
Universidad de Granada

Department of Computer Science and

Artificial Intelligence

Doctoral Program in Computer Science and

Information Technology

Adversarial decision and
optimization-based models

Doctoral Thesis

Pablo José Villacorta Iglesias

Advisors:

David Alejandro Pelta

José Luis Verdegay Galdeano

La memoria titulada “Adversarial decision and optimization-based

models”, que presenta D. Pablo José Villacorta Iglesias para optar al grado

de Doctor en Informática, ha sido realizada en el Departamento de Ciencias

de la Computación e Inteligencia Artificial de la Universidad de Granada,

bajo la dirección de los doctores D. David Alejandro Pelta y D. José Luis

Verdegay Galdeano, miembros del mismo departamento.

Hasta donde nuestro conocimiento alcanza, en la realización del trabajo,

se han respetado los derechos de otros autores a ser citados, cuando se han

utilizado sus resultados o publicaciones.

Granada, Noviembre de 2015

Pablo José Villacorta Iglesias

David Alejandro Pelta José Luis Verdegay Galdeano

-A mi familia-

(To my family)

Contents

Resumen vii

Abstract xix

1 Introduction 1

1.1 Objectives and structure of the thesis 4

2 Background 9

2.1 Game theory . 10

2.2 Security games . 13

2.3 Search games . 15

2.4 Imitation games . 16

2.4.1 An adversarial imitation model 16

2.4.2 On the unsuitability of game-theoretic equilibrium . . 19

2.4.3 Strategies of the agents 21

3 Theoretical analysis of expected payoff with interpretable

strategies 23

3.1 Calculation of the expected payoff 24

3.1.1 Notation and payoff matrix definition 24

3.1.2 Expected payoff of R-k-B 25

3.1.3 Expected payoff of Proportionally Random 27

3.1.4 Expected payoff of B-k-R 29

3.2 Computational experiments and results 32

3.2.1 Results for Proportionally Random 33

3.2.2 Results for R-k-B . 36

i

Contents

3.2.3 Results for B-k-R . 38

3.3 Conclusions . 40

4 Forgetting as a way to avoid deception 41

4.1 Simplified version of the model 42

4.2 Behaviour of the agents . 43

4.2.1 Static Mixed Strategy for Agent S. 44

4.2.2 Dynamic Mixed Strategy for Agent S 45

4.2.3 A generalized notation for the expected payoff 49

4.3 Forgetting as a way to avoid deception 51

4.3.1 Expected payoff with limited memory 52

4.4 Experiments and results . 54

4.4.1 Experimental settings 54

4.4.2 Results . 56

4.5 Conclusions . 68

5 Considering statistical dependence between actions and events 71

5.1 A model with statistical dependence 72

5.2 Behaviour of the agents . 75

5.2.1 Static mixed strategy for S under statistical

dependence . 75

5.2.2 Dynamic mixed strategy for S under statistical

dependence . 78

5.3 Experiments and results . 84

5.3.1 Static vs dynamic strategies: performance

comparison . 91

5.3.2 On the influence of the number of periods 92

5.4 Conclusions . 94

6 Estimation of Fuzzy Stationary Probabilities of a Markovian

patrolling strategy 97

6.1 Markov chains . 98

6.1.1 Related work . 100

6.2 A method to compute fuzzy stationary probabilities 101

6.2.1 Fuzzy numbers . 102

ii

Contents

6.2.2 Fuzzy transition probabilities from observations 103

6.2.3 Fuzzy Markov chains and restricted matrix

multiplication . 104

6.2.4 User-specified fuzzy transition probabilities 105

6.2.5 Computation of fuzzy stationary probabilities 106

6.3 The FuzzyStatProb package 110

6.3.1 Implementation issues 112

6.4 Application example . 116

6.4.1 Departing from a sequence of observations 118

6.4.2 Departing from user-specified fuzzy transition

probabilities . 124

6.4.3 On the reduction of uncertainty with more

observations . 126

6.5 Conclusions . 131

7 A patrolling model for a UAV protecting an area against

terrestrial intruders 133

7.1 Problem statement . 134

7.2 State of the art . 135

7.3 Methodology . 137

7.3.1 Game-theoretic Formulation 137

7.3.2 Mathematical Representation of Trajectories to Compute

Capture Probabilities 145

7.4 Towards an approximate solving strategy 148

7.4.1 Components of a population-based metaheuristic . . . 150

7.5 Conclusions . 152

8 Conclusions and Future Work 159

8.1 Conclusions . 159

8.2 Future Work . 161

References 163

iii

Agradecimientos

En estos tres años y medio he tenido buenos y malos momentos (afortunada-

mente, muchos más de los primeros que de los segundos) que han marcado

un peŕıodo de mi vida muy gratificante. Está claro que no podŕıa haber

alcanzado esta meta en solitario. Por lo tanto, quiero dedicar unas ĺıneas a

todos aquellos que han contribuido a que esta tesis finalmente vea la luz.

Mis primeras palabras de agradecimiento son para mis directores, Curro

y David, por darme la oportunidad de incorporarme al grupo de Modelos

de Decisión y Optimización (MODO), y por guiarme con paciencia y con

comentarios clarificadores. Gracias a ellos aprend́ı, poco a poco, que en este

viaje que supone una tesis doctoral, era yo quien deb́ıa encontrar por mı́

mismo el camino para convertirme en un verdadero investigador, y no en

un estudiante obediente. La libertad que me han dado durante estos años

para elegir los temas, enfoques y métodos que queŕıa utilizar ha contribuido

a desarrollar mis habilidades y, sin duda, tendrá un fuerte impacto en mi

carrera.

También debo expresar mi agradecimiento a otros miembros del grupo

MODO que me han acompañado durante este trayecto y que han influido

de manera importante en mi vida académica. Quiero dar las gracias a la

Prof. Maŕıa Teresa Lamata (Maite), Directora del grupo, por su esṕıritu

constructivo y por dedicarme siempre buenas palabras y grandes dosis de

sentido común. En segundo lugar, al Dr. Carlos Cruz, por su apoyo y ánimo

incondicionales, y por brindarme una visión de la investigación y, sobre todo,

de la vida que sólo una persona de su experiencia en ambas puede tener. En

tercer lugar, al Dr. Antonio Masegosa, con quien he compartido muchas

horas de interesantes discusiones y logros, por su inspiradora capacidad

de trabajo y por su disponibilidad para ayudarme con cualquier tema en

v

Agradecimientos

cualquier momento. Finalmente, a todos los miembros actuales y pasados

del grupo MODO, con quienes he compartido reuniones, viajes, congresos y

cafés: Juanra, Nacho, Elio, Blanca, Virgilio y Pavel.

He de mencionar al Ministerio de Educación que ha financiado parcialmen-

te este doctorado a través de una beca FPU que también posibilitó mi

estancia de investigación en los Estados Unidos. Asimismo, estoy profunda-

mente agradecido al Prof. Milind Tambe, de la University of Southern

California en Los Ángeles, por aceptarme durante tres meses en su grupo, el

Teamcore Research Group on Agents and Multi-agent Systems, y a todos los

miembros del mismo por acogerme tan amistosamente, donarme su tiempo

sin tener por qué, y por contribuir a crear una atmósfera que me hizo sentir

casi como en casa. No son solamente excelentes investigadores sino grandes

personas.

Desde el punto de vista personal, tengo la suerte de contar con buenos

amigos que me han distráıdo lo suficiente como para concentrarme mejor en

la vuelta al trabajo tras los momentos de desconexión que he compartido con

ellos. Cuando vuelvo la vista atrás y me doy cuenta de que algunos de ellos

me han acompañado durante quince o incluso veinte años de mi vida, me

siento todav́ıa más afortunado.

Finalmente, esta tesis está dedicada a toda mi familia. A mis padres, por

su sacrificio y por proporcionarme siempre lo mejor; a todos mis t́ıos y t́ıas,

especialmente a Juan y Natalia por quererme como a un nieto; a mis primos,

por su paciencia con su primillo más pequeño. Y por supuesto, a mi prima

y madrina, la Dra. Natalia Navas, que me mencionó en los agradecimientos

de su tesis, allá por el año 1996. En aquel entonces, ninguno de los dos

imaginábamos que casi veinte años después publicaŕıamos juntos.

Esta tesis ha sido financiada parcialmente por los proyectos P07-TIC-

02970 y P11-TIC-8001 de la Junta de Andalućıa, TIN2011-27696-C02-01

del Ministerio de Economı́a y Competitividad, GENIL-PYR-2014-9 del CEI-

BioTIC (Universidad de Granada), TIN2008-01948 y TIN2008-06872-C04-04

del Ministerio de Ciencia e Innovación, y por la beca FPU referencia AP-2010-

4738 del Ministerio de Educación.

vi

Resumen

Este resumen contiene una versión en español de los caṕıtulos 1 (introducción)

y 8 (conclusiones), y ha sido incluido para cumplir con la normativa de tesis

doctorales de la Universidad de Granada.

Introducción

La toma de decisiones nos rodea. Todo el mundo lleva a cabo elecciones

a diario, desde el mismo momento en que nos despertamos por la mañana:

levantarse al instante o permanecer un rato en la cama; qué comida desayunar,

coger el autobús o ir a pie al trabajo, etc. Por supuesto, las consecuencias

de las decisiones que acabamos de mencionar no son demasiado importantes,

más allá de ganar algunos kilos si tomamos un desayuno poco saludable,

o llegar tarde al trabajo si el autobús que elegimos tomar se retrasa. Los

factores que tenemos en cuenta para estas decisiones son bastante simples,

dado que las consecuencias de cada elección están bien definidas. Sin embargo,

en el mundo de los negocios, los directivos toman decisiones que tienen

importantes consecuencias en el futuro de su propia empresa (en términos de

beneficios, posicionamiento en el mercado o poĺıticas de empresa) que a su

vez influyen en la organización de la compañ́ıa y repercuten en los empleados.

El número de factores que un director general debe tener en cuenta es grande

y desgraciadamente, con frecuencia son dif́ıciles de medir o incluso de darse

cuenta de su existencia.

La toma de decisiones es, por tanto, una actividad inherentemente humana.

En la actualidad existe un interés creciente en incorporar capacidades propias

de los humanos a los sistemas informáticos. Los Smart systems [7] pueden

vii

Resumen

definirse como sistemas autónomos o claborativos que aúnan sensores, actua-

dores, informática y comunicaciones para ayudar a los usuarios o a otros

sistemas a realizar una tarea. Por su propia naturaleza estos sistemas combi-

nan funcionalidades. No sólo unen múltiples tecnoloǵıas sino que están fuer-

temente orientados a las aplicaciones concretas, en sectores como transporte,

enerǵıa, salud, seguridad, manufacturación, etc.

Están compuestos de sensores para adquisición de señal, elementos trans-

misores de información a una unidad central que toma decisiones inteligentes

basándose en la información disponible, y actuadores que llevan a cabo las

acciones adecuadas según la decisión. La importancia de los Smart systems

queda demostrada por su inclusión en los objetivos del programa Horizonte

2020 de la Unión Europea, en la convocatoria ICT-2 (Integración de Smart

Systems [1]). Una de sus principales caracteŕısticas es precisamente la toma

de decisiones, que utiliza la información suministrada por los sensores para

intentar tomar la mejor decisión, tal como haŕıa una persona. La pregunta

es, ¿cómo se determina la mejor decisión?

En el caso (ideal) de que un decisor (a) sea capaz de tener en cuenta

perfectamente todas las consecuencias que puedan derivarse de una decisión

(decisor perfectamente informado) y pueda cuantificarlas, (b) esté al tanto de

todas las posibles alternativas para escoger, y (c) sea capaz de realizar todos

los cálculos necesarios de una manera perfectamente racional, entonces la

elección óptima será la acción cuya consecuencia sea la preferida del decisor

por encima de todas las demás consecuencias asociadas a las demás acciones.

Aún podŕıan discutirse algunos detalles de esta definición, como la manera

de definir las preferencias, de cuantificarlas o si todos estos elementos seŕıan

percibidos y cuantificados de la misma forma por otros decisores que se

encontrasen ante la misma situación.

Además, la mayoŕıa de las situaciones que requieren de un proceso riguroso

de toma de decisiones presentan incertidumbre en muchos aspectos: una

acción puede tener asociadas diferentes consecuencias que pueden darse o

no con cierta probabilidad. La naturaleza probabiĺıstica de este proceso dio

lugar a la disciplina conocida como Análisis de Decisión, que estudia desde

una perspectiva formal cómo la gente debeŕıa tomar las decisiones [81].

Los problemas estudiados por el Análisis de Decisión consideran que sólo

viii

hay un decisor involucrado en la decisión. Sin embargo, tomar una decisión

cuando sabemos que existe alguien que observa y reacciona a nuestra elección

constituye una situación bastante diferente al caso en el que no existe ningún

adversario. Por ejemplo, podŕıamos preferir ocasionalmente una alternativa

sub-óptima orientada a causar confusión en el adversario, de manera que sea

más dif́ıcil para él predecir nuestras propias decisiones en el futuro. Esto

llevaŕıa a un mayor beneficio para nosotros a largo plazo.

Consideremos el siguiente ejemplo. Un hombre de negocios va caminando

a su trabajo todas las mañanas. Se trata de un hombre adinerado que

posee una gran compañ́ıa con importantes beneficios anuales, aśı que es un

potencial objetivo para un grupo terrorista que necesite financiación. Todos

los d́ıas se marcha a las 8 de la mañana y sigue el mismo camino hasta su

trabajo, no demasiado lejos. Sabe que en este caso, caminar es más rápido que

ir en coche, y que su ruta es la más corta, por lo que puede afirmarse que su

elección es la mejor para él. Sin embargo, si el hombre supiera que está siendo

vigilado por alguien que intenta aprender sus costumbres, entonces debeŕıa

cambiar deliberadamente su comportamiento para hacerlo más impredecible.

Por ejemplo, podŕıa tomar caminos alternativos ocasionalmente, o ir en

coche o en autobús de vez en cuando, sin ningún patrón definido, a pesar

de que todas estas elecciones son aparentemente peores dado que se gasta

más tiempo en ellas. A pesar de todo, el resultado es que será más dif́ıcil

secuestrarle en un d́ıa cualquiera, lo cual es sin duda la consecuencia que

nuestro hombre de negocios prefiere.

De este ejempo se deduce que la manera en la que tomamos decisiones es

diferente cuando sabemos que existe un adversario cuyas acciones afectan a

nuestros beneficios. En su forma más general, este tema es conocido como

decisión en presencia de adversarios y constituye el centro de la presente

tesis. El razonamiento en presencia de adversarios trata en gran medida

sobre la comprensión de la mente y las acciones de nuestro oponente. Es de

interés para una gran variedad de problemas donde los actores son conscientes

de la existencia del otro, y saben que están compitiendo contra otro cuyos

objetivos son generalmente contrarios. El objetivo de este tipo de análisis es

encontrar estrategias óptimas que tengan en cuenta no sólo nuestras propias

preferencias sino también las creencias y preferencias de los oponentes según

ix

Resumen

nosotros las percibimos.

Esta situación se da en muchos campos de la vida real, especialmente

(aunque no únicamente) en la lucha antiterrorista y en la prevención del

crimen [49, 70]. Ciertamente, la amenaza del terrorismo ha incrementado la

inversión y el interés en el desarrollo de técnicas y herramientas computaciona-

les para el razonamiento en presencia de adversarios, sobre todo para seguridad

nacional [43]. Pueden encontrarse también aplicaciones menos dramáticas

en los juegos de ordenador donde el usuario juega el papel de adversario

frente a los personajes manejados por el ordenador, provistos de capacidades

inteligentes de razonamiento con el fin de mejorar la calidad, la dificultad

y la capacidad adaptación del juego, las cuales unidas proporcionan una

mejor experiencia para el jugador. Otra utilidad similar a la anterior es

el desarrollo de sistemas inteligentes de entrenamiento de personas. Este

tipo de tecnoloǵıas persiguen la predicción de las estrategias del oponente,

la anticipación a sus planes, y el reconocimiento de engaños. Los ámbitos

de aplicación incluyen también los negocios, transacciones, conflictos entre

gobiernos, finanzas, deportes de equipo (por ejemplo RoboCup), juegos como

el póker, etc [48].

En términos simples, un adversario es una entidad cuyos objetivos son

opuestos a los nuestros, y que es capaz de influenciar las ganancias que

obtenemos de nuestras decisiones eligiendo y ejecutando sus propias acciones.

Este tipo de interacción competitiva entre dos actores ocurre en gran cantidad

de situaciones y puede analizarse con un abanico variado de técnicas [48].

Muchas están ı́ntimamente ligadas a la Inteligencia Artificial (modelado basado

en agentes, heuŕısticas, planificación, exploración de árboles, aprendizaje

automático) pero también a la Ingenieŕıa del Conocimiento (cómo representar

y manejar el conocimiento sobre el adversario y el entorno) y la Investigación

Operativa, con énfasis en la Teoŕıa de Juegos. Varios problemas pueden

formalizarse como juegos competitivos y resolverse utilizando la Teoŕıa de

Juegos o técnicas relacionadas. Revisaremos algunos de ellos, como los juegos

de búsqueda, los juegos de seguridad y los problemas de patrullaje en el

caṕıtulo de Background.

x

DECISIÓN EN PRESENCIA DE ADVERSARIOS

Modelo de imitación
(Pelta y Yager 2009)

Aplicaciones a
patrullaje autónomo

Evaluación teórica de

estrategias simples

(Capítulo 3)

Extensiones al
modelo de imitación

Estrategias variables en

el tiempo (Capítulo 4)

Dependencia acciones

estados (Capítulo 5)

Software para estimar una

estrategia Markoviana a

partir de observaciones

(Capítulo 6)

Protección óptima de un

área utilizando drones

(Capítulo 7)

Figure 1: Estructura de la tesis.

Objetivos y estructura de la tesis

Teniendo en cuenta todo esto, el objetivo general de esta tesis es el análisis

y diseño de modelos de decisión y optimización en presencia de adversarios

que sean capaces de modelar situaciones como las descritas anteriormente.

Vamos a llevar a cabo estudios teóricos y a proponer aplicaciones prácticas

relacionadas con los juegos de imitación, los juegos de seguridad y los modelos

de patrullaje.

Los objetivos espećıficos son los siguientes:

1. Recopilar las referencias relevantes en el campo de los modelos de

decisión con adversarios y sus aplicaciones.

2. Desarrollar nuevos modelos y extensiones.

3. Proponer nuevas estrategias para estos modelos que tengan en cuenta

la componente temporal.

4. Evaluar las estrategias desde un punto de vista teórico y emṕırico.

5. Proponer ejemplos de aplicación.

Para lograr estos objetivos, la tesis se ha organizado como muestra la

Figura 1. Hemos abordado la decisión en presencia de adversarios desde

dos puntos de vista diferentes. En primer lugar, nos hemos centrado en un

xi

Resumen

modelo abstracto de imitación publicado en [67]. La situación consiste en un

agente S que entra en repetidas ocasiones en una decisión de conflicto con

un agente T , que es capaz de observar el comportamiento de S, aprender

de él y utilizar lo aprendido para tomar decisiones que pueden cambiar

(posiblemente disminuir) la ganancia de S con el fin de incrementar la suya

propia. El trabajo citado estudia el balance entre el grado de confusión

introducido mediante decisiones sub-óptimas y los beneficios que se pueden

obtener de ellas a largo plazo. Los autores concluyen que las estrategias

aleatorizadas son útiles para esto. Revisamos el modelo en el caṕıtulo 2 junto

con otros conceptos necesarios para entender el resto de la tesis y algunos

problemas relacionados.

Hemos publicado tres art́ıculos que tratan sobre este modelo o extensiones

al mismo, en conexión con los objetivos 2, 3 y 4. En consecuencia, hay tres

caṕıtulos dedicados al modelo de imitación. El caṕıtulo 3, que contiene

el material publicado en [92], explica cómo obtener una expresión teórica

de la ganancia del agente S cuando utiliza estrategias simples de decisión

que hab́ıan sido propuestas en [67]. La expresión es validada mediante

simulaciones computacionales, como indican los objetivos 3 y 4. Los caṕıtulos

4 y 5 también se centran en la obtención de una expresión matemática del

pago en dos extensiones diferentes del modelo de imitación, en consonancia

con los objetivos 2 a 4. El material de estos caṕıtulos está publicado en

[95] y [94], respectivamente. Más concretamente, el caṕıtulo 4 se centra en

una versión simplificada del modelo y estudia el caso en el que el agente

S utiliza una distribución de probabilidad optimizada sobre sus acciones.

Después, se demuestra que cambiar en ciertos instantes la distribución de

probabilidad empleada, tras una serie de encuentros con el adversario, puede

ser beneficioso. Por su parte, el caṕıtulo 5 extiende el modelo original

introduciendo dependencia estad́ıstica entre la decisión tomada por S en el

momento actual y el conjunto de pagos que podrán obtenerse como resultado

de las decisiones del siguiente instante. De modo similar, se calculan expresio-

nes matemáticas del pago de estrategias de decisión optimizadas para esta

nueva situación.

