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A B S T R A C T

Intracranial hemorrhage (ICH) is a serious life-threatening emergency caused by blood leakage inside the
brain. Radiologists usually confirm the presence of ICH by analyzing computed tomography (CT) scans, so,
developing an automated diagnosis system that can process this type of images has become an important
research problem. One of the main challenges to apply AI algorithms in this setting is the lack of labeled
data. To mitigate the labeling burden, Multiple Instance Learning (MIL) algorithms group instances into
bags, relying solely on bag-level labels for model training. Due to their capacity to handle uncertainty and
deliver accurate predictions, Gaussian Processes (GPs) stand out as promising classifiers for MIL problems.
Recent research has also demonstrated the effectiveness of combining attention mechanisms with GPs for ICH
detection. Nonetheless, existing methods have a notable limitation: they train the attention mechanism and the
GP separately, resulting in suboptimal feature extraction for GP-based classification. In this study, we introduce
an innovative end-to-end MIL model that concurrently trains the CNN backbone and attention mechanism along
with the GP classifier. Our approach enhances the robustness and accuracy of bag predictions by optimizing
feature extraction for GP-based classification. We validate our method experimentally by focusing on two
ICH detection datasets. Our results reveal a significant performance advantage in terms of accuracy, F1-score,
precision, and ROC-AUC score over existing MIL approaches, especially two-stage GP approaches. Additionally,
we offer empirical insights into the functionality and effectiveness of our novel model.
1. Introduction

Intracranial hemorrhage (ICH) is a significant medical emergency,
with an annual rate of nearly 20 cases per 100,000 people (Rajashekar
& Liang, 2020), accounting for 26% of all global strokes each year (Kr-
ishnamurthi et al., 2020). ICH carries a relatively low 1-year survival
rate of 43.5% (Huang & Chen, 2021) and only 12% to 39% of survivors
achieve full recovery (An et al., 2017). To address this critical issue,
Computer-Assisted Diagnosis (CAD) aims to facilitate the triage process,
assisting radiologists in swiftly and accurately identifying ICH cases to
save more people’s lives.

Previous studies have predominantly employed supervised deep
learning models for the detection of head hemorrhages in computed
tomography (CT) scans, with each scan slice individually labeled. For
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instance, Chang et al. (2018) and Chilamkurthy et al. (2018) both lever-
aged 2D Convolutional Neural Networks (CNN) to make ICH predic-
tions at the slice level. Phong et al. (2017) conducted a more extensive
investigation, exploring various CNN architectures for slice-level ICH
predictions. However, a significant limitation of these methodologies
is their dependency on labeled data for each individual slice within
a scan. The manual labeling of each slice is not only cost-intensive
but also exceedingly time-consuming, resulting in a scarcity of large
datasets with comprehensive slice labels.

Since the global label appears in clinical reports, recent approaches
aim to only use scan labels for training to avoid additional labeling
effort. Two research lines using only scan labels are supervised 3D CNN
and MIL methods. In the case of 3D CNN the whole scan is considered
vailable online 6 November 2023
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as the input to the network. Jnawali et al. (2018), and Titano et al.
(2018) used these 3D CNNs for ICH classification with satisfying results.
The main problem with 3D CNNs is that they require a large amount
of memory. Moreover, they cannot localize the injury in the scan. MIL
methods overcome these problems by processing each slice individually
and then aggregating either the features or the predictions (Carbonneau
et al., 2016). They can infer intermediate labels for the slices, helping
locate the injury and need less memory.

There are several recent examples of the successful application of
MIL approaches to medical images. Campanella et al. (2019) applied
a recurrent neural network as the aggregation method to combine the
predictions for each image of the bag. They achieved good results for
the classification of different cancer types in histopathological images.
Since the aggregation determines the prediction of the whole bag,
the focus of the literature has been placed on how to perform this
aggregation. Li et al. (2019) employed top-k pooling as their aggre-
gation scheme obtaining satisfying results on several image datasets,
and Bi et al. (2021) proposed a local pyramid perception module
that emphasizes the key instances from the local scale, and a global
perception module that provides a spatial weight distribution from a
global scale to classify retinal disease. Recently, the success of attention
layers has brought popularity to its application in the MIL setting (Ilse
et al., 2018). The attention mechanism was also used in medical imag-
ing for MIL, for example, to diagnose COVID-19 from chest CT (Han
et al., 2020), to classify COVID-19 from normal pneumonia (Qi et al.,
2021) and for cancer survival prediction using Whole Slide Images
(WSIs) (Yao et al., 2020).

All the methods discussed so far are deterministic which are prone
to overconfident predictions and to overfitting when data is scarce
(Gawlikowski et al., 2021). In medicine, this can have dramatic conse-
quences because an inaccurate diagnosis can lead to a wrong treatment
of the patient. Probabilistic methods like Gaussian Processes (GPs)
have been proposed to overcome these limitations and provide more
accurate predictions. Furthermore, GPs are robust to overfitting and
have good generalization capability. For supervised tasks, Wilson et al.
(2016), showed that combining GP and CNNs end-to-end, the so-
called Deep Kernel Learning (DKL) paradigm, was better than previous
works on different benchmarks like ImageNet or CIFAR. In the medical
image domain, DKL was used by Wu et al. (2021b) achieving a good
performance in Bone Age Prediction and Lesion Localization. For MIL,
the VGPMIL (Variational Gaussian Processes for MIL) model has shown
promising results when classifying histological images of Barrett’s can-
cer (Haußmann et al., 2017). Wu et al. (2021a) combined VGPMIL
with CNN to improve the results obtained when using only the CNN.
Here, the training was performed in two different steps. First, a CNN
with an attention mechanism was trained to extract features and, in
a second stage, these features were fed into the probabilistic model
VGPMIL (Haußmann et al., 2017). López-Pérez et al. (2022) proposed
an improvement of this approach by concatenating several GPs leading
to the model of Deep Gaussian Processes for Multiple Instance Learning
(DGPMIL). This classifier was more expressive and obtained better
results in ICH detection than most published work in the literature. The
problem with both approaches was that they trained the model in two
phases, therefore not taking full advantage of the combination of CNN,
attention mechanism, and GP. This two-stage approach has several
major drawbacks: (i) the features are not optimized for the GP classifier
because it is not trained end-to-end, (ii) the attention mechanism is
discarded in the second training phase and during prediction and (iii)
the training procedure becomes more complex because it consists of
two stages (both requiring, for example, hyperparameter tuning, model
convergence and model saving).

