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Abstract—In this paper we propose the use of the Hyperbolic
Secant (HS) distribution as a prior for the Blind Image Deconvo-
lution (BID) problem. It is well-known that when high-pass filters
are applied to natural images, the resulting coefficients are sparse.
We leverage this property using the HS distribution, a seldom
explored Super Gaussian distribution with suitable properties for
this problem. Using the Pólya-Gamma distribution, we derive
an explicit Gaussian Scale Mixture representation. This repre-
sentation is then used to propose a novel variational Bayesian
algorithm that outperforms state-of-the-art BID methods.

Index Terms—Blind Deconvolution, Gaussian Scale Mixture,
Hyperbolic Secant, Variational Bayes.

I. INTRODUCTION

Image deblurring is an important problem in the field of
image processing [1]. Its goal is to recover the underlying
clean image from an observed blurry and noisy one. Blurriness
in the image can be caused by several factors such as camera
shake, defocus or atmospheric conditions [2]–[4]. In this work,
we focus in those cases where the degradation process can be
modelled as

y = Hx+ η, (1)

where y ∈ RHW×1 is the observed blurry image, x ∈ RHW×1

is the underlying clean image, H ∈ RHW×HW is the con-
volution matrix obtained from the blur kernel h ∈ RK×1,
and η ∈ RHW×1 is additive white Gaussian noise. In the
case where the kernel h is unknown, recovering x from y is
known as Blind Image Deconvolution (BID). It is a severely
ill-posed problem since infinitely many combinations of the
blur and true image can produce the observed image [5]. To
find meaningful solutions, additional restrictions on both x and
h are crucial. From a Bayesian point of view, those restrictions
are modeled as prior distributions on the latent clean image
and the blur.
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A common approach is to build upon the well-known fact
that, when high-pass filters are applied to natural images, the
resulting coefficients are sparse, which means that most of
them are close to zero while only a few are large [5]. State
of the art BID methods exploit this property using sparsity
promoting image priors such as Super-Gaussian (SG) priors
[6]. These distributions have heavier tails than the Gaussian,
are more peaked, and have a positive excess of kurtosis. See
[7] for a complete review on SG distributions. Although they
have proven to be a valuable tool to introduce prior informa-
tion in BID, some of the most widely SG priors employed
are not differentiable around zero, which hampers the opti-
mization process. Previous works have attempted to modify
their behavior around zero to make them numerically stable
[8]. To account for this problem, and for the first time in the
BID literature, we propose to use the Hyperbolic Secant (HS)
distribution [9]. Among its appealing theoretical properties
[10], the HS distribution is well-behaved around zero, which
helps stabilize the variational optimization process. It admits
a Gaussian Scale Mixture (GSM) representation [11], [12],
which implies that it is SG [13]. Moreover, this representation
allows us to augment the joint model with additional variables,
that are later marginalized to recover the original model.
Using this technique, we develop an estimation procedure for
both the blur kernel and the image using variational Bayesian
inference. Finally, the proposed method is compared against
classical and state of the art BID techniques.

The rest of the paper is organized as follows: the BID state
of the art methods and the HS distribution applications are
briefly reviewed in Section II. In Section III, we model the BID
problem using the Bayesian framework, introducing the HS
distribution as a prior. Then, in Section IV, we use variational
Bayes and the GSM representation of the HS distribution to
propose an estimation method for the unknown kernel and
the original image. The performance of the proposed method
is evaluated in Section V. Finally, Section VI concludes the
paper.



II. RELATED WORK

Traditionally, BID algorithms have employed an analytical
strategy that explicitly describes the forward model, selects the
criteria for getting a solution, and decides on an optimization
technique. Regularization based techniques typically try to
optimize a criterion, such as minimizing the ℓ2 error norm
∥y −Hx∥2, subject to some restrictions based on prior (or
domain) knowledge that is incorporated into the solution
process. Stochastic techniques treat the unknowns (blur, clean
image, and parameters) as stochastic quantities, using and
maximum likelihood, maximum a posteriori (MAP) or fully
(hierarchical) Bayesian approaches to estimate them. See [14]
for a review on Bayesian BID.