En segundo lugar, hemos desarrollado dos trabajos de aplicación de la

decisión en presencia de adversarios. El primero de ellos [96], correspondiente

xii

al caṕıtulo 6, explica cómo mejorar la información obtenida a partir de la

observación de un agente del cual se sabe que se encuentra en una situación

frente a un adversario. Dicha situación es el patrullaje de un área para

protegerla frente a intrusiones. Presentamos para ello un procedimiento

matemático y un paquete software que lo implementa, siguiendo los objetivos

4 y 5. El segundo de ellos, aún no publicado (caṕıtulo 7), describe un nuevo

modelo de patrullaje para un veh́ıculo aéreo no tripulado que vuela sobre

un área industral para protegerla de intrusos terrestres. A diferencia del

primero, este modelo está concebido espećıficamente para un agente que va

volando sobre el terreno sin limitaciones de movimiento. Propondremos una

solución basada en teoŕıa de juegos bajo el marco general de los juegos de

seguridad. Por tanto, aqúı hacemos referencia a los objetivos 2 a 5. Parte de

este trabajo se completó durante la estancia breve de investigación realizada

por el autor en el Teamcore Research Group on Agents and Multi-agent

Systems, Computer Science Department, University of Southern California,

Los Ángeles (EEUU).

Finalmente, el caṕıtulo 8 está dedicado a conclusiones generales, aśı como

a algunas posibles ĺıneas futuras que pueden investigarse en relación con los

diferentes modelos descritos a lo largo de la tesis.

Los resultados obtenidos durante el desarrollo de esta tesis han dado lugar

a un conjunto de publicaciones que se detalla a continuación.

Caṕıtulo 3:

P. Villacorta y D. Pelta (2010). Evolutionary design and statistical

assessment of strategies in an adversarial domain. Proc. of the IEEE

Conf. on Evolutionary Computation, pp. 2250 - 2256.

P.J. Villacorta y D.A. Pelta (2012). Theoretical Analysis of Expected

Payoff in an Adversarial Domain. Information Sciences 186(1):

93-104.

Caṕıtulo 4:

xiii

Resumen

P. Villacorta y D. Pelta (2011). Expected payoff analysis of dynamic

mixed strategies in an adversarial domain. Proc. of the IEEE Symposium

on Intelligent Agents. IEEE Symposium Series on Computational

Intelligence, 116 - 122.

P.J. Villacorta, D.A. Pelta y M.T. Lamata (2013). Forgetting as a way

to avoid deception in a repeated imitation game. Autonomous Agents

and Multi-Agent Systems 27(3): 329-354.

Caṕıtulo 5:

P.J. Villacorta, L. Quesada y D. Pelta (2012). Automatic Design of

Deterministic Sequences of Decisions for a Repeated Imitation Game with

Action-State Dependency. Proc. of the IEEE Conf. on Computational

Intelligence y Games, 1 - 8.

P.J. Villacorta y D.A. Pelta (2015). A repeated imitation model with

dependence between stages: decision strategies y rewards. Int. Journal

of Applied Mathematics and Computer Science 25 (3): 617 - 630.

Caṕıtulo 6:

P.J. Villacorta y J.L. Verdegay (2015). FuzzyStatProb: an R Package

for the Estimation of Fuzzy Stationary Probabilities from a Sequence of

Observations of an Unknown Markov Chain. Journal of Statistical

Software. En prensa.

xiv

Conclusiones y trabajos futuros

Conclusiones

Esta tesis se ha centrado en el estudio y desarrollo de modelos de decisión en

presencia de adversarios y su aplicación a problemas prácticos. Los objetivos

eran los siguientes:

1. Recopiar las referencias relevantes en el campo de los modelos de decisión

con adversarios y sus aplicaciones.

2. Desarrollar nuevos modelos y extensiones.

3. Proponer nuevas estrategias para estos modelos que tengan en cuenta

la componente temporal.

4. Evaluar las estrategias desde un punto de vista teórico y emṕırico.

5. Proponer ejemplos de aplicación.

Con respecto al objetivo 1, el caṕıtulo de background contiene una revisión de

las referencias importantes en varios campos, con énfasis en las que guardan

mayor relación con los modelos que hemos propuesto.

Con respecto al objetivo 2, se ha logrado siguiendo los dos puntos de vista

mencionados en la introducción:

• Por un lado, hemos continuado investigando sobre el modelo de imitación

[67], para el cual hemos desarrollado dos extensiones. En la primera

de ellas, hemos mostrado la importancia de contar con un modelo

apropiado del adversario, aśı como el impacto negativo que tiene sobre

el pago de un agente hacer suposiciones erróneas acerca del adversario.

Esta extensión considera expĺıcitamente la componente temporal de

una estrategia con el fin de cambiar la aleatorización que gúıa el movi-

miento de uno de los agentes. Mientras que esto incrementa el pago

total cuando el adversario se ajusta a la concepción que tenemos de él,

también puede suponer importantes pérdidas cuando esto no ocurre.

En la segunda extensión, hemos introducido dependencia estad́ıstica

entre la decisión actual tomada por uno de los agentes y las circunstancias

xv

Resumen

(modeladas como el conjunto de pagos que se podrán obtener) de la

siguiente decisión que ese agente tenga que tomar. Hemos mostrado

que el mismo concepto de estrategias aleatorizadas que vaŕıan en el

tiempo también resulta ventajoso en este nuevo escenario.

• Por otro lado, hemos desarrollado un modelo con adversarios para una

situación real en el contexto de los juegos de seguridad: un dron que

protege un área frente a intrusos. La propuesta toma en consideración

de manera realista las limitaciones f́ısicas de los agentes, tales como la

duración de la bateŕıa del dron y su velocidad, la existencia de grafos

separados de movimiento para el dron y para los intrusos terrestres,

el radio de percepción limitado del dron (que depende de la cámara a

bordo), etc. Hemos explicado las dificultades del cálculo del equilibrio

de Stackelberg en nuestro modelo debido a que el problema de optimiza-

ción que resulta, pese a ser lineal, es intratable en la práctica debido al

alto número de estrategias existentes. Se ha sugerido la utilización de

técnicas heuŕısticas para remediarlo.

En lo que respecta al objetivo 3, se han investigado nuevas estrategias

que no sólo son aleatorizadas sino que cambian la aleatorización a lo largo

del tiempo, lo cual se ha demostrado beneficioso para llevar a engaño al

adversario y conseguir un mayor pago. Esto confirma que es posible la

manipulación estratégica cuando la única información disponible para el

adversario consiste en observaciones sobre las acciones pasadas. Por lo tanto,

cuando un agente se sabe observado, es ventajoso para él modificar la manera

en que toma las decisiones para causar engaño y obtener un mayor pago a

largo plazo, tal y como se ha logrado con las estrategias que vaŕıan en el

tiempo.

En todas las publicaciones hemos analizado el rendimiento de las estrate-

gias tanto desde un punto de vista teórico como emṕırico, con el fin de validar

las expresiones anaĺıticas que se hab́ıan deducido, tal y como nos hab́ıamos

marcado en el objetivo 4. Esto ha demostrado también que no es necesario

llevar a cabo simulaciones para comparar dos estrategias aleatorizadas si

podemos obtener correctamente el pago esperado que se obtendrá con dicha

estrategia aplicando conceptos de la teoŕıa de la probabilidad. Comparar el

xvi

pago esperado es una manera mucho más fiable de determinar qué estrategia

funciona mejor.

Finalmente, en relación al objetivo 5, hemos propuesto dos aplicaciones:

por un lado, el modelo de patrullaje para un dron mencionado anteriormente,

y por otro, una nueva técnica matemática para mejorar la información obteni-

da mediante las observaciones de un agente que está patrullando un área

siguiendo una estrategia aleatorizada Markoviana. Estas observaciones consti-

tuyen la percepción que el intruso tiene acerca del defensor cuando el primero

observa al segundo con el objetivo de aprender su aleatorización, tal como

se suele asumir en los juegos de seguridad. Hemos mostrado que utilizando

conceptos de Lógica Difusa y Números Difusos, el intruso puede tener una

mejor aproximación de las verdaderas probabilidades que gúıan el movimiento

del agente que patrulla, ya que un número difuso es más informativo porque

incorpora la incertidumbre que rodea a una cantidad. Hemos implementado

un paquete software de código abierto con el método propuesto y lo hemos

incorporado a un repositorio público para que esté a disposición de la comu-

nidad investigadora.

Trabajos futuros

Tanto el juego de imitación como los modelos de patrullaje aún precisan

de mayor investigación. En el modelo de imitación, no se han investigado

algunas técnicas que podŕıan dar buenos resultados, tales como el uso de

mecanismos de aprendizaje más sofisticados para el agente T (por ejemplo,

aprendizaje por refuerzo) que le facilitaŕıan aprender la estrategia de S.

Además, el juego de imitación podŕıa abordarse como un problema de clasi-

ficación para el que se pueden aplicar algoritmos de aprendizaje automático

para determinar cuál de entre las posibles alternativas va a ser elegida a

continuación por el agente S. Por último, deben aún examinarse aplicaciones

reales de este modelo, especialmente orientadas al ámbito de los juegos de

ordenador. Una mejor predicción de las acciones del usuario llevará a adversa-

rios más inteligentes que mejorarán la experiencia del juego por parte del

usuario.

Con respecto al modelo de patrullaje para el drone, aún quedan varias

xvii

Resumen

cuestiones abiertas. La dificultad matemática del problema de optimización

que debe resolverse para calcular el equilibrio de Stackelberg abre la puerta

a la aplicación de técnicas de optimización aproximada, como algoritmos

bioinspirados u otras metaheuŕısticas, que aún no han sido aplicadas a juegos

de seguridad. La magnitud de los espacios de acciones de ambos jugadores

requieren que se considere solamente un subconjunto de estrategias porque

el problema completo no puede resolverse debido a las limitaciones f́ısicas

sobre la memoria RAM disponible. Este problema se da con frecuencia en

los juegos de seguridad cuando se intentan escalar para escenarios reales.

Aún deben realizarse experimentos para comprobar qué metaheuŕısticas en

concreto resuelven mejor este tipo de problemas y cómo adaptarlas al dominio

de los juegos de seguridad. Dado el creciente número de problemas que

están siendo abordados como juegos de seguridad en la actualidad, si el uso

de metaheuŕısticas se demuestra efectivo para el problema del dron, puede

llevar a su adopción en otros modelos que presentan problemas similares de

escalabilidad.

Por último, no se ha modelado la incertidumbre sobre las limitaciones

f́ısicas de los agentes, como la velocidad real del dron y la velocidad que

asumimos para los posibles intrusos, o la duración exacta de la bateŕıa.

Ninguno de estos parámetros puede ser conocido con exactitud, por lo que

parece natural modelarlos como números difusos, y recurrir a enfoques exis-

tentes de programación lineal difusa para calcular el equilibrio de Stackelberg.

Esto no se ha hecho hasta ahora en juegos de seguridad.

xviii

Abstract

Decision making is all around us. Everyone makes choices everyday, from

the moment we open our eyes in the morning. Some of them do not have

very important consequences in our life and these consequences are easy to

take into account. However, in the business world, managers make decisions

that have important consequences on the future of their own firm (in terms

of revenues, market position, business policy) and their employees. In these

cases, it is difficult to account for all the possible alternatives and consequences

and to quantify them. Decision making tools such as Decision Analysis are

required in order to determine the optimal decision.

Furthermore, when several competing agents are involved in a decision

making situation and their combination of actions affect each other’s revenues,

the problem becomes even more complicated. The way an agent makes a

decision and the tools required to determine the optimal decision change.

When we are aware of someone observing and reacting to our behavior, one

might occasionally prefer a sub-optimal choice aimed at causing confusion on

the adversary, so that it will be more difficult for him to guess our decision

in future encounters, which may report us a larger benefit. This situation

arises in counter-terrorist combat, terrorism prevention, military domains,

homeland security, computer games, intelligent training systems, economic

adversarial domains, and more.

In simple terms, we define an adversary as an entity whose aims are

somehow inversely related to ours, and who may influence the profits we

obtain from our decisions by taking his/her own actions. This kind of

competitive interaction between two agents fits a variety of complex situations

which can be analyzed with a number of techniques ranging from Knowledge

Engineering and Artificial Intelligence (agent-based modeling, tree exploration,

xix

Resumen

machine learning) to Operational Research, with an emphasis on Game

Theory.

The objective of this thesis is the analysis and design of adversarial

decision and optimization-based models which are able to represent adversarial

situations. We are going to conduct theoretical studies and propose practical

applications including imitation games, security games and patrolling domains.

More precisely, we first study a two-agent imitation game in which one of

the agents does not know the motivation of the other, and tries to predict

his decisions when repeatedly engaging in a conflict situation, by observing

and annotating the past decisions. We propose randomized strategies for

the agents and study their performance from a theoretical and empirical

point of view. Several variants of this situation are analyzed. Then we move

on to practical applications. We address the problem of extracting more

useful information from observations of a randomized Markovian strategy

that arises when solving a patrolling model, and propose a mathematical

procedure based on fuzzy sets and fuzzy numbers for which we provide

a ready-to-use implementation in an R package. Finally, we develop an

application of adversarial reasoning to the problem of patrolling an area

using an autonomous aerial vehicle to protect it against terrestrial intruders,

and solve it using a mix of game-theoretic techniques and metaheuristics.

xx

Chapter 1

Introduction

Decision making is all around us. Everyone makes choices everyday, from

the moment we open our eyes in the morning: whether to get up at once

or stay in bed for a while, what to have for breakfast, whether to take

the bus or walk to work, and so on. Of course, the consequences of the

aforementioned decisions are not very important in our life beyond the fact

that we might put on some weight if our daily breakfast is unhealthy, or

arrive late to work if the bus is delayed. The factors we take into account

for these decisions are quite simple, since the consequences of each choice are

well defined. However, in the business world, managers make decisions that

have important consequences on the future of their own firm (in terms of

revenues, market position, business policy) which have a direct influence on

the organization of the company and thus, on their employees. The number

of factors that a CEO must take into account is large and, unfortunately, it

is often difficult to quantify them or even to realize about their existence.

Decision making is, thus, an inherently human ability. Nowadays, there

is a growing interest on incorporating human-like capabilities to automated

systems. Smart systems [7] can be defined as autonomous or collaborative

systems which bring together sensing, actuation, informatics and communica-

tions to help users or other systems perform a role. By their very nature these

systems combine functionalities. They may extract multiple functionalities

from a common set of parts, materials, or structures. Smart Systems not only

unite multiple technologies, they are strongly tailored to application sectors

1

Chapter 1. Introduction

such as transport, energy, healthcare, security and safety, manufacturing,

and so on.

They are composed of sensors for signal acquisition, elements to transmit

the information to a central unit which makes intelligent decisions based on

the available information, and actuators that perform the adequate actions

according to the decision. The importance of Smart systems is proved

by their inclusion in the objectives of the Horizon 2020 programme of the

European Union, in the call ICT-2 (Smart Systems Integration [1]). One of

the main features of these systems is their decision making module, which

accounts for the information provided by the sensors and tries to make the

best decision, just as a person would do. A question arises here: how to

determine the “best” decision?

In the (ideal) case that a decision maker (a) is able to perfectly account

for all the consequences that may arise from a decision (i.e. he is fully

informed) and measure them, (b) is aware of all his alternatives, and (c) is

able to make all the necessary calculations in a perfectly rational way, then

the optimal choice would be the action whose consequence is preferred by

the decision maker among all the other consequences associated to the rest

of actions. Some details could still be discussed in this definition, such as

how to define the preferences, how they should be measured and whether

this concept is perceived equally by all the decision makers. Moreover, most

situations that require a serious decision making process pose uncertainty in

many ways: an action may have different consequences that may or may not

arise with some probability. The probabilistic nature of this process gave

birth to the discipline known as Decision Analysis, which studies from a

formal perspective how people ought to make decisions [81].

The problems addressed by Decision Analysis consider that only one

decision maker is involved in the decision. However, making a decision when

we are aware of someone observing and reacting to our behavior is quite

different from the case when no adversary exists. For instance, one would

occasionally prefer a sub-optimal choice aimed at causing confusion on the

adversary, so that it will be more difficult for him to guess our decision in

future encounters. This in turn leads to a larger benefit in the long term.

Consider the following example. A business man walks to work every

2

morning. He owns a well-established company with large revenues per year

so he is a potential target for a terrorist group in need of funding. He always

leaves home at 8 a.m. and follows the same path to his office, which is not very

far. He knows that walking is faster than taking the car, and that his route

is the shortest, so we can say it is the optimal choice for him. However, if he

is aware that he is under surveillance by someone trying to learn his habits,

he should deliberately change his behaviour to become more unpredictable

and keep the adversary guessing. For instance, he might occasionally try

alternative (longer) paths, or go by car or by bus from time to time (with no

pattern), even though these choices are apparently worse in the short term

as they take more time. However, as a result, it will be more difficult to

kidnap him on an arbitrary day, which is the preferred consequence.

From this example, it follows that the way we make decisions differs when

we are aware of an adversary whose actions can affect our benefits. In its

most general meaning, this topic is known as adversarial decision making and

it constitutes the focus of the present thesis. Adversarial reasoning is largely

about understanding the mind and actions of one’s opponent. It is relevant to

a broad range of problems where the actors are aware of each other, and they

know they are contesting at least some of the other’s objectives. The goal

of this kind of analysis is to find optimal strategies taking into account not

only one’s preferences but also the beliefs and preferences of the opponents

as perceived by oneself, which does not always match the true adversarial

preferences.

This situation arises in many areas of real life, with particular (but not

exclusive) interest in counter-terrorist combat and crime prevention [49, 70].

Certainly, the threat of terrorism has fueled the investments and interest

in the development of computational tools and techniques for adversarial

reasoning, mostly oriented to homeland defense [43]. Horizon 2020 includes

a topic called Safe societies funded with 1.7M euros within the area of

Social Challenges, and states that one of its objectives is to “fight against

crime, traffic and terrorism, including understanding and fighting against

its underlying ideas and beliefs”. We can find less dramatic applications

as well in fields like computer games where the user is the adversary and

the computer characters are provided with adversarial reasoning features

3

Chapter 1. Introduction

to enhance the quality, difficulty and adaptivity of the game, which together

improve the gaming experience. Another orientation of this is the development

of intelligent training systems. Nowadays there is a quest for technologies

aiming at opponent strategy prediction; plan recognition; deception discovery

and planning; among others, and which apply not only to security or computer

games but also to business, transactions, government vs government conflicts,

economic adversarial domains, team sports (e.g., RoboCup), competitions

(e.g., Poker), etc. [48].

In simple terms, we define an adversary as an entity whose aims are

somehow inversely related to ours, and who may influence the profits we

obtain from our decisions by taking his/her own actions. This kind of

competitive interaction between two agents fits a variety of situations which

can be analyzed with a number of techniques [48]. They are closely related

to Artificial Intelligence (agent-based modeling, heuristics, planning, tree

exploration, machine learning) but also to Knowledge Engineering (how to

capture and represent the knowledge about the adversary and the environment)

and Operational Research, with emphasis in Game Theory. Several adversarial

problems can be formalized as a competitive game and solved by Game

Theory or related approaches. We will review some of them, namely search

games, security games and optimal autonomous patrolling, in the Background

chapter.

1.1 Objectives and structure of the thesis

With this in mind, the general objective of this thesis is the analysis and

design of adversarial decision and optimization-based models which are able

to represent situations like the one described above. We are going to conduct

theoretical studies and propose practical applications including imitation

games, security games and patrolling domains. The specific objectives

are the following:

1. To compile the relevant references in the field of adversarial models and

applications.

2. To develop new models and extensions.

4

1.1. Objectives and structure of the thesis

ADVERSARIAL DECISION MAKING

Imitation model

(Pelta and Yager 2009)

Applications to

autonomous patrolling

Theoretical assessment

of simple strategies

(Chapter 3)

Extensions to the

imitation model

Time varying strategies

(Chapter 4)

Action state dependence

(Chapter 5)

Software to estimate a

Markovian strategy from

observations (Chapter 6)

UAV based defense of an

industrial area

(Chapter 7)

Figure 1.1: Structure of the thesis.

3. To propose new strategies for the models, explicitly including a temporal

component.

4. To assess the strategies from a theoretical and empirical point of view.

5. To propose examples of application.

In order to accomplish these objectives, the thesis has been organized as

shown in Figure 1.1. We have tackled adversarial decision making from two

different points of view. Firstly, we have focused on an abstract imitation

model published in [67]. The situation consists of an agent S who repeatedly

engages in a conflicting situation with an adversary T , who is able to observe

our behavior, learn from it and use it to make decisions that may change

(possibly decrease) our gains in order to increase his/her own benefits. This

work addresses the balance between the degree of confusion induced with

suboptimal decisions and the benefits they may have in the long term. The

authors conclude that randomized strategies are beneficial for this purpose.

This model is reviewed in chapter 2 along with the main concepts needed to

understand the rest of the thesis and related problems.

We have published three articles dealing with the aforementioned model

and extensions, in connection with objectives 2, 3 and 4. Accordingly, there

are three chapters devoted to the imitation model. Chapter 3, which contains

the material published in [92], explains how to obtain a theoretical expression

5

Chapter 1. Introduction

of the gains of agent S when using simple decision strategies in the model.

The expression is then validated with computational simulations, addressing

objectives 3 and 4. Chapters 4 and 5 also focus on the computation of

a mathematical expression of the payoff on two different extensions of the

imitation model, addressing objectives 2 to 4. The material in these chapters

has been published in [95] and [94], respectively. More precisely, chapter

4 focuses on a simplified version of the model and studies the case when

agent S uses an optimized probability distribution over its actions. Then

it demonstrates that changing the probability distribution along the time,

after a number of encounters against T , can be beneficial. Chapter 5 extends

the original model by introducing statistical dependence between the current

decision made by S and the set of payoffs attainable at the next encounter,

and provides mathematical expressions of the payoff of optimized decision

strategies for this new situation.