This work proposes a probabilistic end-to-end model for ICH detec-
tion with scan labels that overcomes the above mentioned problems.
The proposed model combines a 2D CNN feature extractor, attention
mechanism (Ilse et al., 2018), and GPs in an end-to-end fashion for the
2

MIL problem. The main contributions of our work are as follows: a
• In contrast to other methods that use CNNs and the attention
mechanism (Bi et al., 2020; Ilse et al., 2018), we explore and
propose how to include the probabilistic GPs, the attention mech-
anism, and the CNN in an end-to-end manner. To the best of our
knowledge, this is the first time that these three modules have
been trained end-to-end in a MIL problem.

• We design two different architectures, which differ in the position
of the attention layer, before or after the GP. Both architectures
are compared theoretically and empirically to analyze the advan-
tages and disadvantages of each one of them. In addition, we
compare our strategy to other state-of-the-art methods and find
that the end-to-end training outperforms the two-stage training
and other previous approaches.

• We also provide insightful ablation studies for the further un-
derstanding of the model. Moreover, we find that high attention
weights are correlated with positive slice labels, helping to locate
the slices affected by hemorrhage, which is of high importance in
the diagnostic process.

The rest of the paper is structured as follows. In Section 2 we
outline the methods and theory, in Section 3 we report details about
the experiments and the experimental outcomes and we conclude our
work in Section 4.

2. Methods/theory

In this section we introduce the proposed approach, along with the
necessary background to understand it. Specifically, in Section 2.1 we
present the main notation and the problem formulation. In Sections 2.2
and 2.3 we introduce two MIL methods that are at the core of our
proposal. Whereas the former uses a deep learning based attention
mechanism, the latter leverages GPs. In Section 2.4 we explain how
these two approaches have been already combined to produce a two-
stage model. Finally, in Section 2.5 we present our main contribution:
a novel model that combines both algorithms in a end-to-end manner.

2.1. Notation and problem formulation

Our notation follows the standard one used in most state-of-the-
art MIL approaches (Haußmann et al., 2017; Ilse et al., 2018; Wang
& Pinar, 2021). The training data is given by a set of bags 𝐗 = {𝐗𝑏}𝑏∈
and their corresponding labels 𝐲 = {𝑦𝑏}𝑏∈. We deal with a binary
problem, i.e. 𝑦𝑏 ∈ {0, 1} for all 𝑏 ∈ . Each bag 𝐗𝑏 = {𝐱𝑖}𝑖∈𝑏 contains
|𝑏| instances, i.e. 𝑏 = {𝑖1,… , 𝑖

|𝑏|} ⊆ [𝑁] (𝑁 is the total amount of
instances). In the MIL setting, one assumes that each instance has a
label, which is unknown. The MIL labeling assumption dictates that a
bag is considered positive (class 1) if at least one of its instances is
positive.

In the particular case of CT scans that we will tackle here, each 𝐗𝑏 is
a complete CT scan, which is composed by its slices {𝐱𝑖}𝑖∈𝑏. Each slice
has an unknown label (0 for non-hemorrhage and 1 for hemorrhage),
and we only have access to the bag label 𝑦𝑏 (whether the scan is positive
or not, i.e. whether it contain at least one slice that is positive). The goal
is to train a model based only on bag labels {𝑦𝑏}𝑏∈, i.e. not having
ccess to slice-level labels.

Notice that each slice 𝐱𝑖 is an array with shape (𝑊 ,𝐻,𝐶), where
is the weight of the image, 𝐻 is its height, and 𝐶 is the number

f channels. For computational efficiency, we will assume that all the
cans have the same amount of slices. This can be achieved by adding
lices full of zeros when necessary. In the experimental section we
ill see that the attention mechanism is able to correctly handle these

rtificial slices full of zeros.
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Fig. 1. The proposed model architecture of E2E-Att-GP. Each slice of the CT scan is first processed by a feature extractor which consists of a Convolutional Neural Network (CNN)
that is applied equally to each input slice in parallel. The resulting feature vectors enter an attention mechanism consisting of two Fully Connected (FC) layers and a Softmax (SM)
layer, calculating one attention weight for each of them. The (attention-) weighted sum of the feature vectors then enters a Sparse Gaussian Process (SGP) and final FC layer for
classification. The novel combination of attention mechanism and SGP can be trained end-to-end. The distinction between deterministic and stochastic features is highlighted by
using purple and red colors, respectively. The digits in brackets (⋅) refer to the size and the number of kernels in the CNN layers.
2.2. Convolutional neural networks for MIL

Convolutional neural networks (CNNs) are widely used in the field
of image processing. A standard CNN needs a target value for each
training instance. However, this information is not available in the
MIL scenario, where we only have labels at bag level. Therefore, an
aggregation mechanism is required to obtain bag-level predictions.
Then, a loss between such predictions and true bag labels must be
minimized.

