± 0.0260
nd 𝜅 = 0.7814 ± 0.0083 on CrowdGleason and SICAPv2, respectively.
emarkably, SVGPMIX achieves stable results with only 10% percent
f samples labeled by expert pathologists. The results obtained by both
VGPCR and SVGPMIX are within the range of results reported in the
iterature for GG classification. For example, Marrón-Esquivel et al.
 S

9 
[42] reported 𝜅 = 0.826, Xiang et al. [47] reported 𝜅 = 0.81 and Arvaniti
et al. [21] reported 𝜅 = 0.49 and 𝜅 = 0.53 for two different pathologists.

During the study, we have observed great variability between anno-
ators that is even more accentuated when they have little experience in

the area. Table 9 shows that the results obtained by non-experts in the
rowdGleason curated test set are very dissimilar ranging from 𝜅 = 0.09
o 𝜅 = 0.78. In general, we observe a lower mean agreement with
he test set (𝜅 = 0.5432) than that observed in other works involving
nly expert pathologists. For example, in [42] the authors reported 𝜅 =

0.6946 among expert pathologists, and in [21] two expert pathologists
scored 𝜅 = 0.71. The annotators classified non-cancerous patches
elatively well, but had more confusion between classes G3 and G4 (see

Fig. 7). SVGPCR and SVGPMIX automatically estimate these confusion
matrices from the noisy training data. The results in Figs. 8 and 9
show that the estimated matrices capture the behavior of the noisy
annotators. For instance, both models capture the higher sensitivity
in the G4 and G5 grades of annotator 7. Furthermore, these models
also capture the behavior of the annotators when labeling samples as
‘NC’. The models correctly estimate that annotators 1 and 7 have the
lowest sensitivity in this class (as seen in Fig. 7). Note also that SVGPCR
achieves a better concordance (Kappa value) on the test set than most
pathologists in-training, as seen in Tables 7 and 9. This means that
VGPCR outperforms each pathologist in-training individually. As an
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Fig. 8. Estimated confusion matrices for the seven annotators by the SVGPCR model.
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additional result, SVGPCR trained with less experienced annotators
tends to overfit more to the CrowdGleason dataset, see Fig. 4. This
may be due to the lack of specific training in prostate cancer for less
experienced participants.

Our crowdsourced dataset, CrowdGleason, serves as a valuable
enchmark for training models that should be robust to label noise and
igh inter-observer variability. It can also be used to study types of
rrors and class confusions among non-expert pathologists. As demon-

strated in our paper, this dataset can enhance previous models trained
on expert-labeled data, leading to improved generalization. However,
the main disadvantage of using our dataset is the high level of label
noise; employing standard supervised models with these labels will
likely result in poor performance. Therefore, it is crucial to use ap-
propriate machine learning models designed to learn from crowds,
as outlined in our study. These models can be further enhanced by
incorporating feature-dependent information on the annotators, as they
may be more prone to making errors when specific features are present.
These include architectural characteristics such as gland size, arrange-
ment in groupings and/or fusions, appearance of lumens, and loss of
basal cells. Nuclear characteristics include nuclear size, staining inten-
sity, size and number of nucleoli, or presence of mitosis. Cytoplasmic
characteristics involve their shape, quantity, and staining. Luminal
characteristics may include the presence of different materials.
 a

10 
7. Conclusions

In this work, we propose a novel crowdsourcing protocol to scale
p the labeling of prostate histopathological images. As a result, we
resent the new CrowdGleason dataset labeled by seven pathologists in-
raining at the patch level. To the best of our knowledge, this is the most
xtensive dataset with patch-level annotations and the first with non-
xpert annotations for PCa. We conducted comprehensive experiments
tilizing this new dataset and the previous SICAPv2, labeled by a PCa
xpert pathologist.

Despite the high disagreement between non-expert annotators, ex-
periments show that crowdsourcing methods trained with the proposed
CrowdGleason obtain competitive results against using expert labels
on different test sets. Remarkably, the learning from crowds method
performs better than most of the pathologists in-training on the test
set. We have demonstrated that while results from five non-expert
nnotators are satisfactory, the performance becomes more stable as

the number of annotators providing labels increases.
We have also proposed a method to augment SICAPv2 with the

roposed CrowdGleason dataset and achieved better results than those
btained using only one dataset. Furthermore, we have shown that
he combined model requires only 10% of expert-labeled samples to
chieve a satisfactory performance. The combination of a small number
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Fig. 9. Estimated confusion matrices for the seven annotators by the SVGPMIX model.
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of expert and non-expert labels paves the way for future large-scale
labeling efforts by integrating both expert and non-expert pathologist
annotators. CrowdGleason can be leveraged in future works for training
or validating methods and augmenting existing datasets.

Although this work presents important findings and motivates the
se of crowdsourcing to scale up the labeling of histopathological
atasets, there are still very interesting open research questions. For
xample, how large the dataset has to be, how many samples have
o be annotated by each annotator or how large and diverse the pool
f participants has to be. Also, the presented methods for learning
rom crowds estimate a confusion matrix per annotator. However, it
s not feature-dependent (i.e., architectural, nuclear, cytoplasmic, or
uminal characteristics). A valuable future direction is to study how
hese features influence non-expert behavior in PCa diagnosis and use
his information within the crowdsourcing model.
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