Secondly, we have developed two works about concrete applications of

adversarial decision making. The first of them [96], corresponding to Chapter

6, explains how to improve the information obtained from the observation

of an agent who is known to be engaged in an adversarial situation, namely

patrolling an area to prevent intrusions. A mathematical procedure and a

software package which implements it are presented, addressing objectives

4 and 5. The second, not published yet (chapter 7), describes a novel

adversarial patrolling model for an Unmanned Aerial Vehicle (UAV) flying

over an industrial area to protect it against terrestrial intruders. Differently

from the first, this framework was specifically conceived for a flying agent

with no movement restrictions. We present a game-theoretic solution to

the model in the setting of Security Games. Therefore, here we address

objectives 2 to 5. The proposal combines a Mixed Integer Linear Program

with metaheuristics that make the problem solvable. This work has been

partially done during a short research stay done by the candidate within the

Teamcore Research Group on Agents and Multi-agent Systems, Computer

Science Department, University of Southern California, Los Angeles (USA).

Finally, chapter 8 is devoted to the general conclusions of the thesis, and

outlines some future research lines that could be investigated in connection

with the different models described in this work.

6

1.1. Objectives and structure of the thesis

The results obtained along the development of this thesis have been

published in the articles mentioned below.

Chapter 3:

P. Villacorta and D. Pelta (2010). Evolutionary design and statistical

assessment of strategies in an adversarial domain. Proc. of the IEEE

Conf. on Evolutionary Computation, pp. 2250 - 2256.

P.J. Villacorta and D.A. Pelta (2012). Theoretical Analysis of Expected

Payoff in an Adversarial Domain. Information Sciences 186(1):

93-104.

Chapter 4:

P. Villacorta and D. Pelta (2011). Expected payoff analysis of dynamic

mixed strategies in an adversarial domain. Proc. of the IEEE Symposium

on Intelligent Agents. IEEE Symposium Series on Computational

Intelligence, 116 - 122.

P.J. Villacorta, D.A. Pelta and M.T. Lamata (2013). Forgetting as a way

to avoid deception in a repeated imitation game. Autonomous Agents

and Multi-Agent Systems 27(3): 329-354.

Chapter 5:

P.J. Villacorta, L. Quesada and D. Pelta (2012). Automatic Design of

Deterministic Sequences of Decisions for a Repeated Imitation Game with

Action-State Dependency. Proc. of the IEEE Conf. on Computational

Intelligence and Games, 1 - 8.

7

Chapter 1. Introduction

P.J. Villacorta and D.A. Pelta (2015). A repeated imitation model

with dependence between stages: decision strategies and rewards. Int.

Journal of Applied Mathematics and Computer Science 25 (3):

617 - 630.

Chapter 6:

P.J. Villacorta and J.L. Verdegay (2015). FuzzyStatProb: an R Package

for the Estimation of Fuzzy Stationary Probabilities from a Sequence of

Observations of an Unknown Markov Chain. Journal of Statistical

Software. In press.

8

Chapter 2

Background

We have explained in the introductory chapter that, in single-agent real

world’s decisions, it is very difficult to account for all the possible alternatives

and consequences of a decision, and even when they can be successfully

captured, an optimal decision process requires the application of mathematical

abstractions (provided by Decision Analysis) that are not simple. We also

stated that adversarial decision making requires a different way of making

decisions. When an adversary is aggregated to the situation, everything

becomes much more complicated. The untidy nature of the problem remains,

but we also have to consider how the adversary’s decisions may affect our

benefits. In other words, we need to predict how the adversary will decide,

and adapt our decision accordingly. In order to do this prediction, we have

to represent and manage the adversary’s beliefs, intentions, and so on; we

want, in one word, to construct a model of the adversary.

Many computational solutions exist to determine or anticipate the state,

intent and actions of one’s adversary in an environment where one strives

to effectively counter the adversary’s actions. Topics such as belief and

intent recognition, opponent strategy prediction, plan recognition, deception

discovery, deception planning and strategy generations must be considered.

One of the disciplines that contributes to adversarial decision making is Game

Theory. It is a mature field that is traditionally focused on the rigorous study

of problems in which two or more actors strive to achieve their respective

goals while interacting in a certain domain.

9

Chapter 2. Background

However, many real problems studied by adversarial reasoning are far

less tidy and well-defined than those studied by Game Theory (for instance,

chess). As stated in [48],

The set of possible inputs can be very large and ill-defined, the

dynamics might not be completely known or can contain random

elements. Furthermore, in contrast to chess, one seldom knows

the true state of the system; in fact, the players typically have

only imperfect observations of some portion of the domain in

which the game is being played. Thus, a tremendous gap exists

between problems that can be rigorously solved and the real-world

problems that need to be solved.

To fill this immense gap, many tools outside of the traditional

realm of game theory must be brought to bear. As this volume

demonstrates, practical adversarial reasoning calls for a broad

range of disciplines, including but no limited to stochastic processes,

artificial intelligence planning, cognitive modeling, robotics and

agent theory, robust control theory, and machine learning.

In this chapter, we provide some basics of Game Theory and describe

some of its applications to real adversarial decision making situations as

they are closer to the concrete models we have studied in the thesis. Of

course, as the fragment above states, many other adversarial scenarios exist

in real-world military domains, military planning, domestic security, law

enforcement and antiterrorism that require the application of tools different

than Game Theory, but they are out of the scope of this dissertation. The

interested reader may refer to [48] for further detail.

2.1 Game theory

In this section we introduce some basic definitions of Game Theory that are

going to be used along the thesis, especially in chapter 7. As stated in [64],

Game theory is a bag of analytical tools designed to help us

understand the phenomena that we observe when decision-makers

10

2.1. Game theory

interact. The basic assumptions that underlie the theory are that

decision-makers pursue well-defined exogenous objectives (they

are rational) and take into account their knowledge or expectations

of other decision-makers’ behavior (they reason strategically).

A way to synthesize this is that a game is a decision problem (which means

we need to compute the optimal decision) in which there is more than one

decision-maker (called players) and each player’s actions affect the others

[74]. It started in a formal way in 1944 with the book of von Neumann and

Morgenstern [98]. The concepts used in the next chapters are more closely

related to strategic-form games (also called normal-form games) so we will

define these. A strategic game is a model of interactive decision-making in

which each decision-maker chooses his plan of action once and for all, and

these choices are made simultaneously. The model consists of (see [64]):

• A finite set N of players.

• For each player i P N , a non-empty set Ai of actions available to that

player1. Let A “
Ś

jPN Aj. We will refer to an element a P A as an

action profile, a “ pajqjPN , also called an outcome of the game.

• For each player i P N , a utility function ui : A Ñ R. If uipaq ě uipbq

we say that player i prefers outcome a to b. The real values given by

this function are called the payoffs or utilities of the game.

With these elements, a game can be formalized as a tuple xN, pAiq, puiqiy. We

show an example of a two-player strategic-form game in Fig. 2.1. Player 1

has an action set A1 “ tT,Bu while player 2 has A2 “ tL,Ru. The numbers

inside the cells are the payoffs each player receives when the outcome of the

game matches that cell. When player 1 chooses T and player 2 chooses L,

the outcome of the game is pT, Lq so player 1 gets a payoff of w1 and player

2 gets w2. Formally, we can say that u1pT, Lq “ w1 and u2pT, Lq “ w2.

The solution of a game prescribes the optimal choice for each player and

is called an equilibrium. Several types of equilibria can be defined depending

1 In our models we always consider A discrete and finite, but in general this is not

necessarily the case.

11

Chapter 2. Background

L R

T w1, w2 x1, x2

B y1, y2 z1, z2

Table 2.1: A two-player strategic-form game.

on the circumstances of the game, but the most common type is known as

Nash equilibrium. A Nash equilibrium [64] of a strategic game xN ; pAiq; puiqiy

is a profile a˚ P A of actions with the property that for every player i P N

we have

uipa
˚
´i, a

˚
i q ě uipa

˚
´i, aiq @ai P Ai

Thus for a˚ to be a Nash equilibrium it must be that no player i has an action

yielding an outcome that he prefers to that generated when he chooses a˚
i ,

given that every other player j chooses his equilibrium action a˚
j . In other

words, no player can profitably deviate on his own if the other players abide

to the Nash equilibrium.

The existence of a Nash equilibrium cannot be guaranteed for any game.

However, there is a kind of Nash equilibrium that always exists. First, let us

define the set ∆pAiq as the set of probability distributions over the elements

of Ai. An element σ P ∆pAiq is called a mixed strategy [64] of player i, and

it is a probability distribution over the actions available to that player. An

element of Ai (i.e. an action) is also known as a pure strategy as opposed to

the former. With this, the probability of a given action profile or outcome of

the game, pajqjPN , when the players use mixed strategies can be computed as
ś

jPN αjpajq, where αjp¨ q is the probability that player i gives to an action

in his mixed strategy. This can be done because the randomizations of the

players are independent of each other.

If the players use mixed strategies, the payoff that a player considers is

called the expected payoff for that player. If we call α to the set of the

randomizations applied by all players, then the expected payoff for player i

when the players use α can be defined as the sum of the payoff attained by

player i for each feasible action profile, weighted by the probability that the

12

2.2. Security games

action profile actually arises:

Uipαq “
ÿ

aPA

˜

ź

jPN

αjpajq

¸

uipaq

Taking into account the aforementioned new definitions, a mixed extension

to a strategic-form game [64] can be defined as a tuple xN,∆pAiq, pUiqiy

in which the actions available to the players are actually mixed strategies,

i.e. randomizations over pure strategies, and the utility functions turn into

expected utility functions. Analogously, a mixed strategy Nash equilibrium

is a Nash equilibrium of the mixed extension. It can be proved that every

finite strategic-form game has a mixed strategy Nash equilibrium [64], which

constitutes one of the most important results in Game Theory.

Note that for a player to compute the Nash equilibrium it is necessary

to know the payoffs of the rest of the players. This fact motivates the non

game-theoretic treatment we give to some models proposed along the thesis.

2.2 Security games

The use of AI techniques combined with Game Theory to address real world

security problems has proven very useful as demonstrated by the applicability

of the solutions found, resulting in sophisticated systems successfully deployed

for instance in the United States, probably the country which devotes most

resources to homeland security issues. The field called Security Games [84]

has emerged from the application of Game Theory to security domains [29].

These problems deal with finding the best resource allocation of the defender

in order to protect a number of targets from an adversary aimed at attacking

them. The number of resources is limited so that not all the targets can be

protected all the time. Each target has two numbers associated to it which

stand for the benefits and/or losses when it is successfully attacked.

The aforementioned description can be easily modeled as a Stackelberg

game, a game-theoretic model in which one of the players (in this case, the

defender) acts as the leader and the other (the attacker) plays the role of

the follower who first observes and learns the leader’s strategy, and then

attacks after careful planning. Stackelberg games were first introduced to

13

Chapter 2. Background

model leadership and commitment [99], and are now widely used to study

security problems, from robbers and police [11], missile defense systems [21],

computer network security [53, 8], and terrorism [76]. The solution to the

game is the Strong Stackelberg equilibrium (SSE) -also called leader-follower

equilibrium-, which prescribes a randomized strategy for the leader and a

deterministic strategy for the follower that are optimal for both in terms of

the long-run payoff they provide.

Some successful examples of deployed systems based on Security Games

are the ARMOR software for placing randomized checkpoints at Los Angeles

International Airport [68], working since August 2007; the GUARDS software

for protecting the whole US airport network at national scale [69]; the IRIS

software for allocating special counter-terrorism personnel in US flights [44];

the PROTECT system to help patrolling the maritime infrastructure, currently

in use in Boston and New York [79]; the TRUSTS system for fare inspection

in transit systems [102]; and more recently, the PAWS system for protecting

animal wildlife against poachers [101], deployed in Uganda’s Queen Elizabeth

National Park and a protected area in Malaysia. Some challenges posed by

the preceding systems when they have to be deployed in real settings include

the advances in scalable algorithms for computing the SSE in very large

action spaces, the management of uncertainty about the adversary’s abilities,

the computation of robust solutions for non-fully rational adversaries, and

the development of mathematical models of bounded rationality and their

validation in experiments with human people.

Patrolling models. Some of the aforementioned works deal with patrolling

problems. Patrolling games can be viewed as a subclass of Security games in

which the role of the defender, played either by a human or a robot, moves

along a perimeter or an area to protect it against intrusions. Originally,

patrolling models were studied with other techniques different than Game

Theory, although they were aimed at maximizing some protection or coverage

metric, which ultimately requires solving a mathematical optimization problem.

The first publications date back to 2003 and 2004. The first theoretical

analysis of the patrolling problem in a multi-agent setting was given in [27],

although this approach, like many others that followed, is non adversarial

14

2.3. Search games

but frequency-based. A number of works dealing with border patrolling have

been published by Kraus et al.; see [33, 5] and references therein. The authors

propose randomized strategies for multiagent patrolling of a linear perimeter

and analyze their theoretical properties. Like the former, such works are

non-adversarial as they do not explicitly consider the adversary’s preferences

to attack some segments of the perimeter instead of some other; the first

of these works is frequency-based, while the second is aimed at maximizing

the probability of penetration detection (ppd). The authors have also used

physical agents in multi-agent coordination tasks [4]. When patrolling models

are addressed considering the payoffs for attacking each location, the situation

usually becomes a Security Game, as in [11]. More details on recent patrolling

works can be found in section 7.2.

2.3 Search games

A mathematical framework developed much earlier than security games is

known as Search Games. In them, one player acts as the seeker and the

other plays the role of the hider. The game can take place in a continuous

space (either in a compact region, or in an unbounded area) or in a graph.

The players move in the area (in some cases the hider is immobile) with no

restrictions except for maximum speed constraints. Whenever the distance

between them gets smaller than a detection radius, the hider is assumed to

be captured and the game ends. The actions of the players are continuous

trajectories within the search space, modeled as functions mapping a time

instant to a spatial position, and there is a payoff associated to every pair

of trajectories of the players. The seeker has no prior knowledge about the

hider’s starting position. The game is solved using game-theoretic and control

theory concepts, mainly the minimax strategy.

The situation captured by a Search Game is more general than that

of a Security Game. The mathematical theory was developed in the early

seventies, as part of the intense military research that the United States were

carrying at that time. Search games are first described in the last chapter of

[41] and they are explained in detail in [9]. The main difference with security

games is that in a Search game, we assume the existence of an intruder in

15

Chapter 2. Background

the area being protected, so the patrollers’ mission is to capture him in an

optimal way (most often, within the shortest time).

A search game can also be implemented by a set of physical autonomous

agents, as done in pursuit evasion works like [89], which uses both aerial

and terrestrial autonomous vehicles. A lot of works have been published

dealing with mathematical aspects of pursuit-evasion games and extensions,

like those where the patrollers do not know their own environment and

make a model of it while looking for the evader. Some are also solved

using game-theoretical concepts [89]. Other variants of the game, namely

defending a concrete target in a continuous environment, are solved with

concepts from control theory [52]. A lot of simulation studies have been

conducted for discrete variants and visibility-based versions; see [18] and

references therein.

2.4 Imitation games

Imitation games have been studied from a formal perspective in works by

McLennan and Tourky [57, 58, 59]. They are relevant for several reasons.

Despite being a seemingly simple version of a non-cooperative two-personal

game, they have proven as complex as a general game. It is shown in [58]

that many problems related to the computation of an equilibrium in an

imitation game are NP-complete, although [57] proves that a mixed-strategy

Nash equilibrium always exists in one-shot imitation games. Recall that this

computation requires that a player knows the payoff matrices of both players.

However, all of these works focus on theoretical complexity issues and

the analogy of Nash equilibrium problem with other, apparently non-related

ones such as proving Kakutani’s fixed-point theorem [57]. Further, none of

these works explicitly considers repeated games.

2.4.1 An adversarial imitation model

Here we expose a strategic situation in which, differently from many other

studies, the agents do not have perfect knowledge of the game being played.

To be precise, we present a finitely repeated imitation game where the

16

2.4. Imitation games

imitator has no explicit access to the preferences of the other agent, as will

be explained later. This makes our situation more realistic than traditional

equilibrium-based approaches since we are not looking for the most rational

strategy in a perfect-knowledge situation but in one that is based on repeated

empirical observations which are likely to be deceptive.

We depart from the simple adversarial model introduced by Pelta and

Yager [67]. It consists of two agents or entities S and T (the adversary)

seeking to maximize their rewards, which are inversely related. The agents

engage in a game where, given an external stimulus or event, they must

issue a response. Agent T wants to mimic the responses of S (acting as an

imitator), while agent S tries to avoid being imitated. When this scenario is

repeated many times, i.e. situations of repeated conflicting encounters arise,

then the situation becomes complex as the participants have the possibility

to learn the other’s strategy. We can see this as a repeated imitation game,

where the imitator T learns from the actions taken by S in the past. The

more frequently T imitates S correctly, the smaller is the reward of S.

When an agent S knows he is being observed by another agent T trying

to learn from his behaviour, he should adopt some counter-measure to avoid

this intrusion in his cognitive process. In that case, S should not choose

his actions based just on his own preferences but must take into account

the presence of the adversary and the fact that his behaviour should not

be invariant and clear. A defense against T is to make decisions that are

intended to confuse him, although S’s immediate reward can be diminished.

Agent S wants to force the presence of uncertainty in order to confuse the

adversary while its payoff is as less affected as possible, using randomized

strategies [67, 92, 65]. The authors’ focus is on designing decision strategies

for S that minimize the losses due to correct guesses or to non-optimal

responses.

The model presented in [67] is based on two agents S and T (the adversary),

a set of possible eventsE “ te1, e2, . . . , enu issued by the external environment

(represented as a third agent R), and a set of potential responses or actions

A “ ta1, a2, . . . , amu associated with every event. For simplicity, we assume

the set of actions is the same for all types of events. We have a payoff table

Pnˆm “ ppijq which collects the payoffs that S can obtain. In this table,

17

Chapter 2. Background

Agent S

Agent T

Payoff Calc.

p’= p F(a ,a)

a

record pair (e ,a)

guess = a
g

reward = p’

Agent R

e

Figure 2.1: Graphical representation of the model. Events ei are issued by agent

R while the responses aj are issued by agent S.

Algorithm 1 Sequence of steps in the model.

for l “ 1 to L do

A new input ei arises.

Agent T “guesses” an action ag

Agent S determines an action aj

Calculate payoff for S as a function of pij, ag, aj

Agent T records the pair ei, aj

end for

pij P r0, 1s is the payoff for S when he chooses action aj in response to event

ei, and T does not guess this action. The payoff table is known by S but not

by T . This is a key aspect of the model and a reason why it is not strictly

in the framework of imitation games.

The agents play repeatedly a simultaneous imitation game. At each

encounter (also called step), the agents are presented an event ei and they

must select an action at the same time and without knowing what the other

agent will do. If S selects action aj and T matches that choice (i.e. T was

successful in predicting S’s action), then T gets a payoff of 1 and S gets 0.

Otherwise, S gets pij and T gets 0. Fig. 2.1 shows a depiction of the model.

Agent T is watching agent S in order to learn from his actions. His aim is

to reduce agent’s S payoff by guessing which action he will take as a response

to the event which arises at each step of the game. Algorithm 1 describes

18

2.4. Imitation games

the steps of the model, with L being the length of the sequence of events (i.e.

the number of steps they play repeatedly). The reward calculation for S at

each step is defined as:

p1 “ pij F paj, agq where F pa, bq “

#

0 if a “ b

1 otherwise
(2.1)

At each step, after the payoff has been calculated, agent T is informed of

what S had chosen, and then T “records” the pair (ei, aj) in his own memory.

This information can be used in the future by T to make his predictions. The

memory in which agent T keeps records of the actions taken by S is modeled

as an observation matrix O, with dimensions n ˆ m. Oij stores the number

of times that, in the past, agent S took action aj when the input was ei.

2.4.2 On the unsuitability of game-theoretic equilibrium

A note on the use of game theory tools should be done here. We will first

describe why one might be tempted to model the situation described above

as a Stackelberg game in which the players do not need to know each other’s

payoffs to compute an equilibrium. Then we will explain why this approach

is not correct in our opinion as the assumptions required by a Stackelberg

game do not hold.

Apparently the model could be seen as an instance of a Stackelberg game

described in section 2.2. In these kinds of games, one of the players (the

leader) has a strategic advantage over the other player (the follower) so he

is able to commit to a strategy that he explicitly reveals to the follower

in a credible way that guarantees he will not change the strategy he has

committed to [30]. Committing to a strategy does not imply to reveal which

action will be played by the leader (this is only the case if the commitment

is to a pure strategy), since the strategy may be itself a randomization over

the available actions (which is known as a mixed strategy [64]). In that case,

the leader just reveals the probability distribution he is using to select an

action. Security games employ this concept because it is assumed that the

leader, using a randomized strategy, implicitly reveals it because the follower

19

Chapter 2. Background

observes the leader’s behaviour for long enough before engaging in conflict.

However, note that the situation presented in this section requires that the

follower, in this case agent T , gives a response at each turn, i.e. at the same

time that he is recording observations. The reason why one may consider

that this kind of game fits our problem is the fact that agent T is able to

record observations of the behaviour of S in the past. To some extent this

can be considered as if agent S is revealing his strategy.