Two important families of aggregation mechanisms have been pro-
posed to tackle this issue. Some approaches are based on instance-level
aggregations, where the prediction is made at instance level and such
values are aggregated to yield the bag prediction. This is the case
of Additive MIL (Javed et al., 2022), which obtains patch-wise class
contributions, and ProMIL (Struski et al., 2023), which aims to identify
the optimal percentage of instance-level predictions required for a
positive bag prediction. However, here we will focus on embedding-level
aggregation, which has been advocated as preferable in terms of the
bag level classification performance in previous work (Ilse et al., 2018;
Schmidt et al., 2023; Wang et al., 2018). The idea in this family of
methods is to aggregate the embeddings (or features) of the instances,
and then obtain a prediction for such aggregated embedding.

In our proposal we will rely on the most popular approach within
embedding-level methods, which is given by Ilse et al. (2018). They
propose an attention-based aggregation mechanism, which allows de-
tection of the most relevant instances that trigger the bag label. Specif-
ically, the aggregated embedding is given by a weighted average of
the instance embeddings, i.e. 𝐡agg =

∑

𝑖∈𝑏 𝑎𝑖 ⋅ h𝑖. The weights 𝑎𝑖 are
calculated through an attention layer:

𝑎𝑖 =
exp{w𝑇 tanh(Vh𝑖)}

∑

𝑗∈𝑏 exp{w𝑇 tanh(Vh𝑗 )}
, (1)

where 𝐰 and 𝐕 are parameters to be estimated during training. In the
sequel, this method will be referred to as Att-MIL.

2.3. Gaussian processes for MIL

In the machine learning community, Gaussian Processes (GPs) are
widely used in supervised problems due to their excellent capability to
3

quantify uncertainty (Williams & Rasmussen, 2006). In the last years,
GPs have been extended to the MIL scenario, where uncertainty is of
great importance (recall that instance labels are unknown). Among the
different formulations that have been proposed for GP-MIL (Kandemir
et al., 2016; Kim & De la Torre, 2010), the most popular approach
nowadays is VGPMIL (Haußmann et al., 2017), which has been ex-
tended later in several directions, e.g. Wang and Pinar (2021) and
Yousefi et al. (2019).

VGPMIL leverages a GP classification model to describe the (un-
known) instance labels. Then, the observed bag labels are modeled
from such instance labels through a bag-likelihood that codifies the
MIL assumption: a bag will be positive if at least one of its instances
is positive (see Haußmann et al. (2017, Eq. (3)) for full details on
the formulation). Moreover, since standard GPs are characterized by a
restrictive (𝑁3) computational complexity on the number of training
instances 𝑁 , VGPMIL resorts to sparse GPs (Snelson & Ghahramani,
2006).

The idea behind sparse GPs is to summarize the information con-
tained in the 𝑁 training instances through a set of 𝑀 ≪ 𝑁 inducing
points 𝐮 = {𝑢𝑚}𝑀𝑚=1. These values 𝐮 are GP realizations at 𝑀 locations
𝐙 = {𝐳𝑚}𝑀𝑚=1, just like 𝐟 = {𝑓𝑛}𝑁𝑛=1 are GP realizations at the input
locations 𝐗 = {𝐱𝑛}𝑁𝑛=1. In order for the information to flow from 𝐮 to 𝐟 ,
notice that the joint distribution on (𝐮, 𝐟 ) is given by:

p(𝐮) =  (𝐮|0,𝐊𝐙𝐙), (2)

𝑝(𝐟 |𝐮) =  (𝐟 |𝐊𝐗𝐙𝐊−1
𝐙𝐙𝐮,𝐊𝐗𝐗 −𝐊𝐗𝐙𝐊−1

𝐙𝐙𝐊𝐙𝐗), (3)

where 𝐊𝐴𝐵 refers to the GP kernel evaluated on datasets 𝐴 and 𝐵,
i.e. 𝐊𝐴𝐵 = 𝜅(𝐴,𝐵).

2.4. The two-stage strategy

The strengths of deep learning and GPs are complementary.
Whereas the former can extract abstract features that lead to accurate
predictions, the latter provides uncertainty estimation that guarantees
robustness and allows for reliable decision-making (Khan et al., 2019).
Consequently, in the last years there has been a growing effort to
combine both approaches in standard supervised problems (i.e. no
MIL). For instance, deep kernel learning (Wilson et al., 2016) and deep
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Fig. 2. The proposed model architecture of E2E-GP-Att. In this variant, the Sparse Gaussian Process (SGP) follows directly after the Convolutional Neural Network (CNN). Both
are applied equally to each input slice in parallel. The output of the SGP enters the attention layer which is analogous to the one used for E2E-Att-GP, see Fig. 1. After combining
the feature vectors with the attention weights and adding them up, a simple Fully Connected (FC) layer performs the final classification. The distinction between deterministic
and stochastic features is highlighted by using purple and red colors, respectively. The digits in brackets (⋅) refer to the size and the number of kernels in the CNN layers.
Gaussian processes (Salimbeni et al., 2019; Svendsen et al., 2020) have
obtained promising results, and they are very active research fields
nowadays (Ober & Aitchison, 2021; Ober et al., 2021).

In the field of MIL, the first attempt to combine deep learning and
GPs was recently presented in Wu et al. (2021a). In addition to the
aforementioned complementarity of both techniques, the motivation
for the authors of Wu et al. (2021a) was to develop a method to
apply VGPMIL on images. Indeed, notice that directly feeding VGPMIL
with images is challenging, since GPs struggle when dealing with high-
dimensional input spaces (as those implied by images) (Blomqvist
et al., 2019). Consequently, the work (Wu et al., 2021a) provides a
two-stage algorithm to first extract features from each instance with
Att-MIL (described in Section 2.2), and then feed those features to an
uncertainty-aware model such as VPGMIL (described in Section 2.3).
Notice that the features extracted during the first stage are considered
fixed/frozen for the second stage.