A huge effort has been devoted to designing priors that
constrain the solutions to those that are close to the real ones.
For the blur, flat priors have been usually used, along with a
Dirichlet prior [15] and a Simultaneous Autoregressive (SAR)
prior [16]. For the clean latent image, the first works used
smooth priors such as Conditional Autoregressive, SAR and
Total Variation [17], [18]. These impose smoothness on the so-
lutions, controlling noise amplification, but also tend to smooth
out the details of the image. Because of this, the focus shifted
towards sparse priors that adapt to the statistics in the filtered
space. When natural images are filtered using high-pass filters,
most of the coefficients become zero or very small while only
a small number of them are large (e.g., at the edges). This
behaviour cannot be modeled using the Gaussian distribution.
As a consequence, other priors have been proposed: mixture of
Gaussians [19], [20], hyper-Laplacian priors [21], adaptive ℓp
gradient priors [22], log priors [23], log-TV priors [24], Super
Gaussian (SG) priors [5], [8], generalized ℓp/ℓq norm-based
priors [25], and approximations of the ℓ0 function [26]. These
priors have a drawback: most of them are not differentiable
around zero, so the optimization process becomes difficult.
Few attempts have been proposed to address this issue, see
Huber SG [8]. Thus, the use of other SG distributions that
are differentiable around zero, such as the Hyperbolic Secant
(HS) distribution proposed in this paper, are of interest since
they ease the inference process.

In recent years, models based on Deep Neural Networks
(DNNs) have become a popular alternative to solve inverse
problems [27]. DNNs use a large number of images to learn
a mapping function from the degraded image to the restored
image and, possibly, the blur. This makes them faster than ap-
proaches requiring iterative optimization for each new sample.
However, they lack the flexibility of analytical models, which
significantly hampers their effectiveness in BID due to the
high variation in the degradations caused by the combination
of all the possible blurs and noise [28]. A major effort is being
made by the DNN community to tackle the BID problem. See
[29] and [30] for a recent survey of deep image deblurring. In
[31] a deep Convolutional Neural Network (CNN) was used
to learn a regularizer that discriminates sharp from blurred
images. In [32] the authors propose a multi-scale residual
CNN to eliminate non-uniform motion blur from images. This

model is further refined in [33] where learnable parameters
are shared, and in [34] to handle multi-scale blur with low
computational complexity. Following a similar approach, [35]
proposes a multi-stage progressive image restoration network
to recover blurred images. In [36] the unconstrained neu-
ral optimization solution to blind deconvolution (SelfDeblur)
was proposed. The use of a Generative Adversarial Network
(GAN) is proposed in [37] and enhanced in [38]. The method
proposed in [39] is built upon these approaches and introduces
a scale recurrent conditional GAN. Cycle GANs have also
been proposed in [40] and [41] as an approximation to learn
how to deblur images by learning how to produce realistic
motion blur. In [42], three parametric blur models are esti-
mated using a General Regression Neural Network together
with an additional CNN, which is used to select one of the
three models for a given observed image.

In this paper, we will use an analytical approach to BID
with a HS distribution as a prior for the filtered image
and a flat prior for the blur. A family of generalized HS
distributions was first derived in [43]. Later, [44] connected it
to Brownian Motion, and [9] discussed moments, cumulants,
and statistical inference. In terms of applications, [10] showed
two experimental studies where the HS distribution fits the tails
better than the Normal distribution, and [45] presented three
problems in which it appears. During the last few years, the
HS distribution has become popular in the context of financial
return data [46]. Note that the present work is the first in
adapting the HS distribution to the BID problem.

III. BAYESIAN MODELING

In this section, we first justify the use of the HS distribution
as a prior model for the BID problem. Then, we describe the
full Bayesian model.