As mentioned before, the solution concept seems to be strong Stackelberg

equilibrium which maximizes the leader’s expected payoff while at the same

time the follower maximizes his own payoff, i.e. the follower’s strategy is the

best one for him, given the strategy imposed by the leader. This equilibrium

is usually computed using bilinear programming tools and states that the

best strategy for the follower is always pure [30]. Further, in order for this

equilibrium to be computed, it is not necessary that the follower knows the

leader’s payoffs but only the leader’s mixed strategy. We may think this

is what happens in our problem: agent S knows both players’ payoffs, and

T does not have access to S’s payoffs but might take the past observations

(relative frequency) as probabilities.

Having stated the reasons for which a leader-follower game seems initially

suitable, now we discuss why, in our opinion, such choice is not appropriate.

In our imitation model, the only way to implicitly reveal a mixed strategy is

through the repeated observations recorded by agent T . The best strategy

for the follower is to choose, for each event, the action that the leader selects

with highest probability. If agent T takes the observed relative frequencies

as probabilities, then his best response is to choose the action that he has

observed more times in the past -we callMost Frequent (MF) to this strategy-

since it reports the highest expected payoff to the follower.

However, the fact that the only clue about S’s strategy are empirical

observations motivates that agent S, anticipating the best-responser he may

be facing, can use a deterministic, alternating strategy that systematically

avoids consecutively selecting the same action twice when that action is

already the most frequently used in the past for a concrete event (and

therefore, T might select it as a prediction the next time that event arises).

For this reason, the leader-follower equilibrium is not feasible, since it always

20

2.4. Imitation games

prescribes a pure strategy for the follower that could be exploited by the

leader by always selecting alternatively the best and the second-best actions,

avoiding all the time a correct guess.

2.4.3 Strategies of the agents

Strategy of agent T . Recall that our game is repeated along time and S

could learn to avoid the predictions when they are made on a deterministic

basis. Thus T ’s strategy should also be mixed. The explanation for this

behaviour is that observing S’s past behaviour is not equivalent to considering

S is implicitly revealing his actual behaviour which, for instance, could be

based on some other complicated, non-randomized behaviour rules that are

difficult to perceive but do not actually constitute a mixed strategy. In other

words, S does not make a true commitment and, as a result, T has no reason

to consider S’s past behaviour to be credible for the future and trust it.

Finally, note that Nash equilibrium to mixed strategies is unfeasible

since T does not know S’s payoff and therefore T cannot compute such

equilibrium2. For these reasons, we assume that agent T employs a different

mixed strategy called Proportional to Frequency (PF) instead of MF. PF

exhibited good performance according to the empirical results presented in

[67]. PF means that the probability of selecting an action aj as a prediction to

an event ei is proportional to Oij, i.e. to the number of times (in percentage)

such action was observed to be chosen by S in the past. In other words, the

probability that T selects an action as a response to an event is actually the

relative frequency with which S did the same in the past. As can be seen,

it is a randomized strategy and because of that, it is safer than MF. In the

forthcoming chapters, PF will be the strategy employed by T .

We must point out that constructing a model for T deserves further

investigation (see for instance [107] and [55]), possibly involving learning

techniques.

2The use of uncoupled dynamics that do not need any knowledge of the adversary’s

payoff to eventually converge to mixed equilibrium under some conditions is proposed as

future work in the conclusions section.

21

Chapter 2. Background

Strategies of agent S. From the point of view of S, the following strategies

were considered in [67]:

• Random among k Best actions (R-k-B): Randomly select an action

from the k best ones.

• Proportionally Random (PR): The probability of selecting an action

is proportional to its payoff.

• Best of k selected Randomly (B-k-R): Select the best action (in

terms of payoff) from a set of k possible actions selected randomly.

22

Chapter 3

Theoretical analysis of

expected payoff with

interpretable strategies

In the preceding chapter, a simple adversarial model presented in [67] was

reviewed. In such work, some decision strategies for both agents were proposed

and empirically evaluated using stochastic simulations. Here, our aim is to

analyze such strategies from a theoretical point of view so that they can be

evaluated without running a simulation. In turn, this will lead to a faster and

more exact way of comparing strategies, it will facilitate comparisons with

new strategies investigated in further research and will allow to understand

the impact of certain components of the model. Some other recent work has

also been done on this model, following a heuristic (evolutionary) approach

to automatically design decision strategies [66, 90].

With this in mind, the objectives of this chapter are: (a) to provide

analytical expressions for the expected payoff, based in concepts of probability

theory; (b) to show the agreement between the theoretical expected payoff

and the empirical results; and (c) to discuss how the strategy used and the

definition of the payoff matrix affect the results.

This chapter is organized as follows. The behaviour of the agents is

formalized in the remainder of this subsection. Section 3.1 presents an

explanation of the details and assumptions needed to obtain the expressions

23

Chapter 3. Theoretical analysis of interpretable strategies

of the expected payoff (with and without adversary) for each strategy, both in

a general case and also in the particular conditions in which our experiments

have been conducted. Section 3.2 provides graphical representations of the

results in order to contrast the expected and empirical payoff, and also

explains the behaviour of each strategy in terms of the payoff matrices

employed. Finally, section 3.3 discusses the benefits of the results and provides

new research lines in this direction.

Agents’ strategies. We will analyze the strategies described at the end of

section 2.4.2, namely PF (Proportional to Frequency) for agent T , and the

three strategies R-k-B, PR and B-k-R for agent S. The strategy Best action,

which always chooses the action with the largest payoff in a deterministic

way, will not be evaluated theoretically because it was proved in [67] to be

the worst one. The Random strategy (completely random) is a particular

case of R-k-B in which k equals the total number of possible actions.

3.1 Calculation of the expected payoff

In this section, we will provide analytical expressions to calculate the expected

payoff for S when using the the previous strategies. The basic assumptions

are: agent T uses the proportional to frequency strategy, and the payoff

matrix has a specific structure, which is defined below in the following section.

3.1.1 Notation and payoff matrix definition

Due to the need to include a certain amount of confusion (randomness) in

the strategies for adversarial domains, the payoff matrix plays a key role in

the calculation of the expected payoff.

Intuitively, when all the actions have quite similar payoffs, then it is not

very important if a sub-optimal action is chosen for a given input. However,

it becomes much more problematic if the actions’ payoffs are very different,

because all the sub-optimal actions provide payoffs that are considerably

lower than the best one, thus leading to serious losses.

24

3.1. Calculation of the expected payoff

In this chapter, we will define the payoff matrices in terms of a parameter

α standing for the gap between the best payoff and the rest. All matrices

tested are square (the same number of stimuli and responses, namely Kmax).

Let pij be the elements of the payoff matrix P described in section 2.4.1.

Every row of P is a permutation of the payoffs in the set Y = {1, 1-α, 1-2α,
... 1-(Kmax-1)α}. The repetition of the same value is not allowed within a

row of the matrix, in order to simplify the mathematical expressions. We

will refer to these values (not necessarily in this order) as ri, i “ 1, . . . , Kmax.

Of course ri ą 0, @ i. Let ri be the i-th greatest value of Y . Under these

considerations, matrices generated with lower values of α will have more

similar values in each row, whereas higher values of α lead to very different

payoffs in the same row.

Finally, let X be the random variable associated with the occurrence of

every stimulus, and let P pX “ etq be a (discrete) probability distribution

over the stimuli.

3.1.2 Expected payoff of R-k-B

The strategy Random among k best actions chooses one action (with uniform

probability) from a set composed by the k best actions for the current input,

being k a parameter of the strategy (k ď Kmax). Each candidate action can

be selected with probability 1{k, while any action that is not among the k

best actions will never be chosen. Let p1t , . . . , p
Kmax
t be the values of row t of

the payoff matrix, sorted in descending order (i.e. pit ą pjt when i ă j). This

is just a notation convention to indicate which the highest payoffs in a row

are. Then, when there is no adversary, the total payoff E for agent S after

a sequence of L inputs can be expressed as a function of the k value used in

the R-k-B strategy, as follows:

ERkBpkq “ L
Kmax
ÿ

t“1

˜

P pX “ etq
k

ÿ

i“1

1

k
pit

¸

(3.1)

We have considered two different random events in this formula. First, the

random variable T , associated to the probability that a given stimulus arises.

In the original model, this distribution was considered uniform, so P pX “

25

Chapter 3. Theoretical analysis of interpretable strategies

etq “ 1{Kmax @t when the problem instance has Kmax different stimuli.

However, the above expression was generalized to consider any probability

distribution for the stimuli of the sequence. Second, after a stimulus arises,

any of the k best actions can be chosen with the same probability, 1/k. As

both events are independent, the probability that they occur simultaneously

is the product of the probabilities. So, we have:

ERkBpkq “ L
Kmax
ÿ

t“1

˜

1

Kmax

k
ÿ

i“1

1

k
pit

¸

“
L

Kmax k

Kmax
ÿ

t“1

k
ÿ

i“1

pit (3.2)

Due to the way we defined the payoff matrices, the set of values in every

row is the same, so after sorting, pit are the same regardless of the row t. As

a consequence we have

Kmax
ÿ

t“1

k
ÿ

i“1

pit “ Kmax

k
ÿ

i“1

ri (3.3)

for any k P r1, Kmaxs, with ri being the values of any row of the matrix,

sorted in decreasing order.

Every row in the matrix has the values 1, 1´α, 1´2α, . . . , 1´pKmax´1qα,

so the following expression can be proven by mathematical induction:

k
ÿ

i“1

ri “

k
ÿ

i“1

p1 ´ pi ´ 1qαq “ k ´ α

ˆ

k2 ´ k

2

˙

(3.4)

Considering these simplifications, the expression in Eq. 3.1 yields

ERkBpkq “
L

k

ˆ

k ´ α

ˆ

k2 ´ k

2

˙˙

(3.5)

which represents the expected payoff for agent S without adversary.

When dealing with an adversary we also have to consider the probability

of not being guessed in order to obtain a non zero reward for that action.

The R-k-B strategy implies that, theoretically, after a certain number of

26

3.1. Calculation of the expected payoff

inputs, any of the k best actions has been chosen the same number of

times and the rest have never been chosen. Thus, we can suppose that

the observed frequency for each of the k best actions is the same after a

long-enough input sequence, so the probability that agent T , who is using a

strategy proportional to frequency, guesses one of them is also 1{k. Hence the

probability of not being guessed is pk´1q{k. The probability of simultaneously

choosing an action and not being guessed can be calculated as the product

of the probabilities of both events since they are independent. Thus it is

enough to include the factor pk ´ 1q{k (probability of not being guessed) in

the general expression of Eq. 3.1, obtaining:

ERkBpkq “ L
Kmax
ÿ

t“1

˜

P pX “ etq
k

ÿ

i“1

1

k

k ´ 1

k
pti

¸

“ L
k ´ 1

k2

Kmax
ÿ

t“1

˜

P pX “ etq
k

ÿ

i“1

pti

¸

(3.6)

Finally, considering simplifications due to a uniform distribution for the

stimuli and the particular form of our payoff matrices (recall 3.3 and 3.4),

we have:

ERkBpkq “ L
k ´ 1

k2

ˆ

k ´ α

ˆ

k2 ´ k

2

˙˙

(3.7)

which represents the expected payoff for agent S when using the Random

among k best actions in the presence of an adversary.

3.1.3 Expected payoff of Proportionally Random

In this strategy (henceforth called PR), the probability of choosing an action

is proportional to its payoff. Let zti be the probability of agent S choosing

action i as a response to stimulus t using strategy PR. By definition of PR

we have

zti “
pti

řKmax

k“1 ptk
(3.8)

The total expected payoff, thus, can be calculated as the sum of the

expected payoff for all the possible actions. This idea yields the following

27

Chapter 3. Theoretical analysis of interpretable strategies

general expression of the expected payoff EPR after a sequence of L inputs

when there is no adversary.

EPR “ L
Kmax
ÿ

t“1

˜

P pX “ etq
Kmax
ÿ

i“1

ztipti

¸

“ L
Kmax
ÿ

t“1

˜

P pX “ etq
Kmax
ÿ

i“1

pti
řKmax

k“1 ptk
pti

¸

(3.9)

Notice that this strategy does not require any additional parameter like

the preceding R-k-B strategy.

Now let us consider again the definition of zti. Theoretically, after a

certain number of inputs, say L (suppose L is long enough), action i will

have been chosen zti L times. As the adversary agent T always uses a

strategy proportional to the observed frequency to make his prediction, the

probability that T guesses that action correctly can be calculated as the

number of times he has observed that action when the input was t, divided

by the total number of observations, L. In other words, the probability that

T chooses action i is ztiL
L

“ zti. Thus, the probability that T does not guess

correctly is 1-zti.

Finally, the expected payoff for action i when dealing with an adversary

can be calculated as the basic payoff of action i, pti, weighted by the probability

of simultaneously choosing action i, zti and by the probability of not being

predicted properly, 1-zti. Once again, both events are independent so the

probability that they happen simultaneously is the product of the probabilities

of each individual event. In other words, we just have to incorporate to Eq.

3.9 the factor 1-zti, which yields

EPR “ L
Kmax
ÿ

t“1

˜

P pX “ etq
Kmax
ÿ

i“1

ztip1 ´ ztiqpti

¸

(3.10)

“ L
Kmax
ÿ

t“1

˜

P pX “ etq
Kmax
ÿ

i“1

pti
řKmax

k“1 ptk

˜

1 ´
pti

řKmax

k“1 ptk

¸

pti

¸

Again, we can simplify this expression due to a uniform distribution for

the stimuli and the particular form of our payoff matrices. Eq. 3.4 still holds

and the whole inner summation is constant regardless of the row t because

all the rows have a permutation of the same set of payoffs. This yields

28

3.1. Calculation of the expected payoff

EPR “ L
1

Kmax

Kmax
ÿ

t“1

˜

Kmax
ÿ

i“1

pti
řKmax

k“1 ptk

˜

1 ´
pti

řKmax

k“1 ptk

¸

pti

¸

“ L
1

Kmax

Kmax

˜

Kmax
ÿ

i“1

ri
řKmax

k“1 rk

˜

1 ´
ri

řKmax

k“1 rk

¸

ri

¸

“ L

˜

Kmax
ÿ

i“1

ri
C

´

1 ´
ri
C

¯

ri

¸

(3.11)

with ri being the values of any row of the payoff matrix but now in no specific

order. The sum of payoffs C is defined as: C “ Kmax ´ αp
K2

max´Kmax

2
q

3.1.4 Expected payoff of B-k-R

Firstly, this strategy randomly chooses k different (candidate) actions, and

secondly, the best of such actions is finally selected as a response to a given

stimulus. Here, k is a parameter of the strategy.

Let ai with i “ 1, . . . , Kmax be one of the candidate actions agent S

can choose to answer to stimulus t, and let pti be the corresponding payoff.

Action ai will finally be chosen if, and only if, the following two conditions

are met:

1. action ai must be chosen as one of the k candidate actions

2. the candidate set must not contain any other action whose payoff is

greater than pti, because if that were the case, then action ai would not

be selected as the Best-among-k candidate actions.

Any action will appear in the set of candidate actions with probability

k{Kmax. When a certain action ai has been chosen for the candidate set,

it will be finally selected as the actual response if, and only if, there are no

better actions in the candidate set. The probability that this occurs can be

obtained as the quotient of favorable cases divided by the total number of

feasible cases.

The number of feasible cases is the number of non-sorted combinations

of k ´ 1 actions (the rest of the actions, apart from action ai that is being

29

Chapter 3. Theoretical analysis of interpretable strategies

studied) taken from the total set of remaining actions, which has Kmax ´

1 elements because action ai has already been picked. The mathematical

concept of combination captures this notion. By definition, the number of

b-combinations (each of size b) from a set with a elements (size a) is the

binomial coefficient:

combpa, bq “

ˆ

a

b

˙

“
a!

b!pa ´ bq!

so the number of feasible cases we need is

ˆ

Kmax ´ 1

k ´ 1

˙

.

The number of cases that are favorable to action ai can be computed as

follows. A set of k candidate actions is favorable to action ai if all the actions

in the set have lower payoffs than ai. The number of favorable cases is the

number of favorable combinations, i.e. combinations of (k-1) actions taken

only from the subset of actions that are worse than ai.

The restriction of using only actions that are worse than ai is the key to

calculating the number of favorable combinations. The number of actions

that have a better payoff than pti can be expressed as a function B : R Ñ N
which takes payoffs into naturals, so the number of actions that are worse

can be calculated as Kmax ´1´Bpptiq. As we will show, we use this function

to make the next expressions valid for any payoff matrix (although our

particular matrices lead to simpler expressions). So, the number of favorable

combinations is

ˆ

Kmax ´ 1 ´ Bpptiq

k ´ 1

˙

.

Once we have calculated the probability of each action being chosen, we

can use this to obtain the general expression of the expected payoff of B-k-R

for a sequence of L inputs when there is no adversary:

EBkRpkq “ L
Kmax
ÿ

t“1

˜

P pX “ etq
Kmax
ÿ

i“1

k

Kmax

¨

`

Kmax´1´Bpptiq
k´1

˘

`

Kmax´1
k´1

˘ pti

¸

(3.12)

Again, we can simplify the above formula as has been done in the previous

cases. If the stimulus follows a uniform probability distribution, then P pX “

etq “ 1{Kmax@t P t1, . . . , Kmaxu. Also, if the payoff matrix has a permutation

of the same set of values in each row, as in our particular payoff matrices,

then the result of the inner summation is constant regardless of the value of

t, so the outer summation can be ignored whilst the inner can be substituted

30

3.1. Calculation of the expected payoff

by Kmax multiplied by the same inner summation but now ignoring index t

and using ri. These are the same transformations we have already carried

out in the preceding sections.

EBkRpkq “ L
Kmax

Kmax

Kmax
ÿ

i“1

k

Kmax

`

Kmax´1´Bpriq
k´1

˘

`

Kmax´1
k´1

˘ ri

“ L
k

Kmax

Kmax
ÿ

i“1

`

Kmax´1´Bpriq
k´1

˘

`

Kmax´1
k´1

˘ ri (3.13)

Two more simplifications are possible for our particular matrices. First,

we can suppose again that the payoffs are sorted in decreasing order (from

best to worst), so ri ą rj when i ă j. This supposition does not change

the result of the summation; it just re-sorts its terms. Using this fact and

considering that payoff values are not repeated within a row, function B

becomes trivial: Bpriq “ i´1, with i “ 1, . . . , Kmax. The reader should note

that r1 is the payoff of the best action, so there are 0 actions better than it,

and rKmax is the worst action because all the Kmax ´ 1 remaining actions are

better. Also, as every row is a permutation of t1, 1´α, . . . , 1´pKmax ´1qαu,

then ri “ 1 ´ pi ´ 1qα. This leads to the final expression of the expected

payoff without an adversary:

EBkRpkq “ L
k

Kmax

Kmax
ÿ

i“1

`

Kmax´1´pi´1q

k´1

˘

`

Kmax´1
k´1

˘ p1 ´ pi ´ 1qαq (3.14)

Finally, we can apply the same reasoning used in the previous section

in order to calculate the probability of not being guessed. If zti represents

the probability that agent S chooses an action, then it also represents the

probability of being guessed when T uses a strategy proportional to the

observed frequency. So we need to introduce the factor 1 ´ zti into the

expressions above. It should be recalled that, in strategy B-k-R, we have

zti “
k

Kmax

`

Kmax´1´Bpptiq
k´1

˘

`

Kmax´1
k´1

˘

so expression 3.12 turns into the following expression in order to include

31

Chapter 3. Theoretical analysis of interpretable strategies

this probability of not being guessed:

EBkRpkq “ L
Kmax
ÿ

t“1

˜

P pX “ etq
Kmax
ÿ

i“1

ztip1 ´ ztiqpti

¸

(3.15)

Using our particular matrix,

z1
i “

k

Kmax

¨

`

Kmax´1´pi´1q

k´1

˘

`

Kmax´1
k´1

˘

with z1
i being the probability of choosing action ai regardless of the row

(remembering that every row is a permutation of the same set of values).

Then expression 3.14 becomes:

EBkRpkq “ L
Kmax
ÿ

i“1

z1
ip1 ´ z1

iqp1 ´ pi ´ 1qαq (3.16)

which represents the expected payoff for agent S when using strategy B-k-R

in the presence of an adversary.

3.2 Computational experiments and results

In the previous sections we provide analytical expressions for the expected

payoff that agent S can achieve using the decision strategies presented above,

with and without an adversary.

In this section, we will assess the impact of the payoff matrix on the

final payoff achieved by agent S. From a set of matrices, we will calculate

the expected payoff using the theoretical expressions and the effective payoff

calculated through simulations and then check the agreement between both

results.

We will test several 20x20 matrices (i.e. Kmax = 20). This means that

the values of each row in a given matrix are in the set t1, 1´α, . . . , 1´19αu.

To avoid negative payoffs, we need 1 ´ 19α ą 0 so the following inequality

holds:

1 ´ 19α ě 0 ðñ α ď 0.052 (3.17)

A full factorial design of the experiments was performed, where the factors

and their levels are the following:

32

3.2. Computational experiments and results

• First factor: α P t0.001, 0.010, 0.020, 0.030, 0.040, 0.050u, which means

there are six different payoff matrices to be tested with each strategy.

• Second factor: agent S strategy “ tPR,R-k-B,B-k-Ru.

• Third factor: parameter k P r2, 3, . . . , 20s. This is only considered when

using the strategies R-k-B and B-k-R.