In this paper, the method introduced in Wu et al. (2021a) will be
referred to as 2SS (two-stage strategy). More specifically, two variants
are proposed for 2SS in Wu et al. (2021a), depending on whether the
extracted features are multiplied or not by the attention weights before
being fed to VGPMIL. Following their notation, these variants will be
called here 2SS-AL-Aw and 2SS-AL-nAw, respectively. The complete
details for their proposal can be found in Wu et al. (2021a, Section
2), in particular see their Fig. 1.

Very recently, the two-stage strategy proposed in Wu et al. (2021a)
has been improved by using deep GPs instead of GPs. This method will
be referred to as DGPMIL (López-Pérez et al., 2022), and it will be also
included as a state-of-the-art baseline in the experiments.

2.5. End-to-end model

Since 2SS is trained in two stages, the features extracted in the first
step may not be the optimal ones for the second step. Our goal is to
introduce an algorithm that performs an end-to-end training of CNNs
and GPs in the context of MIL. Based on previous experience (think for
instance in the general improvement obtained by deep learning over
hand-crafted features Goodfellow et al., 2016), we hypothesize that
such end-to-end process will ultimately lead to a better performance
in practice.

Notice that there are three key components in 2SS: the CNN, the
attention module, and the GP. The first two elements are trained in
the first stage (they are part of Att-MIL), and the third one is trained
4

in the second stage (it is part of VGPMIL). In our method we leverage
the same three components. Naturally, the CNN is applied in the first
place to perform the feature extraction. Depending on the order of the
other elements, we propose two different end-to-end (E2E) approaches,
which are described next.

E2E-Att-GP. In this case, the attention mechanism is used before the
GP. Specifically, the attention module receives the features extracted
by the CNN from each instance, and outputs a feature vector for each
bag, following Eq. (1). Notice that this is a deterministic feature vector.
Then, a probabilistic transformation is performed through a sparse
GP layer, to introduce uncertainty in the model. Each sparse GP is
described in Eqs. (2)–(3), where the GP is evaluated at the location
of the extracted features of the bag, i.e., the weighted average of the
instance features using the attention mechanism. Finally, we use a
dense layer with sigmoid activation to obtain the probability that a
bag is class one, which is denoted 𝑝𝑏. Fig. 1 illustrates the described
architecture.

E2E-GP-Att. In this case, the GP is applied before the attention
module. Namely, a sparse GP layer transforms the features extracted
by the CNN from each instance, yielding stochastic features at instance
level. Each sparse GP is described in Eqs. (2)–(3). To propagate this
stochasticity, we leverage sampling from the GP output. Therefore, the
attention module receives the GP realizations and outputs a new feature
vector for each bag, using Eq. (1). Finally, we use a dense layer with
sigmoid activation to obtain the probability that the bag is class one,
which is denoted 𝑝𝑏. Fig. 2 illustrates the described architecture.

In order to train both models, we use the cross-entropy (CE) loss
between the observed bag labels 𝑦𝑏 and the predicted probabilities at
bag level 𝑝𝑏:

CE = − 1
𝐵

∑

𝑏∈

[

𝑦𝑏 log(𝑝𝑏) + (1 − 𝑦𝑏) log(1 − 𝑝𝑏)
]

. (4)

However, it is well-known that using this loss alone usually leads to
over-fitting. As a consequence, different regularizers have been pro-
posed in deep learning (Kukacka et al., 2017). Here we leverage a
regularizer based on the Kullback–Leibler (KL) divergence, which is
common in the GP literature (Ruiz et al., 2019). Specifically, our loss
is:

 = (1 − 𝛼) ⋅ CE + 𝛼 ⋅ KL(q(𝐔) ∥ p(𝐔)), (5)

where 𝛼 ∈ (0, 1) regulates the weight of each term, CE is given by
Eq. (4), p(𝐔) is the prior distribution over the sparse GPs in the sparse
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Fig. 3. Some examples of positive and negative slices in the RSNA test set as labeled by expert clinicians. Notice that the task of ICH detection is a challenging one, since
differences between positive and negative instances are not straightforward for a non-expert.
GP layer, and q(𝐔) is the posterior distribution (which is a Gaussian
with parameters to be estimated). The KL divergence between two
distributions is always greater than zero, and equals zero if and only
if both distributions coincide. Therefore, the KL regularizer encourages
the posterior distribution over 𝐔 to stay close to the prior one. The loss
in Eq. (5) is minimized end-to-end with respect to all the model pa-
rameters, including the weights of the CNN, the attention parameters,
and the posterior GP parameters (i.e. the mean vectors and covariance
matrices of q(𝐔)). In the experiments we will evaluate the behavior of
E2E-Att-GP and E2E-GP-Att for different values of 𝛼. In particular, the
case 𝛼 = 0.5 corresponds to the minimization of the negative lower
bound of the log-likelihood of the observations.

For the inference process, the GP in our end-to-end architecture
acts as an additional layer that receives the input features of the
previous layer and outputs realizations of a probability distribution
to the subsequent layer. We follow standard variational inference for
sparse Gaussian Processes as in Hensman et al. (2015). Namely, the
procedure for inference is as follows:

1. The GP layer builds the prior distribution p(𝐮) of the inducing
points with Eq. (2). This distribution is computed using the
kernel function and the inducing point locations.

2. The GP layer approximates the posterior distribution 𝑝(𝐟 |𝐮, 𝐲) of
the GP using the conditional prior in Eq. (3), the approximated
posterior q(𝐔) and the input features. Notice that this can be
done in closed form, since both 𝑝(𝐟 |𝐮) and q(𝐔) are Gaussian
distributions.