A. The Hyperbolic Secant distribution as a prior

We consider the following density,

f(x;α) =
α

π
sech (αx) , ∀x ∈ R, (2)

where α > 0. Its associated distribution belongs to the family
of Generalized Hyperbolic Secant distributions [9]. Also, it
belongs to the family of z distributions presented in [12].
In that same work, it is proved that the density of the z
distributions can be expressed as a GSM. As a consequence,
f is SG and it is suitable to be used as a prior for BID. A
SG density f can be expressed as f(x) ∝ exp (−ρ(x)), where
ρ is a penalty function (symmetric around zero and such that
s ∈ (0,+∞) 7→ ρ(s1/2) is increasing and concave). Note
that ρ(x) = log (sech(αx)) is the penalty function of the HS
density. See Figure 1 for a comparison between the HS prior
and other priors previously used in the literature [5].

In this work, the GSM representation of f is of great
importance: there exists a mixing density f̂(ω;α) such that

f(x;α) =

∫ +∞

0

N (x | 0, ω−1)f̂(ω;α)dω. (3)



−4 −2 0 2 4
−6

−4

−2

0

2

4

6

ρ(x) = |x|
ρ(x) = 0.5x2

ρ(x) = log (ε + |x|)
ρ(x) = log (sech(x))

Fig. 1. Penalty functions of the HS density with α = 1 and different SG
priors used in the literature [5].

The proof offered in [12], although elegant, does not provide
an explicit form for the mixing density. However, it can be
obtained using the Pólya-Gamma distribution presented in
[47], [48]. See Appendix A for the details.

B. Modeling the BID problem

We start from the degradation model given by Eq. (1). We
formulate the BID problem in the filter space [49], [50], by
applying N high-pass filters {Fn}Nn=1 to the blurred noisy
image to obtain N pseudo-observations

yn = Fny = HFnx+ Fnη = Hxn + ηn (4)

where xn = Fnx, ηn = Fnη, and η ∼ N (0, β−1I). It is
assumed that β > 0 is known. We denote the set of filtered
versions by Y = {y1, . . . ,yN} and X = {x1, . . . ,xN}. Then,
from Eq. (4), we obtain,

p(yn | xn,h, βn) = N (yn | Hxn, β
−1
n I), (5)

where we use the approximation β−1
n I ≈ β−1FnF

⊤
n and

p(Y | X,h,β) =

N∏
n=1

p(yn | xn,h, βn), (6)

where β = [β1, . . . , βN ]
⊤.

We adopt the HS distribution, described in Sec. III-A, as a
prior distribution on the pixels of the filtered images, that is,

p(X | α) ∝
N∏

n=1

HW∏
i=1

sech(αnx
i
n), (7)

where α = [α1, . . . , αN ]
⊤ and xn =

[
x1
n, . . . , x

HW
n

]⊤
.

Finally, we assume a flat prior p(h) ∝ const for the blur.
With these ingredients, the joint probability distribution is

p(Y,X,h | α,β) = p(h)p(Y | X,h,β)p(X | α). (8)

IV. BAYESIAN INFERENCE

Our approach involves estimating the unknown blur kernel
h in the filtered image space, followed by estimating the
original image using a non-blind deconvolution algorithm.
Following the Bayesian perspective, we aim to utilize the
posterior distribution p(X,h | Y,α,β) to infer h. Since it

can not be obtained in closed form, we approximate it using
variational Bayesian inference [51]. However, the presence of
the HS prior makes it impossible to obtain a closed form
expression of the variational posterior. To overcome this issue,
we introduce the following augmented model that enables
tractable variational inference,

p(Y,X,h,ω | α,β) = p(h)p(Y | X,h,β)p(X,ω | α), (9)

where ω =
{
ωi
n : n ∈ {1, . . . , N} , i ∈ {1, . . . ,HW}

}
and

p(X,ω | α) = p(X | ω)p(ω | α), (10)

p(X | ω) ∝
N∏

n=1

HW∏
i=1

N
(
xi
n | 0,

(
ωi
n

)−1
)
, (11)

p(ω | α) =

N∏
n=1

HW∏
i=1

f̂(ωi
n;αn). (12)