In the third factor, we omitted k “ 1 for two reasons: first, in B-K-R

it is equivalent to a completely random strategy (which is already included

in R-K-B with k=Kmax), and second, in R-K-B it is equivalent to always

choosing the best action, which is the worst strategy according to the results

presented in [67].

Every combination of α, strategy and k value (if applies) has been evaluated

theoretically and empirically. In this last case, we performed 2000 runs

(simulations) of Algorithm 1 where the length of the input sequences employed

was L “ 250. Inputs were considered independent and they were generated

using a uniform distribution. As the best response to any stimulus always

returns a payoff of 1, the maximum possible payoff after a 250-input sequence

is precisely 250. This would be the ideal situation (if there was no adversary).

The payoff assigned to each combination is the average payoff over the 2000

simulations.

3.2.1 Results for Proportionally Random

The empirical and theoretical results regarding the expected payoff as a

function of the α value (with and without adversary) are shown in Fig. 3.1.

Empirical results are shown with markers while theoretical ones are displayed

with lines. The first element to notice is the perfect agreement between the

analytical expressions and empirical results in both cases: with and without

adversary.

The relation between α and payoff is the second element to notice. As the

former increases, the latter decreases. The reasons for this are the following.

As α grows the payoff matrix is less balanced (the differences among payoffs

are greater). Using this decision strategy, when a sub-optimal action is

selected, the contribution to the total payoff is lower than that which could

33

Chapter 3. Theoretical analysis of interpretable strategies

150

160

170

180

190

200

210

220

230

240

250

0,001 0,010 0,020 0,030 0,040 0,050

Alpha value

P
a

y
o

ff
 a

ft
e

r
2

5
0

 i
n

p
u

ts

Expected without adversary

Expected with adversary

Empirical without adversary

Empirical with adversary

Figure 3.1: Expected and empirical payoff for Proportionally Random

Figure 3.2: Payoff per action in every matrix tested

34

3.2. Computational experiments and results

0,025

0,03

0,035

0,04

0,045

0,05

0,055

0,06

0,065

0,07

0,075

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Action chosen as response

P
ro

b
a

b
il

it
y

 o
f

b
e

in
g

 c
h

o
s

e
n

alpha = 0.001

alpha = 0.010

alpha = 0.020

alpha = 0.030

alpha = 0.040

alpha = 0.050

Figure 3.3: Probability distribution of the actions for different α values in PR

be achieved selecting the best alternative. In other words, the cost (potential

loss in payoff) of choosing a sub-optimal solution is higher. This is clearly

observed in Fig. 3.2 where the payoff assigned to every action is shown.

Although the best action always returns a payoff of 1, the other actions’

payoffs are diminished as the α value increases.

In turn, as the payoff matrix is less balanced, the probability of choosing

one of the best actions grows while the probability of choosing one of the

worst actions diminishes. Fig. 3.3 shows this phenomenon. Each line

represents the probabilities of choosing each of the twenty possible actions

with a different payoff matrix. Here, action 1 is the best while action 20 is

the worst. The almost horizontal line corresponds to the matrix generated

with α = 0.001 (payoffs and in turn, probabilities are well balanced), while

the most-sloped diagonal line corresponds to α = 0.050 (probabilities are

very unbalanced). It should be noted how the probabilities of choosing one

of the 10 best actions tend to grow while the rest tend to diminish.

Now, the situation is as follows. The best actions have more chances

of being selected but, from the point of view of the adversary, they have

35

Chapter 3. Theoretical analysis of interpretable strategies

120

140

160

180

200

220

240

260

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

k value in R-k-B

P
a

y
o

ff
 a

ft
e

r
2

5
0

 i
n

p
u

ts
alpha = 0.001

alpha = 0.010

alpha = 0.020

alpha = 0.030

alpha = 0.040

alpha = 0.050

Lines: expected payoff

Symbols: empirical payoff

Figure 3.4: Expected and empirical payoff for R-k-B without adversary

been more frequently observed. In this situation it would be easier for the

adversary to properly predict the action that S will choose.

3.2.2 Results for R-k-B

In order to analyze R-k-B strategy we would also need to take into account

the value of the parameter k.

In Fig. 3.4 we present the expected and empirical payoff attained using

this strategy (without adversary), as a function of k for every payoff matrix

tested. Again, we can first observe the perfect agreement between theoretical

expressions and empirical results. It is also clear that for a given α, the

payoff depends linearly on the value of k, with a higher slope as α increases.

As k increases, a highly-randomized strategy is obtained, so the chances of

selecting sub-optimal responses also increase.

When α is low, this is not very problematic, but when α increases, the

selection of sub-optimal actions with low payoffs leads to substantial losses.

When dealing with an adversary, the situation is very different as can be

36

3.2. Computational experiments and results

120

140

160

180

200

220

240

260

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k value in R-k-B

P
a

y
o

ff
 a

ft
e

r
2

5
0

 i
n

p
u

ts

alpha = 0.001

alpha = 0.010

alpha = 0.020

alpha = 0.030

alpha = 0.040

alpha = 0.050

Continuous lines: expected payoff

Dashed lines: empirical payoff

Figure 3.5: Expected and empirical payoff for R-k-B with adversary

observed in Fig. 3.5.

Again, the agreement between the empirical and theoretical approaches

for the payoff calculation is high. In this case, the minor differences between

the expected (dashed line) and the empirical (continuous line) payoff at the

beginning of each curve can be explained in terms of probabilities. Probability

estimations only hold when the experiments are repeated a great number of

times1.

Here, partially-randomized strategies may be better because they make

our behaviour more unpredictable, although sub-optimal actions do not report

so much benefit. When the values of the matrix are very similar, increasing

k is always better because it results in a more unpredictable behaviour while

keeping the total payoff very close to the optimal. When α is high and the

values of the matrix are not as similar, a more random behaviour is not

1We have repeated the experiments with a longer input sequence (1000 stimuli) and

these differences become smaller, which means that the formula holds when the input

sequence is large enough. Results are not shown as they do not substantially contribute

to the analysis.

37

Chapter 3. Theoretical analysis of interpretable strategies

170

180

190

200

210

220

230

240

250

260

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k value in B-k-R

P
a

y
o

ff
 a

ft
e

r
2

5
0

 i
n

p
u

ts

Lines: expected payoff

Symbols: empirical payoff

alpha = 0.001

alpha = 0.050

Figure 3.6: Expected and empirical payoff for B-k-R without adversary

always the best alternative because the losses due to sub-optimal actions

are important, yet hard to guess. In this situation, the precise amount of

randomness needed can be calculated as the exact value for k that maximizes

the total payoff for a given payoff matrix. That is the point where the

payoff-vs-k curve reaches its absolute maximum and, as can be seen in Fig.

3.5.

3.2.3 Results for B-k-R

In this strategy, we will also consider the results with and without adversary,

and also taking into account all the possible values for the parameter k. It

should be remembered that the strategy randomly selects k actions and then

it chooses the best one available.

As expected, when there is no adversary, it is always better to increase the

k value because it enlarges the candidate set, which allows to consider more

actions and thus to choose the best among them (see Fig. 3.6). If k equals

Kmax, then all the actions are always selected within the candidate set, thus

38

3.2. Computational experiments and results

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k value in B-k-R

P
a

y
o

ff
 a

ft
e

r
2

5
0

 i
n

p
u

ts

Continuous lines: expected payoff

Dashed lines: empirical payoff

alpha = 0.001

alpha = 0.050

Figure 3.7: Expected and empirical payoff for B-k-R with adversary

the strategy degenerates into always selecting the best action. Obviously, this

strategy works perfectly only when no adversary is present. On the contrary,

if k is low, then the set of candidate actions becomes very randomized, and

it may happen quite often that good actions are not selected. When this

occurs, losses become more significant, especially if the differences between

the payoffs are large (i.e. when α is large). This fact explains the reasons for

the different slopes in the curves.

When the adversary is included in the game, the results are those shown

in Fig. 3.7. We can observe that as the value of k increases, the expected

payoff is always slightly less than the empirical one. This difference can be

easily explained. At the beginning of an experiment, when the observation

matrix used by agent T only contains zeros, the first prediction made by

T is totally random and possibly wrong. This can happen once per each

different input, i.e. up to Kmax times because the observation matrix has

Kmax rows that are initialized to all 0. As a result, agent S may attain some

extra payoff at the first steps of each experiment. If the length of the input

sequence is large enough, this effect has less influence on the total payoff.

39

Chapter 3. Theoretical analysis of interpretable strategies

However, it can be clearly appreciated in the extreme case, k = Kmax, which

is equivalent to always choosing the best action, as explained above. The

expected payoff for S in this case is 0 because agent T should always be able

to properly guess our action, but the empirical payoff is around Kmax due

to the phenomenon of the initial steps. It should be recalled that the best

action has a payoff of 1 and the observation matrix has Kmax independent

rows. The same phenomenon also explains the differences shown in Fig. 3.5.

It also shows that the impact of the payoff matrix decreases as k increases.

3.3 Conclusions

In this chapter, we have studied decision strategies in an adversarial model

from a theoretical point of view, providing analytical expressions for the

expected payoff when the adversary is present or is not. An interesting feature

of the model studied is that the assumptions are minimal. We observed

an almost perfect agreement between theoretical and empirical results, so

the expressions can be used to evaluate the strategies without running a

simulation, thus allowing to analyze the impact of model features (such as

number of alternatives/stimuli), or to make comparisons with other strategies

faster. In addition, we have discussed the role of payoff matrices in the results.

Under the particular definition we used, it is clear that such matrices have a

great impact in the payoff obtained. More studies are needed using different

types of matrices, for example, where the sum of the payoffs in every row

is the same, or where different alternatives with the same reward can exist.

Game-theoretic studies of equilibrium may also be useful, specially those that

make use of particular equilibrium concepts for repeated games.

The understanding of these basic features will allow to develop better

strategies for this simple adversarial model (see [91] for more sophisticated

dynamic strategies that make use of the same ideas about the expected

payoff) and can pave the way to study variations that are yet not considered

but realistic, such as adversaries not taking decisions (only observing), or

sequence of stimulus with certain correlations (between the last response

and the next random stimulus) and so on. Some of these aspects are already

under study.

40

Chapter 4

Forgetting as a way to avoid

deception

In the previous chapter, we provided analytical expressions for the expected

payoff, showed the agreement between the theoretical expected payoff and the

empirical results, and discussed how the strategy used and the definition of

the payoff matrix affect the results. However, everything was done assuming

that agent S’s strategy did not change along the time, and that the imitator

had an unlimited observation memory. These two conditions will now be

challenged.

The aim of this chapter is twofold. Firstly, we will propose and analyze

randomized decision strategies for agent S that are not constant along the

time, but change at certain time steps of the repeated game. We tackle

the strategy design as a constrained non-linear optimization problem whose

solution gives both the exact moment at which agent S must change and

the new strategy he must use. Secondly, we will evaluate such strategies

in a different scenario in which agent T forgets the oldest observations, in

order to test if this is benefitial or not for T . This will test if the strategies

presented in previous work are severely affected by wrong assumptions about

the adversary or not. To be precise, we want to answer the following questions:

1. Do the results obtained with the analytical expressions match those

obtained by empirical simulations?

2. Do dynamic mixed strategies outperform a static mixed strategy in

41

Chapter 4. Forgetting as a way to avoid deception

terms of expected payoff?

3. Does a limited memory have an impact over the expected payoff? Is it

beneficial or detrimental for agent T to forget the oldest observations?

The chapter is organized as follows. Section 4.1 describes the main

characteristics and components of the model used and discusses the suitability

of game theoretic equilibrium concepts. Section 4.2 is a review of the material

presented in [91], and deals with the need of randomized strategies, explains a

static mixed strategy for agent S, and also introduces the concept of dynamic,

time-changing decision strategies as opposite to the former static strategy.

The analytical expression of the expected payoff attained by S when using

both kinds of strategies is explained step by step. An optimization process

is also introduced here to obtain the best dynamic strategy under certain

assumptions. Section 4.3 modifies the assumptions made in the preceding

section to deal with an adversary with a limited observation memory, which

yields a generalized expression of the expected payoff. In Section 4.4 we

describe the computational experiments performed and the results obtained.

They are aimed at checking the validity of the theoretical expressions with

empirical simulations and comparing the performance of static and dynamic

strategies with both unlimited and limited observation memory. Finally,

Section 4.5 is devoted to discussions and further work.

4.1 Simplified version of the model

The model is a simplified version of the one depicted in 2.1. We will consider

no external events or, equivalently, only one type of event. The reason is that

the events of the model were independent so that the actions and predictions

about one type of event did not affect the strategy that should be adopted

for other types of events, so we can focus on the study of a single type of

event. Hence, S’s payoff table is now a set of payoffs P “ tp1, p2, ..., pmu

associated to the m actions. Accordingly, T ’s memory is an observation

vector O “ to1, ..., omu that he updates after each encounter. Element oj

stands for the number of times that, in the past, agent S has chosen action

aj. Agent T may take into account this information for future decisions. The

42

4.2. Behaviour of the agents

Table 4.1: Payoff matrix of the simultaneous game played at each step. Showing

payoffs for S and T for each possible outcome.

T

a1 a2 a3 . . . am

S

a1 (0, 1) (p1, 0) (p1, 0) . . . (p1, 0)

a2 (p2, 0) (0, 1) (p2, 0) . . . (p2, 0)

a3 (p3, 0) (p3, 0) (0, 1) . . . (p3, 0)
...

...
...

...
. . .

...

am (pm, 0) (pm, 0) (pm, 0) . . . (0, 1)

game mechanics are the same already described: at each step, if S selects

action aj and T matches that choice (i.e. T was successful in predicting S’s

action), then T gets a payoff of 1 and S gets 0. Otherwise, S gets pj and T

gets none.

In this chapter, a slightly more formal treatment is adopted to show

a comparison with the game-theoretic Nash equilibrium (section 4.4.2) if

the payoffs were of common knowledge, i.e. if agent T was a clairvoyant

adversary. Therefore, the game outcomes and payoffs are summarized in the

payoff matrix of the simultaneous game played at each step, shown in Table

4.1. Notice that T is equally interested in guessing any action because all the

correct guesses report the same payoff to him, while S does have an incentive

for choosing some actions instead of some others because the payoff he may

attain when not guessed is higher.

4.2 Behaviour of the agents

The strategy that agent T will be using (Proportional to Frequency) has

been described in section 2.4.2. In Sections 4.2.1 and 4.2.2 we review the

approaches published in [91] for agent S to emphasize the assumptions that

allowed to compute such decision strategies. Sections 4.2.3, 4.3 and 4.4

present a completely novel study on how a change on certain adversarial

conditions can affect the performance of decision strategies that were supposed

to be optimal under the original assumptions when these do not hold anymore.

43

Chapter 4. Forgetting as a way to avoid deception

4.2.1 Static Mixed Strategy for Agent S.

Agent S could use a totally deterministic strategy that always select the

action with the highest payoff. However, this would be very easy to learn

for agent T so he would quickly predict this behavior correctly after a short

number of repetitions. S could also employ a totally random strategy that

would select an action in a totally random way. This behaviour would be very

hard to learn from observations but, on the other hand, the payoff attained

would be low because bad actions (i.e. those with low payoff) may be selected

with the same probability than best actions.

As stated before, a mixed strategy is a set of weights representing a

probability distribution over the actions. When a player has to do a movement,

he uses this probability distribution to choose his action. In our model, we

are interested in the best randomization or, in other words, the set of weights

that lead to the highest payoff when playing against agent T . From now we

will use the expression set of weights to refer to a probability distribution

over the actions of the model. Thus such weights are in [0, 1] and their sum

is 1.

With these weights, it is possible to calculate the expected payoff for

a given player, which is the sum of all the possible outcomes of the game

weighted by the probability that each outcome eventually arises and by the

payoff that outcome reports to the player. In the adversarial model we are

dealing with, this means that we can weight each payoff in vector P by the

probability that agent S eventually gets that payoff. This probability can

be computed as the product of the probabilities of two independent events

happening simultaneously. Agent S will attain payoff pj if two conditions

hold:

i Agent S must select action aj as a response. This probability is noted

αj, although we will refer to it as the weight used by S to select aj.

ii In addition, S will only get the payoff pj if agent T does not successfully

predict his response. Actually this probability is independent of (i) if

we consider it as a conditional probability that is conditioned to the fact

that S has already selected action aj.

44

4.2. Behaviour of the agents

This (conditional) probability can be computed as follows. In case agent S is

using a non-variant weight αj (a static mixed strategy) during a sequence of

L repetitions of the game, then the probability that agent T does not guess

his actions if T uses PF strategy is (1 - αj). The explanation is as follows.

After L repetitions, since agent S uses αj, then action aj would have been

selected L ¨ αj times, and this is what agent T sees in Oj. The probability

that T selects action aj as a prediction is

Pguesspjq “
Oj

řm
j“1Oj

“
L¨αj

L
“ αj (4.1)

with m being the number of actions available. The probability of not

being guessed correctly is then 1 ´ Pguesspjq “ 1 ´ αj.

Taking into account the probabilities of the two conditions described

above yields the following expression of the expected payoff for agent S after

a sequence of L encounters when he uses weights αj to select his actions:

EPstatic “ L
m
ÿ

j“1

αjp1 ´ αjqpj (4.2)

If we want to maximize the expected payoff, we have to maximize expression

4.2 by computing the values of the optimal weights αj. This can be achieved

using numerical methods for constrained optimization. The optimization

problem can be formalized as follows.

maxtαju

m
ÿ

j“1

αj¨ p1 ´ αjq¨ pj (4.3)

subject to:

n
ÿ

j“1

αj “ 1

αj ě 0 (4.4)

4.2.2 Dynamic Mixed Strategy for Agent S

In the previous section we described a static strategy for agent S. It was

static in the sense that the same set of weights is used by S to make decisions

45

Chapter 4. Forgetting as a way to avoid deception

in the repeated encounters. The static mixed strategy described above can

be viewed as one single period, because the weights computed by S do not

change along time. Now the idea is to define several periods and calculate

the optimal mixed strategy for every period. The length of a period is the

duration of the period, i.e. the number of consecutive encounters of the game

during which agent S will use the same mixed strategy.

For a given period, the set of optimal weights is different from that of

other periods. Let Nh be the length of the h-th period. The next example

illustrates this concept. Suppose that we have a sequence of length L “ 100

encounters. Then, we can define for instance 4 periods of length N1 = 30, N2

= 10, N3 = 20 and N4 = 40. Fig. 2 shows a depiction of a dynamic mixed

strategy.

���

���
�� � � ��

� ��

�	�

���
	� � � ��

	 ��

�
�

���

� � � ��

 ��

���

���
�� � � ��

� ��

�

Figure 4.1: Example of a dynamic strategy with 4 different periods. The letters

inside each rectangle represent the length of that period and the mixed strategy

to be used in that period.

In order to calculate the best randomization under this scenario, we need

to apply constrained optimization methods to compute the values of the

optimal weights for each period, along with the optimal length of every

period. In principle, we should also compute the optimal number of periods

but this, as will be seen later, requires solving independent optimization

problems since the number of periods affects the total number of variables of

the problem. For this reason, the number of periods is assumed to be known.

In section 4.4.2 we will study the influence of this parameter.

The objective function of such constrained optimization problem is the

expression of S’s expected payoff for a dynamic strategy, which can be

computed as follows. Let pαh
1 , ..., α

h
mq be the set of weights that agent S uses

to choose an action during the h-th period. Then, within a given period, αh
j

represents the probability that S selects action aj. The difficult part of the

expression we need is computing the probability of not being guessed, which

is the same within a period but different from one period to another. After

the first period of length, say, N1, the observation vector O has the following

46

4.2. Behaviour of the agents

values (absolute frequencies of the responses given in the past by S):

O “

´

N1¨α
1
1 N1¨α

1
m

¯

Clearly, the probability of not being guessed PNG during the first period

is (1-α1
j), according to the same explanation given in Section 4.2.1. This

reasoning becomes more complicated when considering the observation vector

at the end of the second period, whose length is N2:

O “

´

N1¨α
1
1 ` N2¨α

2
1 N1¨α

1
m ` N2¨α

2
m

¯

According to these values, the probability at the end of the second period

that agent T selects action aj as a prediction is

Pguesspjq “
Oj

řm
j“1Oj

“
N1¨α

1
j ` N2¨α

2
j

N1 ` N2

so the probability of not being guessed at the end of the second period is

PNGpjq “ 1 ´ Pguesspjq “
N1p1 ´ α1

j q ` N2¨ p1 ´ α2
j q

N1 ` N2

What happens in the middle, i.e. during the second period? The probability

of not being guessed changes at every step because the number of times each

response has been observed by T varies along time. This variation can be

modeled as follows. At a certain step s of the second period (s is measured

from the beginning of the period, so 0 ď s ď N2), the probability that T

correctly predicts response aj is

Pguesspj, sq “
Oj

řm
j“1Oj

“
N1¨α

1
j ` s¨α2

j

N1 ` s
(4.5)

Notice we have added a second argument to this probability to emphasize

that it also depends on the step s of the simulation. The probability of not

being guessed is then

PNGpj, sq “ 1 ´ Pguesspj, sq “
N1p1 ´ α1

j q ` sp1 ´ α2
j q

N1 ` s

As stated before, notice that this probability changes at every step within

a period. Now, it is possible to generalize this reasoning to obtain the

probability of not being guessed at step s of the h-th period (0 ď s ď Nh):

47

Chapter 4. Forgetting as a way to avoid deception

PNGpj, h, sq “ 1 ´ Pguesspj, h, sq “

řh´1
k“1Nkp1 ´ αk

j q ` sp1 ´ αh
j q

řh´1
k“1Nk ` s

Argument h points out the period to which s belongs, although this is

just a formalism that will be eliminated below. The expression of the total

expected payoff with H periods of length Nh is a generalization of Eq. 4.2,

using 4.6 as the probability of not being guessed:

EPdynamic “

H
ÿ

h“1

Nh
ÿ

s“1

m
ÿ

j“1

αh
j ¨

řh´1
k“1Nkp1 ´ αk

j q ` sp1 ´ αh
j q

řh´1
k“1Nk ` s

pj (4.6)

The next expression should be also verified:
řH

k“1Nh “ L. Recall that L

is known in advance by both agents.