3. By minimizing Eq. (5), the GP layer estimates an approximation
q(𝐔).

4. Finally, the output of the GP layer is a sample of the approxi-
mated posterior distribution 𝑝(𝐟 |𝐮, 𝐲), which is forwarded to the
subsequent layer.

Finally, in order to make predictions on a new bag, we propagate it
through the three different layers (CNN, Attention, and GP). Whereas
the former two are deterministic, the latter is probabilistic, so samples
are obtained (from the GP output distribution) and propagated all the
way to the model output. The final prediction is the mean over the
different samples. Also, note that the dropout included in the CNN
layers is disabled during test time. The complete experimental details
are provided in Section 3.2, as well as in the Appendix.
5

3. Results and discussion

In this section we validate empirically the proposed method. In
Section 3.1 we introduce the used data and its processing, and in
Section 3.2 we provide details about the experimental setup. Then, in
Section 3.3 we show ablation studies for the two proposed methods,
and in Section 3.4 we compare our methods to other state-of-the-art
approaches. Finally, in Section 3.5 we provide insights on the impor-
tance of the attention layer, and in Section 3.6 we show some relevant
visualizations to illustrate the behavior of our methods. The code with
our implementation will be publicly available upon acceptance of the
paper.

3.1. Dataset and preprocessing

Our model is trained against the dataset of head CT images from the
2019 Radiological Society of North America (RSNA) challenge (https://
kaggle.com/competitions/rsna-intracranial-hemorrhage-detection).
Each tomography contains between 24 and 57 slice images. Due to
the implementation constraints imposed by the Python libraries we use
(i.e., GPflow and GPFlux), all bags need to have the same number of
slices. To achieve this, we add black images to the bags whose number
of slices is smaller than the maximum slice number to make sure all
bags are in the same size of 57. Apart from that, each slice is also
preprocessed (i.e., the windowing strategy) by using the same approach
as described in Wu et al. (2021a) to change the image brightness
and apparent contrast to enhance the appearance of different types of
tissues.

The model is trained on 1000 bags, with 411 positive values
(i.e., ICH scans) and 589 negative values (i.e., normal scans). In
addition, the testing is done using a separate dataset of 150 bags, with
72 positive values and 78 negative values. We use the same dataset
as in López-Pérez et al. (2022) and Wu et al. (2021a). To stress the
inherent difficulty of the problem, Fig. 3 shows some examples of
positive and negative slices as labeled by the clinicians. Notice that
the distinction is not straightforward at all for a non-expert evaluator.

To assess the generalization capability of our model, we conduct
evaluations on the external dataset CQ500 (Chilamkurthy et al., 2018),
which comprises a total of 490 CT scans. These scans consist of 285
normal CT scans and 205 scans with annotations provided only at

https://kaggle.com/competitions/rsna-intracranial-hemorrhage-detection
https://kaggle.com/competitions/rsna-intracranial-hemorrhage-detection
https://kaggle.com/competitions/rsna-intracranial-hemorrhage-detection
https://github.com/GPflow/GPflow
https://secondmind-labs.github.io/GPflux/
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Table 1
The results for E2E-Att-GP. The values for each metric denote the mean and standard deviation from five experimental trials. The first column
indicates the combination of hyperparameters used. The first number is the scaling factor 𝛼 from eq. (5), and the second is the number of
inducing points used by the sparse GP. The best results are highlighted in bold.

Configuration Accuracy F1 Precision Recall ROC-AUC

0.1, 50 0.849 ± 0.014 0.875 ± 0.009 0.823 ± 0.020 0.936 ± 0.022 0.937 ± 0.006
0.5, 50 0.873 ± 0.020 0.872 ± 0.015 0.844 ± 0.031* 0.902 ± 0.034 0.938 ± 0.005
0.9, 50 0.836 ± 0.031 0.878 ± 0.018 0.818 ± 0.033 0.947 ± 0.036 0.937 ± 0.009

0.1, 100 0.852 ± 0.010 0.875 ± 0.008 0.818 ± 0.027 0.943 ± 0.026 0.964 ± 0.003
0.5, 100 0.876 ± 0.023* 0.886 ± 0.011* 0.825 ± 0.032 0.959 ± 0.025 0.965 ± 0.007*
0.9, 100 0.861 ± 0.018 0.879 ± 0.013 0.820 ± 0.029 0.947 ± 0.025 0.961 ± 0.006

0.1, 150 0.807 ± 0.009 0.830 ± 0.007 0.725 ± 0.010 0.972 ± 0.012* 0.924 ± 0.003
0.5, 150 0.850 ± 0.010 0.869 ± 0.011 0.833 ± 0.023 0.909 ± 0.022 0.949 ± 0.005
0.9, 150 0.820 ± 0.021 0.875 ± 0.016 0.812 ± 0.049 0.949 ± 0.026 0.945 ± 0.010

* Means that the comparison with the performance of model pairs is statistically significant (p < 0.05).
Table 2
The results for E2E-GP-Att. The values for each metric denote the mean and standard deviation from five experimental trials. The first column
indicates the combination of hyperparameters used. The first number is the scaling factor 𝛼 from Eq. (5), and the second is the number of
inducing points used by the sparse GP. The best results are highlighted in bold.