Integrating in ω and using the GSM representation of Eq.
(3) we recover the original model. We use the mean-field
variational Bayesian approach [51] to approximate p(X,h,ω |
Y,α,β) by the variational distribution

q(X,h,ω) = q(h)

N∏
n=1

q(xn)

{
HW∏
i=1

q(ωi
n)

}
, (13)

by minimizing the Kullback-Leibler (KL) divergence between
the variational distribution approximation and the true poste-
rior. The solution for each variational factor is given by [51,
Eq. (10.9)]. To estimate the blur kernel we use the mode of
q(h) given by ĥ = argmaxh log q(h). Let us now specify
each estimate.

A. Filtered image estimation

From [51, Eq. (10.9)] we obtain

log q(xn) = log p(yn | xn,h) + Eq(ω) [p(x | ω)] + const

=− 1

2
x⊤
n

(
βnH

⊤H+Θ
)
xn+ (14)

+ βny
⊤
nHxn + const (15)

where Θ = Eq(ω) [diag (ω)]. Therefore,

q(xn) = N (xn | mxn ,Σxn) , (16)

Σ−1
xn

= βnH
⊤H+Θ, mxn

= βnΣxn
H⊤yn. (17)

To avoid the inversion of Σ−1
xn

, we compute the mean by sol-
ving the following linear system using the Conjugate Gradient
(CG) method,

Σ−1
xn

mxn
= βnH

⊤yn. (18)

B. Blur estimation

For the blur, applying [51, Eq. (10.9)] we obtain

log q(h) =

N∑
n=1

Eq(xn) [log p(yn | xn,h)] + const. (19)

We estimate the blur as the mode of q(h), which results in

ĥ = arg min
h∈∆K

{
h⊤Chh− 2hTbh

}
, (20)



where ∆K =
{
(h1, . . . , hK) ∈ RK : hi ≥ 0,

∑
i hi = 1

}
,

Ch ∈ RK×K and bh ∈ RK are given by

[Ch]ij =

N∑
n=1

HW∑
l=1

{
[mxn

]i+l [mxn
]j+l + [Σxn

]i+l,j+l

}
,

(21)

[bh]i =

N∑
n=1

HW∑
l=1

[mxn
]i+l [yn]l , (22)

where we have used the operator [·]i to denote the i-th
component of a vector or a matrix. To avoid the inversion
of Σ−1

xn
, we apply the Jacobi approximation to invert only its

diagonal. As Eq. (20) is a quadratic, it can be solved efficiently.

C. Estimation of the augmentation variables ω

Observe that the full distribution q(ωi
n) is not needed to

estimate q(xn) and ĥ, as only the expectation Eq(ωi
n)

[
ωi
n

]
is required to calculate Σ−1

xn
. To compute this expectation in

closed form, we adapt the procedure employed in [5], [13]
First, applying [51, Eq. (10.9)] we obtain

log q(ωi
n) =Eq(xi

n)

[
logN

(
xi
n | 0,

(
ωi
n

)−1
)]

+ (23)

+ log f̂(ωi
n;αn) + const. (24)

Next, we observe that Eq(xi
n)

[
logN

(
xi
n | 0,

(
ωi
n

)−1
)]

=

logN
(
ξin | 0,

(
ωi
n

)−1
)

, with ξin =
√
Eq(xi

n)
[(xi

n)
2]. There-

fore, we obtain q(ωi
n) ∝ N

(
ξin | 0,

(
ωi
n

)−1
)
f̂(ωi

n;αn). Nor-
malizing, we arrive at

q(ωi
n)f(ξ

i
n;αn) = N

(
ξin | 0,

(
ωi
n

)−1
)
f̂(ωi

n;αn). (25)

Finally, we differentiate under the integral sign in Eq. (3) and
use Eq. (25) to obtain

Eq(ωi
n)

[
ωi
n

]
=

αn tanh(αnξ
i
n)

ξin
. (26)

D. Estimation of the original image

Standard mean-field variational inference consists of alter-
nating the estimates of {mxn

}Nn=1,
{
Σ−1

xn

}N

n=1
, Θ, and h.

