Logistic Regression Model

A multinomial logistic model classifies $d$-dimensional real-valued input vectors $x \in \mathbb{R}^d$ into one of $k$ outcomes $c \in \{
0,\ldots, k-1 \}$ using $k-1$ parameter vectors $\beta_0,\ldots,\beta_{k-2} \in \mathbb{R}^d$:

\begin{displaymath}
p(c \mid x, \beta) =
\left\{ \begin{array}{cl}
\frac{\textst...
...{\textstyle 1}{Z_x} & \textrm{if } c = k-1
\end{array} \right.
\end{displaymath} (1)

where the linear predictor is inner product:
\begin{displaymath}
\beta_c \cdot x = \sum_{i < d} \beta_{c,i} \cdot x_{i}
\end{displaymath} (2)

The normalizing factor in the denominator is the partition function:
\begin{displaymath}
Z_x = 1 + \sum_{c < k-1} \exp(\beta_c \cdot x)
\end{displaymath} (3)



Carlos 2008-10-16