Configuration Accuracy F1 Precision Recall ROC-AUC

0.1, 50 0.804 ± 0.053 0.849 ± 0.049 0.785 ± 0.089 0.937 ± 0.050 0.947 ± 0.007
0.5, 50 0.812 ± 0.041 0.825 ± 0.028 0.722 ± 0.056 0.963 ± 0.021* 0.945 ± 0.006
0.9, 50 0.773 ± 0.059 0.800 ± 0.047 0.694 ± 0.087 0.944 ± 0.049 0.925 ± 0.014

0.1, 100 0.835 ± 0.028 0.843 ± 0.020 0.752 ± 0.075 0.959 ± 0.030 0.953 ± 0.011
0.5, 100 0.856 ± 0.021* 0.879 ± 0.015* 0.823 ± 0.041* 0.944 ± 0.022 0.964 ± 0.005*
0.9, 100 0.822 ± 0.030 0.839 ± 0.040 0.745 ± 0.092 0.961 ± 0.027 0.949 ± 0.012

0.1, 150 0.787 ± 0.055 0.804 ± 0.044 0.717 ± 0.079 0.917 ± 0.044 0.915 ± 0.023
0.5, 150 0.847 ± 0.029 0.872 ± 0.039 0.799 ± 0.062 0.960 ± 0.020 0.940 ± 0.017
0.9, 150 0.822 ± 0.040 0.877 ± 0.020 0.809 ± 0.047 0.958 ± 0.020 0.938 ± 0.014

* Means that the comparison with the performance of model pairs is statistically significant (p < 0.05).
Table 3
Comparison between the best performing E2E-Att-GP, the best performing E2E-GP-Att and other state-of-the-art results on the same RSNA
dataset. We can clearly see that both of our architectures outperform current state-of-the-art models, while E2E-Att-GP performs slightly better
than E2E-GP-Att.

Methods Methods with the same dataset ROC-AUC

Accuracy F1 Precision Recall

E2E-Att-GP 0.876 ± 0.023* 0.886 ± 0.011* 0.825 ± 0.032 0.959 ± 0.025 0.965 ± 0.007
E2E-GP-Att 0.856 ± 0.021 0.879 ± 0.015 0.823 ± 0.041 0.944 ± 0.022 0.964 ± 0.005
DGPMIL (López-Pérez et al., 2022) 0.825 ± 0.006 0.839 ± 0.006 N/A N/A 0.957 ± 0.011
2SS-AL-nAw (Wu et al., 2021a) 0.780 ± 0.089 0.814 ± 0.059 0.705 ± 0.099 0.975 ± 0.025 0.964 ± 0.006
2SS-AL-Aw (Wu et al., 2021a) 0.743 ± 0.176 0.794 ± 0.104 0.705 ± 0.172 0.944 ± 0.043 0.951 ± 0.010
Att-MIL 0.781 ± 0.023 0.811 ± 0.017 0.694 ± 0.023 0.975 ± 0.021 0.951 ± 0.011

Other methods with different dataset

Methods Model Labeling Dimension ROC-AUC

Sato et al. (2018) Convolutional auto-encoder 3D scans 0.87
Arbabshirani et al. (2018) Starightforward CNNs 3D scans 0.85
Titano et al. (2018) ResNet 50 3D scans 0.73
Saab et al. (2019) Multiple instance learning 3D scans 0.91
Patel et al. (2019) VGG-like + LSTM 2D slices 0.96
Chang et al. (2018) Mask R-CNN like 2D slices 0.98

* Means that the comparison with the performance of model pairs is statistically significant (p < 0.05).
Table 4
Comparison between the best performing E2E-Att-GP, the best performing E2E-GP-Att and other state-of-the-art method on the same external
testing CQ500 dataset.

Metrics 2SS-AL-nAw Att-MIL DGPMIL E2E-Att-GP E2E-GP-Att
Wu et al. (2021a) Ilse et al. (2018) López-Pérez et al. (2022)

Accuracy 0.639 ± 0.106 0.655 ± 0.043 0.717 ± 0.035 0.796 ± 0.018* 0.756 ± 0.023
F1 0.693 ± 0.058 0.700 ± 0.023 0.735 ± 0.022 0.785 ± 0.017* 0.736 ± 0.031
ROC-AUC 0.906 ± 0.010 0.906 ± 0.010 0.909 ± 0.005 0.918 ± 0.003* 0.912 ± 0.003
Cohen’s kappa 0.335 ± 0.171 0.359 ± 0.069 0.461 ± 0.059 0.594 ± 0.035* 0.509 ± 0.048

* Means that the comparison with the performance of model pairs is statistically significant (p < 0.05).
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Table 5
Metrics of the models substituting the attention layer by the maximum aggregation. The variability is reduced by sampling 100 different
measures from the GP and averaging the results at the end.

Metrics Accuracy F1 Precision Recall ROC-AUC

E2E-Att-GP 100 samples 0.480 ± 0 0.649 ± 0 0.480 ± 0 1 ± 0 0.625 ± 0.003
E2E-GP-Att 100 samples 0.505 ± 0.003 0.659 ± 0.001 0.492 ± 0.002 1 ± 0 0.759 ± 0.002
scan level. The number of slices within each scan varies, ranging from
16 to 128 slices. While maintaining consistent bag sizes during the
training phase, we allow for variable bag sizes during testing. This
approach ensures that the test set adheres to the same windowing
strategy preprocessing, without the inclusion of any black images.

3.2. Experimental design

Since the proposed model is stochastic, we need to run several trials
for each experiment in order to obtain a robust value of each metric
associated with the model. Hence, we run each experiment five times
to obtain the mean and standard deviation for each metric.

Moreover, to have a deeper insight into how the model is perform-
ing, we use five different metrics in this classification task. The accuracy
is the one with the most intuitive explanation. The Area Under the
Receiver Operating Characteristic Curve (ROC-AUC) tells how well the
model is separating the classes without giving any preference to any
threshold. In addition, precision, recall, and F1 score, i.e., the harmonic
mean between precision and recall, are used together to avoid the
effects of the imbalanced dataset on the evaluation.