This way, we obtain estimations of the filtered images and the
blur, but not of the original image. The estimated blur can be
used with a non-blind image restoration algorithm to estimate
the original image. Following the approach of previous works
[8], [52], we compute the original image estimate x̂ by solving

x̂ = arg min
x

{
1

2
∥Hx− y∥2 + λ

N∑
n=1

∥Fnx∥p
}
, (27)

where p = 0.8 [52]. To solve this non-convex optimization
problem we use an iteratively reweighted least squares ap-
proach (see [52] for the details).

The proposed method is summarized in Algorithm 1. The
main loop alternates between the estimates of the filtered
images, the hyperparameters, and the blur. To estimate the
blur kernel, we apply the pyramid coarse-to-fine approach

suggested in [20]. Once the blur is estimated, the original
image is estimated by the non-blind image deconvolution
method in Eq. (27).

Algorithm 1: Blind Deconvolution using the
Hyperbolic-Secant prior.

Input: Degraded image y, noise parameter β, filters {Fn}Nn=1,
prior parameter α, number of iterations T .

1 Initialize mxn = yn and Σ−1
xn

= 0 for n = 1, . . . , N .
2 for t = 1, . . . , T do
3 Compute Θ using Eq. (26).
4 Compute

{
Σ−1

xn

}N

n=1
using Eq. (17) and {mxn}

N
n=1 by

solving the system in Eq. (18).
5 Compute ĥ by solving Eq. (20).

6 Compute x̂ by solving Eq. (27).
Output: Original image estimation x̂.

V. EXPERIMENTAL RESULTS

In this section, we assess the quality of the proposed
approach and compare its results with those obtained using
the following methods: MoG [20], SG in [5] and [53], Huber
SG [8], ECP [26], Li [31] and SelfDeblur [36]. For the SG
priors in [5], we consider log, ℓ1 and exp.

We use the Levin dataset [50], which is widely utilized as
a workbench for testing many BID algorithms. The different
methods are compared quantitatively and qualitatively. As
quantitative metrics, we use the Sum of Square Distances
(SSD) between the deconvolved and original images, the Peak
Signal to Noise Ratio (PSNR), and the Structural Similarity
Index (SSIM) [54]. If the BID method allows to obtain
non-blind deconvolutions, we present both blind measures
(SSDb, PSNRb, SSIMb) and non-blind measures (SSDnb,
PSNRnb, SSIMnb). These non-blind measures are obtained
using the ground truth kernel. Furthermore, we show the ratio
SSDb/SSDnb. For PSNR and SSIM higher values correspond
to better results, while for SSD and ratio, the lower the better.

The filters used in Eq. (4) correspond to the first order
horizontal and vertical difference filters. For all images in the
dataset, we used β = 104, α1 = 102.4, and α2 = 102.15. Those
parameters were selected by grid search to obtain the best
results in one image and, then, used for all the experiments. All
competing methods were run using the parameters suggested
by the authors for this dataset.

Tables I and II show the mean quality metrics obtained for
the whole dataset using the different methods. We also include
the mean execution time per image on an Intel Xeon Silver
4314 2.40 GHz CPU for the different analytical methods and
on a Nvidia GeForce RTX 3090 GPU for DNN methods. The
best results are highlighted in bold. The proposed HS method
obtains better results than the rest of the analytical methods
(Table I), except for the execution time which is lower for
the Huber SG method and the ratio SSDb/SSDnb for the ECP
method. This is due to the poorer performance of the ECP
method for non-blind deconvolution. When we compare with
DNN methods (Table II), SelfDeblur shows the best SSD and
PSNR values while the proposed HS achieves the best SSIM



TABLE I
COMPARISON BETWEEN HS AND OTHER ANALYTICAL METHODS FOR LEVIN DATASET.

(↓) MEANS LOWER IS BETTER, (↑) MEANS HIGHER IS BETTER.