Once again, the reader should note that this expression is valid only

when T uses the strategy Proportional to Frequency. Further, S must know

in advance the length of the sequence (the exact number of steps of the

complete simulation) to add the last constraint to the optimization process.

With this approach, the number of unknown parameters is greater than

that of static mixed strategies. Recall that the number of periods H is

given by the user in advance, but the optimal length of each period Nh is

unknown. In addition, instead of computing only m weights as in the static

mixed strategy, we have to compute m¨H weights (H sets of weights) plus

the H lengths of the periods Nh for h “ 1, ..., H which are integer values.

The optimization problem in this case can be formulated as follows:

maxtαh
ijuYtNh

i u

H
ÿ

h“1

Nh
ÿ

s“1

m
ÿ

j“1

αh
j ¨

řh´1
k“1Nkp1 ´ αk

j q ` sp1 ´ αh
j q

řh´1
k“1Nk ` s

pj (4.7)

subject to:

m
ÿ

j“1

αh
j “ 1, h “ 1, ..., H

αh
j ě 0, j “ 1, ...,m h “ 1, ..., H

H
ÿ

h“1

Nh “ L (4.8)

48

4.2. Behaviour of the agents

As explained before, the number of unknown variables to be optimized

when we are computing a dynamic strategy with H periods is m¨H ` H “

Hpm ` 1q. Therefore, a different optimization problem with a different

number of variables is generated for each H value (see Fig. 4.1). The way to

find the best choice for H is to solve the optimization problem for different

H values and accept the strategy that provides the highest payoff for S.

4.2.3 A generalized notation for the expected payoff

In this part we will rewrite expression 4.6 with a slightly different notation

that simplifies and generalizes the previous one and that will be employed in

Section 4.3.1.

For a given step d of the simulation, let PCDpdq : N Ñ N be the index

(starting in 1) of the period that precedes the one to which d belongs, or 0

if d belongs to period 1. The step d is measured from the beginning of the

simulation, so in this case 1 ď d ď L. The name PCD stands for preceding.

Let Hpdq be the period to which step d belongs. Hpdq and PCDpdq can be

defined in terms of the lengths of the periods as follows:

PCDpdq “

$

&

%

maxtk P N :
řk

h“1Nh ă du if d ą N1

0 otherwise
(4.9)

Hpdq “ PCDpdq ` 1

Now let Y pdq be the number of steps measured from the beginning of

period Hpdq:

Y pdq “ d ´

PCDpdq
ÿ

k“1

Nk (4.10)

Fig. 4.2 depicts the meaning of these functions when applied for instance

to step d = 224 belonging to the third period of a strategy whose 5 first

periods have length 100, 90, 112, 76 and 120.

Finally, let OBSpd, jq be the value of cell Oj after d steps. It can be

expressed in terms of the weights used by S in his decisions, as follows. The

49

Chapter 4. Forgetting as a way to avoid deception

Y(d) = 34

PCD (d) = 2

 Period 1 Period 2 Period 3 Period 4 Period 5

d=224

1001 =N 902 =N 112
3

=N 764 =N

0

H (d) = 3

120
5

=N

 ...

Figure 4.2: Example of dynamic strategy and the notation explained in this section

otherwise part was written to make this function also valid for the case of

limited memory, as explained later.

OBSpd, jq “

$

’

’

&

’

’

%

´

řPCDpdq

k“1 Nkα
k
j

¯

` Y pdqα
Hpdq

j if d ą 0

0 otherwise

(4.11)

As can be seen, expression 4.11 is the numerator of 4.5, generalized for

an arbitrary number of steps d. The total number of observations in the

observation vector after d steps is exactly d:

m
ÿ

j“1

OBSpd, jq “

˜

m
ÿ

j“1

PCDpdq
ÿ

k“1

Nkα
k
j

¸

`

m
ÿ

j“1

Y pdqα
Hpdq

j “

“

˜

PCDpdq
ÿ

k“1

Nk

m
ÿ

j“1

αk
j

¸

` Y pdq

m
ÿ

j“1

α
Hpdq

j “

“

˜

PCDpdq
ÿ

k“1

Nk

¸

` d ´

˜

PCDpdq
ÿ

k“1

Nk

¸

“ d

so the probability of being guessed after d steps when choosing action aj

can be rewritten as OBSpd,jq

d
if d ą 0. In the first encounter (d “ 0), nothing

has been observed yet by agent T so we assume he makes a prediction in

a totally random way. The probability of being guessed is thus 1{m in this

case. With these functions, expression 4.6 can be rewritten as

50

4.3. Forgetting as a way to avoid deception

EPdynamicpdq “

m
ÿ

j“1

α1
j p1 ´ 1{mqpj

`

d
ÿ

s“2

m
ÿ

j“1

α
Hpsq

j

ˆ

1 ´
OBSps ´ 1, jq

s ´ 1

˙

pj (4.12)

where d is the number of steps of the simulation, provided that we have

defined enough periods to cover, at least, that number of steps.

4.3 Forgetting as a way to avoid deception

The key point of the optimized mixed strategies presented in [91] is that

they intend to manipulate the observations made by T so that S has long

periods to safely choose very good actions without being guessed. In other

words, they were exploiting the fact that T considers all the observations

done in the past and gives all of them the same importance. This means

that, if T observed a very frequent action many times in the past, and uses

Proportional to Frequency, then it is difficult for him to predict something

different in the future unless he observes a different action approximately

as many times as the first one. We can see this phenomenon as a sort of

”inertia” which makes T difficult to recover after a series of observations of

one very frequent action. For that reason, S manipulates with its actions T ’s

observation vector to his convenience, and in fact the optimization process

tells S the best way to do this at every step.

As mentioned in Sections 4.2.1 and 4.2.2, expressions 4.2 and 4.6 consider

that T is playing proportional to frequency with an unlimited memory, i.e. T

would be annotating every action aj forever. We hypothesize that a limited

memory for T would be beneficial for T (or harmful for S) because it would

attenuate or even eliminate this inertial behaviour that makes T easy to

manipulate. This way T can be thought of as a more intelligent adversary

that only takes into account the most recent observations and simply forgets

older ones.

51

Chapter 4. Forgetting as a way to avoid deception

4.3.1 Expected payoff with limited memory

The following reasoning can be applied to obtain the expression of the expected

payoff when T uses PF but has limited memory. As stated before, limited

memory means that the number of observations T can store in his memory

is limited to a certain number. When the memory is full and a new action

aj is to be stored, the oldest observation is simply deleted. Suppose that the

oldest observation was action at, then the deletion consists in decreasing the

value Ot in one unit. This idea can be applied to obtain an expression of the

expected payoff as follows. Suppose that we have observed N1 ` s steps, and

that agent S was using a mixed strategy of two periods of lengths N1 and

N2. Then, recall that after N1 `s steps, the observation vector of T will look

like

O “

´

N1¨α1
1 ` s¨α2

1 N1¨α
1
m ` s¨α2

m

¯

Suppose that now we add a new observation. We do not know what

exact action S will do in the next step, but we can model the behaviour

using the probability that the action is each of the possible ones. So after

one additional step, the same row will now look like

O “

´

N1¨α1
1 ` ps ` 1q¨α2

1 N1¨α
1
m ` ps ` 1q¨α2

m

¯

Notice that we have not added 1 unit to any component, but we have

added α2
j to every component of the vector. Now let us see what happens

if now T forgets the first observation he made, at stage, say, s0. This

means he will forget an observation that was made when S was in the first

period of his strategy, i.e. S was using the set of weights tα1
1, ..., α

1
mu at

that moment. Thus the probability that the action observed at step s0

was a1 is α1
1, the probability that it was a2 is α1

2,... and the probability

that it was am is α1
m. Since we do not know what really happened at that

step because we are modeling an expected payoff, we cannot subtract 1 to

any concrete component of the observation vector. What we should do is

subtract the probability that the action observed in that moment was each of

the possible actions, just in an analog way that we added that probability

to every component of the vector at the time when we considered a new

observation. Thus the observation vector will look like

52

4.3. Forgetting as a way to avoid deception

O “

´

pN1 ´ 1q¨α1
1 ` ps ` 1q¨α2

1 pN1 ´ 1q¨α1
m ` ps ` 1q¨α2

m

¯

It is important to note that the weights that are subtracted correspond

to those used by S at the moment of the observation that is being deleted.

This means that it is necessary to compute which set of weights was being

used by S at the moment of the observation. Function 4.11 was designed

for this purpose, because it calculates what was in the observation vector at

a certain step, no matter how many different periods were employed from

the beginning to that step. If the capacity of the memory is limited, it

is enough to delete everything that had been observed up to a certain step

corresponding to the one before the oldest step that is still stored in memory.

Thus the content of Oj after step d (1 ď d ď L) of the simulation with an

observation memory limited to mem steps (d ą mem) can be expressed as

OBSpd, jq´OBSpd´mem, jq. The case where d´mem ď 0 is nonsense but

was added to the definition of function OBS to enable a general expression

for the expected payoff. Obviously, @j, OBSpd´mem, jq “ 0 when d ď mem,

meaning that T has observed nothing before the beginning of the simulation.

Limited memory can be seen as a sliding window, as shown in Fig. 4.3.

�

�� ��

������������������

����

�������

�� ��

����

�������

���������

������������

Figure 4.3: Depiction of limited memory in a temporal line at step s of the sequence

in two cases: when d is smaller (left) and greater (right) than the capacity of the

memory. In the former case, agent T still remembers everything from the beginning

of the simulation but in the latter, he only remembers the mem last responses of

S

Summarizing, expression 4.12 can be generalized to account for limited

observation memory of mem steps as follows.

53

Chapter 4. Forgetting as a way to avoid deception

EPlimpd,memq “

m
ÿ

j“1

α1
j p1 ´ 1{mqpj `

d
ÿ

s“2

m
ÿ

j“1

α
Hpsq

j

ˆ

1 ´
OBSps ´ 1, jq ´ OBSps ´ 1 ´ mem, jq

mints ´ 1,memu

˙

pj (4.13)

4.4 Experiments and results

Recall that the experiments we have conducted are aimed at answering the

following questions already posed at the beginning of the chapter:

1. Do the results obtained with the analytical expressions match those

obtained by empirical simulations?

2. Do dynamic mixed strategies outperform a static mixed strategy in

terms of expected payoff?

3. Does a limited memory have an impact over the expected payoff? Is it

beneficial or detrimental for agent T to forget the oldest observations?

4.4.1 Experimental settings

The parameter configuration of the model instance that has been used in the

empirical evaluation of strategies was the following:

• Number of different actions: m = 5.

• Number of encounters: L “ 500.

• Payoff vectors: 15 different vectors were tested. The payoffs of every

vector are summarized in Table 4.2.

54

4.4. Experiments and results

Table 4.2: The 15 payoff vectors used in the experiments, separated in 3 groups

according to the payoff structure, and the maximum total payoff attainable by S

after 500 encounters

Vector Payoffs
Maximum reward possible

after 500 encounters

V1 1 0.9 0.95 0.8 0.85 500

V2 0.8 0.9 0.6 0.7 1 500

V3 1 0.85 0.7 0.4 0.55 500

V4 1 0.6 0.8 0.4 0.2 500

V5 0.25 0.01 0.5 1 0.75 500

V6 1.1 0.95 0.9 1.05 1 550

V7 1.2 1 1.1 0.9 0.8 600

V8 1.3 1 1.15 0.85 0.7 650

V9 1.2 1.4 1 0.8 0.6 700

V10 1.5 1 0.75 1.25 0.5 750

V11 0.8 0.6 0.4 1.5 1 750

V12 0.8 0.6 0.4 1.75 1 875

V13 0.8 0.6 0.4 2 1 1000

V14 0.8 0.6 0.4 2.25 1 1125

V15 0.8 0.6 0.4 2.5 1 1250

Evaluation of a strategy. To compare empirical and theoretical results

for every payoff vector, we did the following. For each payoff vector, the

numerical values pj are substituted in the theoretical expression as well as

the number of periods H that is required in case of dynamic mixed strategies

(recall that we tested H varying from 1 to 4), and the optimization algorithm

is then executed. The algorithm returns the values of the optimal strategy

for that payoff vector. Once we have such values defining the strategy, we

evaluate it theoretically by substituting them in the theoretical expressions

4.2 (if it is a static strategy) or 4.6 and 4.13 (if it is dynamic), to obtain

the expected payoff. In addition to this, we also use that strategy in 100

independent empirical simulations with the current payoff vector, and take

the average of the executions to compare it with the theoretical expected

55

Chapter 4. Forgetting as a way to avoid deception

payoff.

Optimization algorithm. The NMaximize command of the Mathematica

software package was used to solve the constrained optimization problems of

Eq. 4.3 and 4.7. The maximization it carries out is not analytical but employs

approximate heuristic methods that depend on the initial solution. However,

the same command was used for both the static and dynamic strategies so

this phenomenon affects both families of strategies in the same way.

Recall that the number of periods H is not part of the optimization

process but must be set by the user. In order to test the influence of such

parameter, we testedH varying from 1 to 4 periods and compared the results.

Insights on this are provided in Section 4.4.2. On the other hand, the optimal

length Nh of every period is part of the set of variables to optimize.

4.4.2 Results

In order to answer the first question posed above, first note that the theoretical

expressions have to be evaluated given the numerical values (period lengths

and weights) that define the concrete strategy being tested. In our case,

the strategies that we will evaluate are those obtained by the optimization

process explained in previous sections.

Fig. 4.4(a) shows a comparison of the expected and empirical payoff for

an optimal dynamic mixed strategy with 4 periods with unlimited memory

(see expression 4.6). The plot confirms an almost perfect matching between

the predicted and the actual payoff in all the payoff vectors. The payoff

is presented as a percentage of the accumulated payoff over the maximum,

which is the total payoff attainable if agent S always selects the action with

the highest payoff and he is never guessed. This would be the ideal situation

that only occurs when there is no adversary. Fig. 4.4(b) shows again a

perfect matching in case of limited memory for T , so expression 4.13 has

been proven to be correct as well.

We now analyze the performance of both static and dynamic mixed

strategies with unlimited memory to answer the second question posed above.

The results are shown in Fig. 4.5. This figure proves a very important result.

56

4.4. Experiments and results

45

50

55

60

65

70

75

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
 o

v
e

r
m

a
x

im
u

m
)

Payoff vector

Empirical

Expected

(a)

10

20

30

40

50

60

70

80

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
 o

v
e

r
m

a
x

im
u

m
)

Payoff vector

Empirical

Expected

(b)

Figure 4.4: Expected and empirical payoff for S of dynamic mixed strategies with

4 periods and unlimited memory (a) and with limited memory of 30 steps (b)

57

Chapter 4. Forgetting as a way to avoid deception

39

44

49

54

59

64

69

74

Payoff !"#$%

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
)

Static

2 periods

3 periods

4 periods

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

Figure 4.5: Expected payoff for S with unlimited memory for every payoff vector

15

25

35

45

55

65

75

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
 o

v
e

r
m

a
x

im
u

m
)

Payoff vector

4 periods, unlimited memory

4 periods, limited memory of 30 steps

Figure 4.6: Expected payoff for S of the 4-period dynamic strategies originally

designed under unlimited memory assumption, now being tested with both

unlimited and limited memory for every payoff vector

58

4.4. Experiments and results

In all the payoff vectors tested, the three optimal dynamic mixed strategies

outperformed the optimal static strategy. In addition, increasing the number

of periods was always beneficial in terms of the payoff attained. Recall that

these results do not come from a simulation but from a prediction made

using the expressions, so they are not influenced by random factors. Notice

that the greater gain in performance was achieved in vectors V11 to V15,

which are those where the highest payoff is much greater than the rest. This

is a particularly encouraging result for problems in which it is especially

important to do the best action as many times as possible.

In order to answer the third question, the impact of limited memory over

the expected payoff is going to be studied. As explained in Section 4.3,

limited memory is a violation of the assumptions made for the optimized

dynamic mixed strategies. In other words, the optimization process carried

out was assuming some facts that are not true anymore, so the results

obtained are not optimal now. Fig. 4.6 shows the expected payoff using the

optimized dynamic strategies with 4 periods (which were the best-performing

ones) both with unlimited and limited memory. Recall that all these strategies

being tested now were originally designed assuming an unlimited-memory

adversary so our aim now is to measure how the existing strategies are

affected if the assumption is violated. According to Fig. 4.6, in all cases

it was beneficial for T to have a limited memory as this allowed him to

recover faster from deception and consequently the payoff of S was much

lower. The case of payoff vectors V11 to V15 is dramatic. In these vectors,

S achieved the greatest gain with respect to static strategies using 4-period

dynamic strategies. But now that T has limited memory, however, S only

attains 20 % of the maximum payoff in V13, V14 and V15, 30 % in V12 and less

than 40 % in V11.

It is important to note that agent S could have designed better strategies

if he knew in advance the length of the limited memory, i.e. if he had an

accurate model of the adversary. In that case, he could exploit this knowledge

by substituting the objective function of the optimization problem by the one

with limited memory given in Section 4.3.1. As a result, S would not suffer

such payoff loss, but we think that assuming such an accurate knowledge of

T is too unrealistic as the information would be very asymmetric and favour

59

Chapter 4. Forgetting as a way to avoid deception

S even more than in the current model.

Strategies obtained with 4 periods. Examining the optimal dynamic

strategies obtained is useful to understand how agent S tries to cause deception

along time. Figure 4.7 shows four selected dynamic strategies with 4 periods.

The mixed strategy used in each period is depicted in a 5-axis star-plot where

the axes represent the m “ 5 available actions of the model a1, ..., a5. The

continuous and dashed polygons represent the probabilities of choosing each

action during each of the periods. Since the dynamic strategies depicted have

4 periods, we have plotted the first 2 periods in one plot (on the left side) and

the last 2 periods in another (on the right), to avoid excessive overlapping on

one single plot that makes it difficult to read. Notice that in the last period,

usually the best and second-best actions are the only ones with a probability

greater than 0 of being chosen. However these choices are supposed to be

safe because the rest of the actions were chosen many times during the first

periods. This behaviour is emphasized in vectors in which the best action

has associated a very prominent payoff in relation with the other actions, as

happens in V5 and V15. In the last period the strategy just chooses the best

action all the time, but since we assume unlimited memory, agent S will not

be able to recover from all the previous observations and as a result, it is still

safe to deterministically choose the best action during all the 4th period.

Insights into the behaviour with limited memory

In order to understand why limited memory is beneficial for T , we propose

to study the probability of making a correct guess, and how it changes along

time. This study must be done for one specific action since the evolution of

this probability is different from one action to another. Recall that dynamic

strategies are aimed at inducing confusion at the beginning to safely choose

the best action after the initial periods. For this reason, the most interesting

action to track this evolution is the best action (i.e. that with highest payoff)

of each vector. Fig. 4.8 shows the evolution of the probability of being

guessed correctly pOb{
řm

j“1Ojq when choosing the best action ab of payoff

vectors V1, V11 and V15. Agent T employs a 4-period dynamic mixed strategy.

The changes on the guess probability are more abrupt when the memory is

60

4.4. Experiments and results

V1

0

0,1

0,2

0,3

0,4
a1

a2

a3a4

a5

1st

2nd

0

0,1

0,2

0,3

0,4
a1

a2

a3a4

a5

3rd

4th

Length of the periods:

h1 “ 32

h2 “ 1

h3 “ 240

h4 “ 227

Payoff structure: p1 ą p2 ą p3 ą p4 ą p5

V5

0

0,2

0,4

0,6

0,8

1
a1

a2

a3a4

a5

1st

2nd

0

0,2

0,4

0,6

0,8

1
a1

a2

a3a4

a5

3rd

4th

Length of the periods:

h1 “ 273

h2 “ 1

h3 “ 1

h4 “ 225

Payoff structure: p4 ą p5 ą p3 ą p1 ą p2

V11

0

0,2

0,4

0,6

0,8

1
a1

a2

a3a4

a5

1st

2nd

0

0,2

0,4

0,6

0,8

1
a1

a2

a3a4

a5

3rd

4th

Length of the periods:

h1 “ 32

h2 “ 1

h3 “ 240

h4 “ 227

Payoff structure: p4 ą p5 ą p1 ą p2 ą p3

V15

0

0,2

0,4

0,6

0,8

1
a1

a2

a3a4

a5

1st

2nd

0

0,2

0,4

0,6

0,8

1
a1

a2

a3a4

a5

3rd

4th

Length of the periods:

h1 “ 271

h2 “ 1

h3 “ 1

h4 “ 227

Payoff structure: p4 ą p5 ą p1 ą p2 ą p3

Figure 4.7: Depiction of the optimal 4-period strategies obtained for vectors

V1, V5, V11 and V15 after applying optimization, assuming unlimited observation

memory of T . Each pi stands for the payoff of action ai.