Furthermore, our approach involves optimizing two key hyperpa-
rameters: the number of the inducing points and the scaling factor
𝛼 (as per Eq. (5)). In our ablation studies, we systematically explore
various combinations of these hyperparameters to assess their impact
on model performance. Furthermore, to rigorously compare the results
obtained with different models, we employ the Wilcoxon signed-rank
test (Rosner et al., 2006), a non-parametric statistical method. This
test is used to determine whether the medians of two paired groups,
based on their evaluation metric results, exhibit statistically significant
differences. We consider the comparison to be statistically significant if
the calculated 𝑝-value is less than 0.05.

Other experimental details include the Adam optimizer choice with
an initial learning rate of 10−4, and the early stopping criterion to
ecide when to stop the training process with a patience of 8. We split
he training dataset into training (75%) and validation (25%) according
o the number of bags. The evaluation is based on the ROC-AUC score,
o whenever the score does not improve for 8 consecutive epochs in
he validation dataset, the training process is completed. The training
nd testing processes are performed on three GPUs (Nvidia Quadro RTX
000) using Tensorflow 2.7 and Python 3.7.

.3. Results

The results are shown in Table 1 for E2E-Att-GP and in Table 2 for
2E-GP-Att. In both tables, the first column shows the combination of
ifferent values of the scaling factor 𝛼 and number of inducing points.

For example, ‘‘0.1, 50’’ means that the scaling factor is 0.1 and the
umber of inducing points is 50. Other columns show the mean and
eviation for each metric for five experimental trials, with the best
erforming model highlighted in bold for each metric.

In both tables, the results show that the scaling factor of 0.5 for
given number of inducing points achieves the best result for most
etrics. In other words, the model achieves the best performance when

he KL divergence is of equal importance as the cross-entropy. Another
nteresting finding is that the number of inducing points affects the
erformance of the model in a non-linear way, which indicates that
ore inducing points do not necessarily result in better performance.
his is positive because using more inducing points requires more com-
utational power. In this study, we found that 150 was the maximum
umber of inducing points we could use without getting out of memory,
hile the best performing model only required 100 inducing points for
oth tables.
7

3.4. Comparisons with the state of the art

First, we compare our model with others using exactly the same
training and testing data cohorts, including DGPMIL (López-Pérez et al.,
2022), the model with two separate training steps (2SS-AL-nAw, 2SS-
AL-Aw) (Wu et al., 2021a) and Att-MIL (i.e., only the CNN model with
Att layer), as shown in Table 3. We can observe that E2E-Att-GP and
E2E-GP-Att outperform DGPMIL, 2SS-AL-nAw and 2SS-AL-Aw in most
metrics with an accuracy of 0.876, F1 score of 0.886, precision of 0.825
and ROC-AUC of 0.965 while the difference between E2E-Att-GP and
E2E-GP-Att is significant in accuracy and F1 score but not in precision
and ROC-AUC. Although the recall is worse than Att-MIL and 2SS-AL-
nAw, our method significantly outperforms them in all other metrics,
which shows that our approach is less prone to false positives so it
produces better predictions in general. The comparison with Att-MIL
shows that GP plays a significant role in improving model performance.
In addition, the direct comparison with 2SS-AL-nAw and 2SS-AL-Aw
shows that the model with an end-to-end training strategy performs
better than the same model architecture but with two separate training
steps. The reason for this is that, the end-to-end training optimizes the
parameters of the CNNs, attention layer and GP together while if they
are trained separately, the features extracted from CNNs may not be
optimal for GP.

Regarding the model complexity, it is in the same order of mag-
nitude as the baselines. The number of parameters is 152,487 for
E2E-Att-GP and 95,359 for E2E-GP-Att. As a comparison, the number
of parameters for DGPMIL is 122,346 parameters. Furthermore, the
proposed models are efficient and able to be run on consumer hard-
ware. For instance, inference for one sample takes around 200 ms on a
MacBook Pro M1 Max for E2E-GP-Att and E2E-Att-GP.

To demonstrate the generalization capabilities of our approach, we
resort to the external test dataset, CQ500 (Chilamkurthy et al., 2018).
Notice that we are not training on this new dataset, but using the meth-
ods previously trained on the RSNA dataset. The results are included
in Table 4. Notably, both E2E-Att-GP and E2E-GP-Att demonstrate
outstanding performance, significantly better than other models across
all evaluation metrics. Furthermore, E2E-Att-GP performs better than
E2E-GP-Att, which aligns with the findings presented in Table 3. The
results provided in Table 4 show the efficacy of our model in adapting
to test CT scans acquired from diverse scanner settings, confirming the
robust generalization capabilities inherent to the end-to-end training
scheme.

We further compare our approach with other methods using dif-
ferent datasets in ICH diagnosis. As multiple different metrics are
evaluated in these methods, we choose ROC-AUC score to compare
the model performances. Since no available codes are recently public
for these methods, it is challenging to train the other methods on our
dataset to have a fair comparison. However, although different dataset
are utilized, we can see that E2E-Att-GP and E2E-GP-Att outperform
methods training with 3D scan labels (Arbabshirani et al., 2018; Saab
et al., 2019; Sato et al., 2018; Titano et al., 2018) and have a com-
parable (Chang et al., 2018) or even a higher ROC-AUC score (Patel
et al., 2019) compared to models using 2D slice labels. The results are
promising, because manually labeling each slice is tedious and time-
consuming for radiologists, while the scan labels can be easily accessed
from patients clinical reports. Therefore, since our method achieves a
comparable performance on ICH diagnosis, they can greatly reduce the
workload of radiologists and potentially, improve the clinical triage

system.
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Fig. 4. Histogram representing the distributions of the attention weights separated by the type of slice. The values were computed by taking the average of the attention weights
for real and artificial images separately in each bag.
3.5. The explainabilty of ‘‘attention’’

In this section, we analyze the relevance of the attention layer as one
of the three components of our end-to-end methodology. Overall, we
have three findings from our experiments: 1. substituting the attention
layer by the maximum aggregation worsens the result; 2. the attention
weights are correlated with the slice labels; 3. the attention layer is
correctly identifying the added black slices that fill the bag, which
proves that they have no harmful effect on the training process.