Method SSDb (↓) PSNRb (↑) SSIMb (↑) SSDnb (↓) PSNRnb (↑) SSIMnb (↑) ratio (↓) CPU (secs.) (↓)
log [53] 152.4 27.9 0.8162 41.49 32.1 0.9253 4.12 69.4
ℓ1 [53] 239.1 25.4 0.7391 39.17 32.3 0.9211 5.93 69.72

MoG [20] 106.1 28.6 0.8428 39.53 32.2 0.9237 2.79 69.96
exp [53] 101.1 28.6 0.8528 43.71 32 0.9234 2.59 69.75

Huber SG [8] 110.6 29.9 0.8868 36.47 32.8 0.9406 2.67 7.418
ECP [26] 70.53 30 0.8957 55.98 30.9 0.91 1.3 100

HS 69.01 30.5 0.9069 36.47 32.8 0.9406 2 68.69

TABLE II
COMPARISON BETWEEN HS AND DNN METHODS FOR LEVIN DATASET.

(↓) MEANS LOWER IS BETTER, (↑) MEANS HIGHER IS BETTER.

Method SSDb (↓) PSNRb (↑) SSIMb (↑) Time (secs.) (↓)
Li [31] 103.3 29.7 0.8815 149 (GPU)

SelfDeblur [36] 57.8 31.5 0.9029 399 (GPU)
HS 69.01 30.5 0.9069 68.69 (CPU)

value. The HS method, which is executed in CPU, requires a
significantly lower execution time than the two DNN methods,
that require a GPU.

Figure 2 shows cumulative SSD histograms of the blind
and non-blind deconvolved images and their ratios. The best
histograms of SSDb and ratio values are those of HS. In the
SSDnb histogram, the proposed HS and Huber SG methods
share the best behavior. Note that both methods use the same
non-blind image deconvolution method. These results indicate
that the HS method provides more accurate estimations of the
unknown blur than the other methods in this dataset.

Figure 3 shows a visual comparison of an original image, the
degraded image, and the restorations obtained using different
methods. In Figure 3(b)-(k), the true blur kernel and the
estimated kernels are included in the degraded and the restored
images. Visually, the best reconstructions are obtained by
the proposed method. Huber SG, Li, and ECP also achieve
visually appealing reconstruction, but lack some fine details.

Finally, Figure 4 shows a real degraded color image and
the restorations obtained by the best performing methods. For
this image we have used as noise variance β = 0.4× 105 and
α1 = α2 = 102. While all restorations have an acceptable
visual quality, those obtained using the HS and Li methods
achieve the best results, see Figure 4(f) and (d). In Figure 4(e),
SelfDeblur recovers a noisy image, while in Figure 4(b) Huber
SG over-smooths the image.

VI. CONCLUSIONS

In this work, we propose a BID method that uses the HS
distribution for the first time in the literature. This seldom
explored distribution belongs to the family of SG distributions,
has heavy tails and behaves suitably around zero, which makes
it a good candidate as a prior distribution in BID. We derive
a GSM representation, which is then used to formulate a new
BID variational Bayesian method. The proposed method shows
competitive or superior performance in the Levin dataset,
which supports our claims.

APPENDIX A
THE MIXING DENSITY OF EQ. (3)

For completeness, we derive an explicit form for the mixing
density f(ω;α) of Eq. (3). First, we note that sech(y) =
2 exp(y)/(exp(2y) + 1). Then, from [47, Eq. 2] we obtain,
after a change of variable,

f(x;α) =

∫ +∞

0

N (x | 0, ω−1)
PG(ω/(4α2) | 0, 1)

2α
√
2πω

dω, (28)

where PG(ω | 0, 1) denotes the Pólya-Gamma den-
sity defined in [47]. Finally, we check that f̂(ω;α) =(
2α

√
2πω

)−1
PG(ω/(4α2) | 0, 1) is a density. To do so, first

observe that f̂(ω;α) ≥ 0. To show that it integrates to 1,
integrate with respect to x in Eq. (28) and apply the Fubini-
Tonelli Theorem [55].
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