61

Chapter 4. Forgetting as a way to avoid deception

0,15

0,2

0,25

0,3

0,35

0,4

1 101 201 301 401 501

Step of the sequence

P
ro

b
a

b
il

it
y

 o
f

c
o

rr
e

c
t

g
u

e
s

s Limited

memory

Unlimited

memory

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 101 201 301 401

Step of the sequence

P
ro

b
a
b

il
it

y
 o

f
c
o

rr
e
c
t

g
u

e
s
s

Limited

memory

Unlimited

memory

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 101 201 301 401
Step of the sequence

P
ro

b
a
b

il
it

y
 o

f
c
o

rr
e
c
t

g
u

e
s
s

Limited

memory

Unlimited

memory

Figure 4.8: Evolution of the probability that T successfully matches the action

chosen by S if S chooses the action with highest payoff of each vector. S is using

the optimal 4-period dynamic strategy obtained for payoff vectors V1 (top), V11

(middle), and V15 (bottom)

62

4.4. Experiments and results

limited because the observation vector starts to display the new behaviour

very quickly after a change of S. As a consequence, T is able to adapt to the

new situation faster and the deception that S tried does not work very well.

The cases of vector V15 is specially dramatic. As it was very important to

choose the best action as many times as possible because it has a remarkably

high payoff, S had planned a first period with several different bad choices,

and then switching to a second period with a single repeated best choice.

Now T quickly notices this change and when S starts choosing always the

best action in the second period, T learns this behaviour and starts being

successful in his predictions from a very early stage of this second period.

Since limited memory for T seems to be very harmful for S in relation

to unlimited memory, it may be interesting as well to find out what the

exact impact of memory capacity over the expected payoff is. In the extreme

case, with a memory of only one step of capacity, T would always make his

election based on the last action observed. Of course, if S were aware of this,

it would be very easy for him to exploit this behaviour to his own benefit,

but for now we will assume S does not know. We will study the impact

in relation to the payoff vector used in order to discover if limited memory

affects some vectors more than others. Figure 4.9 shows the results. The lines

represent the theoretically expected payoff for a given capacity value after

500 encounters. As can be seen in the plot, we have tested the capacity of

the observation vector varying from 1 to 500. A capacity of 500 in a 500-step

setting is equivalent to infinite memory.

First of all, the three plots confirm that the shorter the memory, the worse

for S or equivalently the better for T . As expected, the payoff vector has a

clear influence on the impact of limited memory. For instance in vectors V1

to V5 as well as V6 to V10, the slope of the curves 4 and 5 as well as 9 and

10 is greater than the others, because these vectors are “more difficult” than

the rest. By difficult we mean that the payoffs of the vector are very different

among them, so every time a good action is correctly guessed by T , it leads

S to a great loss in payoff. In these cases it is specially important to choose

good actions to avoid great losses. In vectors V11 to V15 one of the payoffs is

much greater than the rest as explained in preceding sections. All the curves

of that group have big slopes meaning that the impact of the capacity of the

63

Chapter 4. Forgetting as a way to avoid deception

40

45

50

55

60

65

70

75

0 50 100 150 200 250 300 350 400 450 500

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
 o

v
e

r
m

a
x

im
u

m
)

Memory capacity (in steps)

V1

V2

V3

V4

V5

45

50

55

60

65

70

75

0 50 100 150 200 250 300 350 400 450 500

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
 o

v
e

r
m

a
x

im
u

m
)

Memory capacity (in steps)

V6

V7

V8

V9

V10

15

20

25

30

35

40

45

50

55

0 50 100 150 200 250 300 350 400 450 500

P
a

y
o

ff
 a

tt
a

in
e

d
 (

%
 o

v
e

r
m

a
x

im
u

m
)

Memory capacity (in steps)

V11

V12

V13

V14

V15

Figure 4.9: Expected payoff for S as a function of the capacity of the observation

memory of T for every payoff vector. Agent S is using the optimal 4-period

dynamic strategy originally designed under the assumption of unlimited adversarial

memory

64

4.4. Experiments and results

memory is greater. Secondly, all the curves tend to present big slopes at the

beginning but turn horizontal after a certain value of capacity. This value

can be thought of as a threshold. Above this value, it is almost impossible

for T to recover from the past observations and adapt to a new situation

(strategy), which means that S has been successful in his deception.

On the influence of the number of periods. We have done all the

experiments so far with 4-period dynamic strategies. The value of the number

of periods originates a different optimization problem in each case, increasing

the number of variables in m + 1 as the number of periods increases in one

unit. For this reason, this value should not be too high to keep the size

of the optimization problem in reasonable limits. Further, it should be in

accordance with the number of encounters L that are going to take place,

since too short periods have a low impact on the performance of the overall

strategy, and the corresponding set of weights cannot modulate properly the

overall behaviour due to lack of rounds.

We have sampled H from 2 to 30 by running the optimization process

for each H value, for adversaries with memory capacity of 30, 100, 200 and

500 (unlimited memory) steps. The results are shown in Fig. 4.10 and

prove that the impact of dynamic strategies is different depending on the

adaptive capacity of the adversary, with a shorter memory representing a

more adaptive opponent. In case of unlimited memory, the best performance

is achieved with 4 periods, and increasing the number of periods does not

give S a higher payoff (the corresponding line in the plots becomes horizontal

very quickly). This is because unlimited memory allows for greater space for

deception and thus it is enough to have less periods. In case the observation

memory is limited, then it becomes more important to employ a strategy with

a high number of periods, because the deception achieved when S switches

from one period to another is quickly attenuated when oldest observations

are forgotten. In other words, agent T can quickly adapt and learn the new

behaviour. As a result, the effect of switching to a different set of weights

becomes useless after a very short time, and therefore another change in the

weights used by S is needed soon after the previous one. It can be seen in

the plots that in all cases (except for 30-step memory capacity), a threshold

65

Chapter 4. Forgetting as a way to avoid deception

50

51

52

53

54

55

56

57

58

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r

m
a
x
im

u
m

)

Number of periods

Adv memory 500 steps

Adv memory 200 steps

Adv memory 100 steps

Adv memory 30 steps

57

58

59

60

61

62

63

64

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r

m
a
x
im

u
m

)

Number of periods

Adv memory 500 steps

Adv memory 200 steps

Adv memory 100 steps

Adv memory 30 steps

39

40

41

42

43

44

45

46

47

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r

m
a
x
im

u
m

)

Number of periods

Adv memory 500 steps

Adv memory 200 steps

Adv memory 100 steps

Adv memory 30 steps

Figure 4.10: Expected payoff for S for payoff vectors V5 (top), V10 (middle) and

V15 (bottom), as a function of the number of periods of the optimized dynamic

strategy he employs. Strategies were found assuming the memory capacity of T

was known before the optimization process starts.

66

4.4. Experiments and results

on the number of periods exists that gives the maximum performance, and

increasing the number of periods beyond the threshold does not clearly

improve the payoff. This behaviour mirrors the results of unlimited memory,

although the threshold value depends on the payoff vector and the memory

capacity of the adversary. If the number of periods is high enough, then it is

possible to exploit the limited memory to achieve a greater payoff than with

unlimited memory, as shown in payoff vector V10, but this also depends on

the payoff vector of the problem.

Study of the competitive ratio against a clairvoyant adversary

An interest kind of analysis consists in comparing the payoff attained by S

using our strategies with that attained in the mixed equilibrium situation,

even though such equilibrium to mixed strategies cannot be played since T

does not know S’s payoff. The aim is to compute the competitive ratio, which

was defined originally for online tasks, i.e. those consisting in satisfying a

sequence of requests that arise one at a time, without knowledge of future

requests [54, 82]. It can be computed as the performance ratio of the algorithm

that does not know in advance which demands will be received, divided by

the payoff attained with an optimal, clairvoyant algorithm which knows in

advance all the requests and their ordering.

Our imitation problem is not exactly an on-line task because there is

nothing new at each repeated encounter that is unknown for any of the

agents before that turn. However, it is true that agent T does not have full

knowledge of the situation because he does not have access to S’s payoffs.

Therefore, we can compute the competitive ratio by considering the situation

in which agent T knows S’s payoffs, and thus he is able to compute and play

the mixed strategy prescribed by mixed Nash equilibrium.

By definition of Nash equilibrium [64], in case T plays the mixed strategy

prescribed by the Nash equilibrium, the best S can do is to do the same and

play his own mixed equilibrium strategy too. Any other strategy would

be worse for S. Therefore, the interesting situation is to assess (a) the

payoff attained by S when he uses a dynamic mixed strategy that was

designed assuming PF for T and T plays the mixed Nash equilibrium strategy,

67

Chapter 4. Forgetting as a way to avoid deception

with respect to (b) the payoff attained by S when both agents play Nash

equilibrium (which is the most clairvoyant situation because both agents

know the adversary’s payoffs and also know that the adversary knows their

own payoff, so they both have a motivation to play Nash equilibrium). As

stated before, if T plays Nash equilibrium, we know for sure that S’s payoff

when playing any strategy different than the Nash equilibrium (in particular,

when playing a dynamic mixed strategy) is smaller than the payoff when

playing S’s own Nash equilibrium. The aim is to assess how big this difference

can be, in ratio.

Such experiment has been conducted assuming a 4-period dynamic mixed

strategy for S that was found by the optimization algorithm under the

assumption that T was using PF. The strategy found was then played by

S against an adversary using the mixed Nash equilibrium. The one-shot

mixed Nash equilibrium strategy for T was computed using the Gambit

software tool 1. The results are depicted in Fig. 4.11. It can be seen in

the figure that the competitive ratio, as defined in Fig. 4.11, is very close to

1 in all cases. This means that a dynamic mixed strategy designed under the

assumption of and unlimited-memory PF adversary is not seriously damaged

if the adversary actually plays the one-shot mixed Nash equilibrium at every

encounter, instead of PF as he was assumed to play. Here, not seriously

damaged refers to S’s payoff in relation to the payoff S could have attained if

he also plays Nash equilibrium instead of a 4-period dynamic mixed strategy.

Of course, any of these payoffs are notably lower than the payoff S could

attain if T actually played PF (see the top-most series of Fig. 4.11(a)), but

this situation is not the one considered for the competitive ratio.

4.5 Conclusions

Static and dynamic mixed strategies for an agent in an adversarial model have

been successfully designed using numerical optimization methods. Analytical

expressions of the expected payoff for both strategies have been provided

and validated also from an empirical point of view. Furthermore, optimal

1It is freely available at www.gambit-project.org

68

4.5. Conclusions

200

250

300

350

400

450

500

550

600

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

Payoff vector

Agent S: Dynamic mixed strategy. Agent T: Prop to Frequency

Both agents: mixed Nash equilibrium

Agent S: Dynamic mixed strategy. Agent T: mixed Nash equilibrium

(a)

0,94

0,95

0,96

0,97

0,98

0,99

1

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

C
o

m
p

e
ti

ti
v
e
 r

a
ti

o

Payoff vector

(b)

Figure 4.11: Payoff attained by S when playing against different kind of adversaries

(a) and competitive ratio in the case that S plays 4-period dynamic strategies

designed originally for an unlimited-memory adversary playing PF, and T is

assumed clairvoyant and plays mixed Nash equilibrium (b). Note that (b) is the

quotient of the two bottom lines of (a)

69

Chapter 4. Forgetting as a way to avoid deception

dynamic mixed strategies have shown to outperform optimal static mixed

strategies in all the scenarios tested, specially when the difference between

the payoff of the best action and the payoff of the rest of actions becomes

greater.

However, such conclusions are valid only when we accept some assumptions

about the behaviour of the adversary, agent T . These assumptions include

that (a) the adversary has an unlimited observation memory (so an agent that

knows he is being watched can manipulate the observer agent with his own

behaviour), and (b) T uses a strategy proportional to the observed frequency

to make his predictions, which allows S to previously take this into account

when designing his strategies. If these conditions are not met, i.e. our model

of the opponent is not accurate, then the strategies previously designed are

not optimal any more, i.e. if T has a limited observation memory, then the

manipulation that S had planned has no effect, thus leading to important

(sometimes dramatic) losses in the payoff attained by S. Again, theoretical

expressions of the expected payoff were provided and successfully contrasted

with empirical simulations for this new situation. When T simply guesses

with the last action observed (1-step memory), the results were very bad for

S because in a mixed strategy a player often repeats probabilistically the

same action in consecutive turns. Notice that one easy way to avoid this

behaviour is to use the so-called Random among K best actions strategy,

which was one of the very first strategies presented in [67, 92].

70

Chapter 5

Considering statistical

dependence between actions

and events

In chapter 3 it was shown how theoretical expressions can predict the expected

payoff attained by one of the agents when using certain simple strategies,

while in chapter 4, a simplified version of the original model of Fig. 2.1 (in

which the external events were removed) was analyzed to find a randomized

strategy that changed along the time for one of the agents. The main

difference with the model we will develop here is that, in the aforementioned

chapters, the outcome of an encounter did not affect the payoff attainable at

the next encounter. This condition will be modified now.

The aim of this chapter is twofold. First, we present an extension of

the original model in which statistical dependence is introduced between the

action taken by agent S and the next event to arise. This is an important

issue the agents should take into account before making a decision, because

the action selected will have an influence over the next event to arise at the

next encounter, and such event determines the maximum payoff attainable

when the agents choose their actions. Second, decision strategies for agent S

that are not constant along the time, but change at certain time steps in the

iterated process, are proposed for this extended model. More specifically, we

tackle the strategy design as a constrained non-linear optimization problem

71

Chapter 5. Considering statistical dependence between actions and events

whose solution gives both the exact moment at which agent S must switch

its strategy, and which strategy it must use. The work departs from the

results shown in [91, 95] where such idea was developed on a model with no

statistical dependence between the events and the actions.

In connection with the aforementioned objectives, the experiments we

will conduct are aimed at answering the following questions:

1. Is there any substantial difference between the theoretical expected

payoff and the average payoff attained by empirical simulations in the

extended model?

2. Do dynamic mixed strategies outperform a static mixed strategy in

terms of expected payoff in the extended model?

3. How are dynamic strategies affected by the number of different periods

employed?

The remainder of the chapter is organized as follows. Section 5.1 describes

the main characteristics and components of the model used, including the

novel mechanism of statistical dependence between an action and the next

input. Section 5.2 deals with the need of randomized strategies, both static

and dynamic. The analytical expression of the expected payoff attained by

S when using such both kinds of strategies is given and explained in detail,

and the need of an optimization process for determining the best parameters

in this expression is motivated. In Section 5.3 we describe the computational

experiments performed and the results obtained. Finally, conclusions and

further work are discussed in Section 5.4.

5.1 A model with statistical dependence

Recall that the model described in Fig. 2.1 had several types of events

or stimuli. They were issued by the external environment (represented as

another agent R). As described by the authors of the original model in [67],

these events were independent and randomly generated following a uniform

probability distribution. Independence means there is no relation between

the current event, the current response and the next event. Uniformly

72

5.1. A model with statistical dependence

generated events means that each time an event is going to be generated,

all of them are equally probable. Notice that considering other probability

distributions different than the uniform would not change the methodology

of the existing works about this model ([92, 91, 95] and the two preceding

chapters). It just would require to repeat the experiments and adjust the

results, but the conclusions of such works do not depend on the probability

distribution employed because, in the model considered so far, the agents’

decisions have no influence on the forthcoming events and therefore, the

agents do not need to include any information about the event probabilities

in their decision strategies. Up to now, the probability distribution of the

events has been considered an external, inalterable constraint.

However, extending the model by introducing statistical dependence be-

tween the events of consecutive stages is a different matter. We can think of

several kinds of dependence. The first one is dependence between the event

of one stage and that of the next stage. The question is, is this information

useful for an agent in any way? In other words: before giving a response

to the current event, is it relevant for the decision maker to know (in a

probabilistic sense) which event will arise next? The answer is no, because

every time an event arises, the agent should try his best, disregarding the

next event since it will not be affected by the current decision. With this

kind of dependence, we would be in the same setting mentioned above, i.e.

it would be equivalent to considering no dependence at all from the agents’

point of view.

The second type of dependence is that between the action taken in the

current stage by one or both agents, and the next event to arise. That is

why an arrow labeled aj (action taken by S) goes from the agents back into

the environment (agent R) in Fig. 5.1, which represents the new version of

the model. This setting will be analyzed in the remainder of this chapter as

it has interesting implications. The most important is that, before making

a decision for the current event, an agent should consider that her choice

will affect not only the immediate payoff of the current stage but also the

maximum payoff attainable in the next stage, since not all the events offer

the same range of payoffs. Such a consideration captures the fact that some

events may be rare or critical, so they provide very high payoffs when the

73

Chapter 5. Considering statistical dependence between actions and events

Agent S

Agent T

Payoff Calc.

p’= pijF(aj,ag)

aj

guess = ag

reward = p’

Agent R

ei

record pair (ei ,aj)

aj

Figure 5.1: An imitation model that incorporates statistical dependence between

S’s actions and the next event to arise.

response is chosen properly, while some others are less important so they

provide very low payoffs regardless the action chosen. With this in mind,

now a good action is not just one that provides a high payoff for current

event (immediate payoff) but also causes events with very high rewards1 to

be more likely to arise at the next stage.

In our model, we introduce dependence only between the action chosen

by agent S and the next event to arise. We assume that the information

of such stochastic dependence is available only to agent S, in the form of a

conditional probability matrix C with dimensions m x n shown below.

Cpm ˆ nq “

¨

˚

˚

˚

˚

˝

P rX “ e1|Y “ a1s . . . P rX “ en|Y “ a1s

P rX “ e1|Y “ a2s . . . P rX “ en|Y “ a2s
...

. . .
...

P rX “ e1|Y “ ams . . . P rX “ en|Y “ ams

˛

‹

‹

‹

‹

‚

The value Cij stands for the conditional probability P rX “ ej|Y “ ais, so
ř

j P rX “ ej|Y “ ais “ 1 for every row i “ 1, ...,m. In this expression, X is

the discrete random variable representing the next event arising, and Y is the

discrete random variable representing the current action taken by agent S

that, as will be explained, is based on a randomized behaviour rule. Finally,

let (π1, ..., πn) be the probabilities of each event to arise at the first step of

the simulation. We cannot give conditional probabilities in this case as there

1Those for which the values of the corresponding row of the payoff matrix are all large.

74

5.2. Behaviour of the agents

is no previous action. For our experiments, we will take such probabilities as

uniform, πi “ 1{n for i “ 1, ..., n.

5.2 Behaviour of the agents

The strategy T will use in this chapter is called Proportional to Frequency

(PF) and has been described in section 2.4.2. In the next subsections, we

provide alternatives for S’s strategy.

5.2.1 Static mixed strategy for S under statistical

dependence

As in section 4.2.1, agent S may use a mixed strategy, which is a probability

distribution (also called a set of weights) over the actions. Again, we are

interested in computing the best randomization, which yields the largest

expected payoff for S when the randomization is employed to play against the

PF strategy of agent T . In order to compute S’s expected payoff corresponding

to a given set of weights, it is necessary to calculate the probability that agent

S eventually gets each of the possible payoffs of matrix P . This process

is slightly trickier than the one of section 4.2.1. This probability can be

computed as the product of the probabilities of several independent events

happening simultaneously. Agent S will attain payoff pij if three conditions

hold:

(i) Event ei must arise. We will refer to this probability as P rI “ eis.

In this case, I is the discrete random variable representing the occurrence of

each event at current stage.

(ii) Assuming that event ei has arisen, agent S must select action aj as

a response. We will note this probability (also called weight) by αij but can

be formally written as P rY “ aj|I “ eis.

(iii) Finally, S will only get the score pij if agent T does not successfully

predict her response.

The probabilities αij involved in condition (ii) constitute the mixed strategy

we are searching for. The calculation of the probability of conditions (i) and

(iii) is described below.

75

Chapter 5. Considering statistical dependence between actions and events

Condition (i): marginal probability of an event. first of all, recall

that we had previously defined another random variable X that represents

the occurrence of each event at the next stage. When the simulation advances

one step, then P rI “ eis adopts the value of P rX “ eis computed in the

preceding step, for all i “ 1, ..., n. Notice that we are not given the probability

distribution of I so the values P rI “ eis have to be computed using the known

conditional probabilities of matrix C and the mixed strategy of S mentioned

in (ii).