First, to show the importance of the attention layer, we utilize a way
of substituting the attention layer by a maximum aggregation, which
has been used in several studies as a way to work in MIL (Campanella
et al., 2019, 2018). The modifications for the experiment consist of
applying the layer after the attention layer (i.e., GP in E2E-Att-GP and
a dense layer in E2E-GP-Att) equally to all slices, and then, applying
the maximum operation to generate one outcome prediction. This
modification is reasonable because the attention layer is designed to
carefully select the slices, so the latent spaces of the image will remain
the same without the attention layer. Therefore, the layers after the
attention layer can be applied to the feature vectors before the attention
layer, and we only add the maximum operation at the end to generate
one final probability.

The results for the modified E2E-Att-GP and E2E-GP-Att model are
shown in Table 5. We see a significant drop in performances for all
metrics. A possible explanation for this is that hemorrhages normally do
not just occur on one slice of the head but on several different regions
of the brain. Slices are different sections of the same brain separated
by a small spacing distance, so they are not independent from each
other. For that reason, detecting hemorrhages is a matter of looking into
several slices like a radiologist. However, by removing the attention
layer, the GP needs to detect the hemorrhage at each individual slice
without taking into account any possible relationships between the
slices, while the attention layer is the one that can weight on all the
slices to find that relationship. For that reason, working at each slice
individually without further looking at other slices makes the modified
model lack this spatial information, leading to much worse performance
compared to using the attention layer.

For our second finding, we analyze the relationship between the
estimated attention values and the ground truth label (which is known
8

for test instances). Similarly to previous MIL approaches using atten-
tion (Ilse et al., 2018; Schmidt et al., 2023; Wu et al., 2023), we expect
that slices with ICH are assigned higher values of attention than those
not presenting ICH. Indeed, we find that the mean of the attention
weights for positive slices is 0.023, whereas for negatives it is 0.016.
Notice that the average is 43% higher for positive slices. This quantita-
tive result, which takes into account all the data, is complemented with
some qualitative examples showing that the highest attention values in
positive bags are usually assigned to positive slices, see Fig. 5(l).

Finally, the third interesting finding is that the attention layer can
correctly identify which slices are artificially generated (i.e., the black
slices). To prove this, we generate the attention weight for each slice
of the testing dataset and take two mean values: one for the artificial
slices and one for the real slices. Fig. 4 illustrates their respective
distributions. It is straightforward to find that the mean is higher for
the real slices, demonstrating that the attention layer is assigning more
attention to real slices. Moreover, in 81% of the bags, the mean values
of the weights from the real slices are higher than those from the
artificial slices. There is some variance shown in both distributions, but
overall, the attention layer is able to correctly ignore the images that
are added to the bags, which indicates that the attention layer is trained
to learn important features.

3.6. Visualizations

To depict how well the classes are separated in their corresponding
latent spaces of E2E-GP-Att and E2E-Att-GP, we show two t-distributed
stochastic embedding (t-SNE) plots of the latent vectors by extracting
features from the last fully connected layer. t-SNE is used to visualize
high-dimensional feature vectors in a two or three dimensional map, so
after t-SNE, the dimensionality of each scan reduces from 8 to 2. The
result for E2E-GP-Att and for E2E-Att-GP is shown in Fig. 6. Except for
some outliers, each figure shows two well-separated clusters represent-
ing each class, meaning that the internal representations of bags the
models have learned are discriminative enough for this classification
task.

Apart from classifying bags, the model can also be used to detect
which slices are more important for the model to be predicted as
positive. The attention layer provides an score for each slice that can
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Fig. 5. Each row corresponds to a different scan, and shows the four slices that were assigned the highest attention values in that scan. Importantly, all these slices are labeled
as positive by the experts in the database, which stresses that there exists a correlation between high attention weight and the presence of ICH. The images are ordered from left
to right by the estimated attention weight, which is shown below each image.

Fig. 6. t-SNE of the latent vectors of scans as produced by the two models previous to applying the last layer to generate the probabilities.
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be interpreted as the probability of such slice to be positive, as shown
in Fig. 5. Therefore, the attention weights can potentially be used to
indicate instance predictions by only training on bag labels.

4. Conclusions and future work

This work proposes two architectures that combine convolutional
neural networks, an attention layer, and Gaussian processes with end-
to-end training. We show that the end-to-end model performs better
than previous works, trained in two separate phases. To the best of our
knowledge, this is the first work that combines CNN, attention, and
GP into one architecture in an end-to-end manner for multiple instance
learning.

When evaluating the model with the RSNA dataset, we obtain a
slightly better ROC-AUC score, and considerably higher accuracy and
F1 than previous state-of-the-art models. We find that applying the
attention module before the GP leads to better results than the other
way around. However, both architectures score higher than previous
approaches, showing that different combinations of CNN, attention
layer, and GP achieve state-of-the-art predictions as long as they are
trained end-to-end. These positive empirical findings also apply to the
generalization capability of our approach, as shown in the external
validation with the CQ500 dataset.

In the future, a more complex classifier with Deep Gaussian Pro-
cesses could even achieve a higher performance when trained end-to-
end with the feature extractor and attention mechanism. Furthermore,
the use of more sophisticated attention mechanisms, as well as alterna-
tive DL models, is an interesting line of research to further improve the
accuracy. Other challenging MIL scenarios, such as utilizing 3D patches,
should be addressed in future work too.
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