Actually the only data we have about the marginal probabilities P rI “ eis

of the ocurrence of the external events are those of the first step of the

game, P1rI “ eis “ πi. Recall that the decisions of agent S influence the

marginal probabilites, and such decisions are modeled by the mixed strategy

(αij, j “ 1, ...,m) it employs for each event ei. If we apply the Theorem of

total probability to the first step, we have

P1rY “ ajs “
ÿ

i

P rY “ aj|I “ eisP1rI “ eis

“
ÿ

i

αijπi, j “ 1, ...,m (5.1)

The sub-index of P indicates the step to which it is referred. Once those

values are known, they can be substituted in the following expression, which

results from applying again the Theorem of total probability since rY “

ajs, j “ 1, ...,m constitute another partition of the sample space:

P1rX “ eis “
ÿ

j

P rX “ ei|Y “ ajsP1rY “ ajs

“
ÿ

j

CjiP1rY “ ajs, i “ 1, ..., n (5.2)

Now, the values P1rX “ eis, i “ 1, ..., n can be taken as the values P2rI “

eis. The probability that an event arises at the next step when current step is

number 1 is equivalent to the probability that an event arises at current step

if current step is number 2. Then, since the values P2rI “ eis, i “ 1, ..., n

are known, they can be used to compute the same probabilities at step 2,

applying the same expressions indicated above. In general, the following

76

5.2. Behaviour of the agents

equations can be applied recursively for k ě 2:

PkrY “ ajs “
ÿ

i

P rY “ aj|I “ eisPkrI “ eis (5.3)

“
ÿ

i

αijPk´1rX “ eis, j “ 1, ...,m

PkrX “ eis “
ÿ

j

P rX “ ei|Y “ ajsPkrY “ ajs

“
ÿ

j

CjiPkrY “ ajs, i “ 1, ..., n (5.4)

PkrI “ eis “ Pk´1rX “ eis

Condition (iii): probability of not being guessed. Assume agent S is

using a mixed strategy so that it uses αij to select the action aj with payoff

pij. Assume agent T uses strategy PF, and let us suppose that a certain event

ei has arisen Li times during the repeated game. Then action aj will have

been selected Li ¨ αij times, and this number is what agent T has recorded

in Oij. The probability that T selects action aj as a prediction using PF is

then

Pguessij “
Oij

řm
j“1Oij

“
Li¨αij

Li

“ αij (5.5)

with m being the number of actions available. Actually the value Li is

unknown as it depends on the sequence of decisions made by S, but in

the last expression it is simplified and eventually disappears. Therefore the

probability of not being guessed correctly is 1 ´ Pguess “ 1 ´ αij.

Expected payoff with static mixed strategies. Using the probabilities

of the three conditions described above, the expected payoff for agent S after

a sequence of L inputs when it uses weights α = pαijq to select her actions

has the following expression:

EPstaticpαq “

L
ÿ

k“1

n
ÿ

i“1

PkrI “ eis¨
m
ÿ

j“1

αij¨ p1 ´ αijq¨ pij (5.6)

Notice that the probability that each event arises evolves along time because

it also depends on the choices made by agent S.

77

Chapter 5. Considering statistical dependence between actions and events

Optimal strategy maximizing the expected payoff. If we want to

maximize the expected payoff, we have to maximize expression 5.6 by computing

the values of the optimal probabilities αij. This leads to an optimization

problem with m x n variables since agent S uses a different mixed strategy

for each event (each strategy having m variables) and there are n different

events. It can be expressed as:

max
tαiju

#

L
ÿ

k“1

n
ÿ

i“1

˜

PkrI “ eis¨
m
ÿ

j“1

αij¨ p1 ´ αijq¨ pij

¸+

(5.7)

subject to:

m
ÿ

j“1

αij “ 1 i “ 1, ..., n

αij ě 0 i “ 1, ..., n; j “ 1, ...,m (5.8)

Recall that agent S, who is interested in solving the problem to get the

maximum reward, must know in advance the number of repetitions or steps

L that the game will have, and should be aware that T will use PF as well.

If the value of L is unknown, the agent will have to estimate it somehow.

The optimization problem should include all the terms of expression 5.6 that

depend on the values αij. Since the probabilities Pk also depend on them,

they must be part of the target function to be maximized.

5.2.2 Dynamic mixed strategy for S under statistical

dependence

We now introduce dynamic mixed strategies for the extended model with

statistical dependence, following the same idea of section 4.2.2. Recall that,

in a dynamic mixed strategy, the weights change along the time at some

concrete time instants. The expression of the expected payoff when using

dynamic strategies in the extended model is a bit different from that obtained

in the previous chapter, but is based on the same approach. As in section

4.2.2, we make use of the concept of period length, which is the number of

events during which agent S uses the same mixed strategy. In order to gain

flexibility and achieve a higher reward, we can define a different number of

78

5.2. Behaviour of the agents

�

�� �

� �

��α ������� �

��α ��

�

�� �

� �

��α ������� �

��α ��

	

�� �

� 	

��α ������� 	

��α ��
�

�� �

� �

��α ������� �

��α ��

�

�� �

� �

��α ������� �

��α ��

	

�� �

� 	

��α ������� 	

��α ��
�

	� �

� �

	�α ������� �

	�α ��

�

	� �

� �

	�α ������� �

	�α ��

	

	� �

� 	

	�α ������� 	

	�α ��

�

�� �

� �

��α ������� �

��α ��

�

�� �

� �

��α ������� �

��α ��

�

�������������

�������������

������������	

�������������

Figure 5.2: Example of different periods for each event in a model instance with

4 different events. The letters inside each rectangle represent the length of that

period and the mixed strategy to be used in it.

periods of different length for each event. We will call Nh
i the length of the

h-th period of event ei.

The next example illustrates this concept. Suppose that we have an input

sequence of length L and that a given event ei is expected to arise Li = 100

times along the sequence. Then, we can define for instance 4 periods of

lengths N1
i = 30, N2

i = 10, N3
i = 20 and N4

i = 40. For a given period,

the set of optimal weights is different from that of other periods because

the distribution of the payoffs in a row of the payoff matrix may differ a lot

from other rows. Fig. 5.2 shows another example of different dynamic mixed

strategies for each event, with different number of periods and/or different

moments of change. The length of the whole input sequence is L = 1000.

Suppose there exist n = 4 different kinds of inputs in our model and m = 4

different actions, so a mixed strategy is a vector of 4 weights. If the inputs

are uniformly distributed, then each event is expected to arise about 250

times, so the sum of the lengths of the periods for any event should be 250.

In order to calculate the best randomization under this scenario, we need

to obtain the expression of the expected payoff for a dynamic strategy. The

basics to obtain the expected payoff are again premises (i), (ii) and (iii) stated

in Section 5.2.1, as explained next. Some new issues have to be taken into

account to address the dynamic situation with statistical dependence.

Estimation of the number of occurrences of an event. Before com-

puting the probabilities of conditions (i) and (iii), recall that in the dynamic

case the number Li of occurrences of an event is unknown and depends on the

79

Chapter 5. Considering statistical dependence between actions and events

sequence of decisions made by S. We are able to compute only the marginal

probability PkrI “ eis of each event at step k. However, that information,

together with the total number of steps L of the game, is enough to estimate

Li, since Li “
řL

k“1 PkrI “ eis. In general, let Lk
i be the estimated number

of times event ei has arisen after k steps of the game, which can be computed

as

Lk
i “

k
ÿ

t“1

PtrI “ eis (5.9)

Since this is an estimation based on probabilities, it is expected to be a real

(not integer) value. However, this number will be used as a summation limit

in the next section, so in that case it has to be rounded to the nearest integer.

Condition (i): marginal probability of an event. From now on, we

will focus only on one single event ei. Let pαh
ijqj“1,...,m be the set of weights

agent S uses to choose an action as a response to an input of type ei during

the h-th period. Then, within a given period, αh
ij represents the probability

that S selects action aj when event ei has already arisen, also expressed as

P hrY “ aj|I “ eis. The novel part is that the values P hrY “ aj|I “ eis

are different from one period h1 to another h2, but the calculation method

is the same described in Eq. 5.3 and 5.4. In this case, we must be careful to

substitute the adequate values of P hrY “ aj|I “ eis according to the period

h to which step k (of the PkrY “ ajs being computed) belongs. In a more

formal way, Eq. 5.3 can be rewritten to consider a distinct mixed strategy

for each period, as follows:

PkrY “ ajs “
ÿ

i

PHipkqrY “ aj|I “ eisPkrI “ eis

“
ÿ

i

α
Hipkq

ij Pk´1rX “ eis, j “ 1, ...,m (5.10)

Function Hi maps an absolute step k : 1 ď k ď L to the period h whose set

of weights pαh
ijqj“1,...,m must be used to issue a response within the dynamic

strategy for event ei. It is based on the estimation of the number of times

80

5.2. Behaviour of the agents

that ei has arisen after k ´ 1 steps, as follows:

Hipkq “

$

’

’

’

&

’

’

’

%

1 if Lk´1
i ă N1

i

2 if N1
i ď Lk´1

i ă N1
i ` N2

i

3 if N1
i ` N2

i ď Lk´1
i ă N1

i ` N2
i ` N3

i

...

The above changes only affect the computation of the estimated number

of times each event arises along the simulation, see (5.9).

Condition (iii): probability of not being guessed. This is the only

part that remains unchanged from our results in [91, 95] so the explanations

of this section can also be found in those works. The difficult part of the

expression we need involves the computation of the probability of not being

guessed. After the first period of length, say, N1
i , the observation matrix O

has the following values in row i (representing absolute frequencies of the

responses given in the past by S to inputs of type ei):

T pn ˆ mq “

¨

˚

˝

.

N1
i ¨α1

i1 N1
i ¨α1

im

.

˛

‹

‚

The probability of not being guessed PNG during the first period is (1-α1
ij),

according to the same explanation given in section 5.2.1. This reasoning

becomes more complicated when considering row i of the observation matrix

at the end of the second period, whose length is N2
i :

T pn ˆ mq “

¨

˚

˝

.

N1
i ¨α1

i1 ` N2
i ¨α2

i1 N1
i ¨α1

im ` N2
i ¨α2

im

.

˛

‹

‚

According to the values of the former matrix after 2 periods, the probability

at the end of the second period that agent T selects action aj as a prediction

is

Pguessij “
Oij

řm
j“1Oij

“
N1

i ¨α1
ij ` N2

i ¨α2
ij

N1
i ` N2

i

81

Chapter 5. Considering statistical dependence between actions and events

so the probability of not being guessed at the end of the second period is

PNGij
“ 1 ´ Pguess “

N1
i p1 ´ α1

ijq ` N2
i ¨ p1 ´ α2

ijq

N1
i `N2

i

What happens in the middle, i.e. during the second period? The probability

of not being guessed changes at every step because the number of times each

response has been observed by T varies along time. This variation can be

modeled as follows. At a certain step s of the second period (s is measured

from the beginning of the period, so 0 ď s ď N2
i , with N

2
i being the length

of the second period), the probability that T correctly predicts response j to

event i is

Pguessij “
Oij

řm
j“1Oij

“
N1

i ¨α1
ij ` s¨α2

ij

N1
i ` s

and the probability of not being guessed is then

PNGij
“ 1 ´ Pguess “

N1
i p1 ´ α1

ijq ` s¨ p1 ´ α2
ijq

N1
i ` s

As stated before, notice that this probability changes at every step within

a period. Now, it is possible to generalize this reasoning to obtain the

probability of not being guessed at step s of the h-th period (0 ď s ď Nh
i):

PNGij
“

řh´1
k“1N

k
i p1 ´ αk

ijq ` s¨ p1 ´ αh
ijq

řh´1
k“1N

k
i ` s

(5.11)

If we want to express such probability as a function of the number t of

times that event ei has arisen, we can rewrite the above expression as follows:

PNGij
ptq “

řUiptq´1
k“1 Nk

i p1 ´ αk
ijq ` Yiptq¨ p1 ´ α

Uiptq
ij q

t
(5.12)

Uiptq “

$

’

’

’

&

’

’

’

%

1 if t ă N1
i

2 if N1
i ď t ă N1

i ` N2
i

3 if N1
i ` N2

i ď t ă N1
i ` N2

i ` N3
i

...

Yiptq “ t ´

Uiptq´1
ÿ

k“1

Nk
i

82

5.2. Behaviour of the agents

Function Ui maps the number of occurrences of event ei (including the

present one) to the period whose weights should be used at current stage,

according to the dynamic strategy for event ei. It is similar to function

Hi defined in the previous section, but its argument is not a step of the

simulation but the number of times event ei has arisen. It is basically a

formalism rather than a true mathematical function. Similarly, function Yi

computes the number of times that event ei has arisen during the current

period of the dynamic strategy, which is equivalent to the value of s in

expression 5.11. In other words, it is the number of occurrences of ei, but

counted from the beginning of current period.

Expected payoff with dynamic mixed strategies. The expression of

the total expected payoff with dynamic strategies is shown below. It is

a generalization of Eq. 5.6, using 5.12 as the probability of not being

guessed. The marginal probabilities of each event PkrI “ eis explained in the

previous section do not appear explicitly in this expression, but recall that

the estimations Li depend on such probabilities.

EPdynppαh
ijq, pN

h
i qq “

n
ÿ

i“1

tLiu
ÿ

k“1

m
ÿ

j“1

α
Uipkq

ij ¨PNGij
pkq¨ pij (5.13)

Optimal strategy maximizing the expected payoff. Recall that the

values Li ultimately depend on the values αh
ij. If we want to maximize the

expected payoff according to this expression, the optimization problem must

contain all those unknown weights simultaneously. The number of periods Hi

of a dynamic strategy is not part of the optimization process and must be set

by the user. For simplicity, we will consider that number to be the same for

all events, soHi =H for all i “ 1, ..., n. The length of the periods for strategy

i should equal the number of times that each event ei is expected to arise,

Li:
řHi

h“1N
h
i “ Li, i “ 1, ..., n. These should be additional constraints in

the optimization process that will be carried out to determine the optimal

values of the weights αh
ij and the periods Nh

i that we are searching.

With this approach, the number of unknown parameters is greater than

that of static mixed strategies. Instead of computing only m x n weights,

we have to compute H sets of weights per event, and all these variables are

83

Chapter 5. Considering statistical dependence between actions and events

related because they mutually influence the probabilities of the events that

will arise so the problem cannot be broken down in smaller optimization

problems as proposed in [91]. In total, the problem being solved has (n¨m¨H)

+ (n¨H) unknown variables. In this sum, the first product is the number of

weights αh
ij. A dynamic strategy has H periods, and there are m weights in

each period. Since we allow more flexibility, S maintains a different strategy

for each event so there are n independent dynamic strategies with H x m

weights each. The second product represents the lengths of the periods,

which are positive integers. Recall that the optimal length Nh
i of every

period is being optimized, and there are H periods in each of the n dynamic

strategies used by S. The problem is thus a non-linear mixed optimization

problem. The above summation yields 120 unknown real variables for a

simple instance of our adversarial model with m = 5 actions, n = 5 events

and dynamic strategies with H = 4 different periods, which means that the

complexity of the problem makes it hard to solve using exact mathematical

optimization methods. Formally the optimization problem can be described

as

max
tαh

ijYNh
i u

#

n
ÿ

i“1

tLiu
ÿ

k“1

m
ÿ

j“1

α
Hipkq

ij ¨PNGij
pkq¨ pij

+

(5.14)

subject to:

m
ÿ

j“1

αh
ij “ 1 i “ 1, ..., n;h “ 1, ..., H

αh
ij ě 0 i “ 1, ..., n; j “ 1, ...,m;h “ 1, ..., H

H
ÿ

h“1

Nh
i “ Li i “ 1, ..., n

Recall :Li “

L
ÿ

k“1

PkrI “ eis i “ 1, ..., n

5.3 Experiments and results

The experiments we conducted are aimed at answering the following questions:

84

5.3. Experiments and results

1. Is there any substantial difference between the theoretical expected

payoff and the average payoff attained by empirical simulations?

2. Do dynamic mixed strategies outperform a static mixed strategy in

terms of expected payoff?

3. How are dynamic strategies affected by the number of different periods

employed?

In order to answer these questions we follow the next steps.

Model Configuration. The parameter configuration of the model instance

that has been used in the empirical evaluation of strategies was the following:

• Number of events and actions: n = m = 5

• Length of the input sequences: L “ 500.

• Matrix of conditional probabilities:

C “

¨

˚

˚

˚

˚

˚

˚

˝

0.2 0.5 0.15 0.1 0.05

0.4 0.1 0.25 0.05 0.2

0.15 0.2 0.4 0.1 0.15

0.1 0.1 0.2 0.5 0.1

0.3 0.4 0.3 0 0

˛

‹

‹

‹

‹

‹

‹

‚

Payoff matrices. 15 different matrices were tested. For each matrix, a

set of m payoffs is defined, and every row of the matrix has a permutation

of the same set. The payoffs of every matrix are summarized in Table 5.1.

The rest of the rows of each matrix are different permutations of the set

displayed in the table. An extra column is shown containing the maximum

total payoff attainable by S after 500 events if it always chooses the action

with the largest payoff and is never guessed. This is the ideal situation that

would only occur when there is no adversary, so it is taken as a reference.

As can be seen in the table, the matrices are characterized by an increasing

difference between the payoff attained when choosing the best action, the

second-best action and so on. When this difference is big, it becomes much

85

Chapter 5. Considering statistical dependence between actions and events

more important to achieve a good balance between the payoff attained and

the confusion caused, since choosing low payoff actions to induce confusion

leads to a great loss in the payoff when compared with the greatest-payoff

action.

Table 5.1: Set of payoffs associated to each payoff matrix.

Payoff First row Max. reward

matrix after 500 ev.

M1 1 0.9 0.95 0.8 0.85 500

M2 0.8 0.9 0.6 0.7 1 500

M3 1 0.85 0.7 0.4 0.55 500

M4 1 0.6 0.8 0.4 0.2 500

M5 0.25 0.01 0.5 1 0.75 500

M6 1.1 0.95 0.9 1.05 1 550

M7 1.2 1 1.1 0.9 0.8 600

M8 1.3 1 1.15 0.85 0.7 650

M9 1.2 1.4 1 0.8 0.6 700

M10 1.5 1 0.75 1.25 0.5 750

M11 0.8 0.6 0.4 1.5 1 750

M12 0.8 0.6 0.4 1.75 1 875

M13 0.8 0.6 0.4 2 1 1000

M14 0.8 0.6 0.4 2.25 1 1125

M15 0.8 0.6 0.4 2.5 1 1250

Evaluation of a strategy. When a strategy is evaluated empirically, Algo-

rithm 1 is run 100 independent times and the payoff attained by S is annotated.

This value is transformed into a percentage over the maximum payoff attainable

in one 500-event execution (see Table 5.1). The average of such percentages

is taken as the empirical payoff of the strategy.

Optimization algorithm. An important point is the optimization method

employed to solve the problems formalized in Eq. 5.7 and 5.14. A 4-period

dynamic mixed strategy in an adversarial model with n = 5 events and m

86

5.3. Experiments and results

= 5 actions has 120 variables (100 real numbers representing the weights of

the strategies at each period, and 20 integer values representing the lengths

of the periods for each event) to be optimized. This optimization problem is

very hard to solve, so we have made use of a heuristic optimization method

called Differential Evolution (DE) because it is particularly suited for real

optimization. A lot of variants of DE have been proposed since it was first

introduced in [83, 71]. We have employed an enhanced auto-adaptive variant

called Self-adaptiveDE (SADE [72]) which shows specially good performance

in high-dimensionality problems. We used a Java implementation that is

freely available2 and has been already used in machine learning studies that

ultimately require real optimization [86]. No formal study has been conducted

to tune the parameters of the algorithm but some preliminary experiments

led to the following values:

• Crossover operator: binomial crossover

• Crossover probability: 0.5 for static strategies and 0.9 for dynamic

strategies

• Scaling factor: 0.5 for both static and dynamic strategies

• Population size: 50

• Number of iterations: 50000.

In order to answer the first question asked at the beginning of this section,

it is necessary to evaluate empirically and theoretically one (or more) mixed

strategy and check that both results match. We could pick any arbitrary

strategy for this, but we decided to employ the strategies obtained after

applying a basic DE optimization algorithm. The steps were the following:

1. For each payoff matrix, run a fast, basic DE twice (once to get an

optimized static strategy and once more to get a 4-period dynamic

strategy) with the above parameters. As a result, we get 15 optimized

static strategies and 15 optimized dynamic strategies. Since the only

goal here is to compare expected payoff with empirical values, it is not

2http://sci2s.ugr.es/EAMHCO/src2/advancesDEs.zip

87

Chapter 5. Considering statistical dependence between actions and events

Payoff matrix

M15M14M13M12M11M10M9M8M7M6M5M4M3M2M1

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r

m
a
x
im

u
m

)

85

75

65

55

45

35

Página 1

(a) Static mixed strategies

Payoff matrix

M15M14M13M12M11M10M9M8M7M6M5M4M3M2M1

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r

m
a
x
im

u
m

)

85

75

65

55

45

35

Página 1

(b) 4-period dynamic mixed strategies

Figure 5.3: Empirical (gray boxes) and expected payoff (lines outside the boxes)

for every payoff matrix using the optimized static and dynamic strategies. Values

expressed as percentages over the maximum possible. Data of empirical payoff

after 100 runs are depicted in gray boxes while expected payoff is represented by

lines outside the boxes.

88

5.3. Experiments and results

important to do several independent runs of the optimization process.

2. Evaluate every strategy theoretically, applying expressions 5.6 or 5.13

as required if the strategy is static or dynamic. As a result, we get 15

expected payoff values corresponding to static strategies and 15 values

corresponding to dynamic strategies.

3. Evaluate every strategy empirically by running 100 independent times

Algorithm 1 (section 2.4.1). The total payoff is annotated after each

run, and the mean of the 100 resulting values is taken as the empirical

payoff of the strategy. As a result, we get 15 empirical payoff values

corresponding to the static strategies and another 15 corresponding to

dynamic strategies.

4. Compare the expected and empirical payoff every strategy to check the

differences and the variability. Recall that the expected payoff indicates

the average behaviour, and that is why several independent runs are

required when empirically evaluating a strategy.

Figs. 5.3(a) and 5.3(b) show a comparison of the expected and empirical

payoff of the static and dynamic mixed strategies found in step 1. The

comparison was done as indicated in step 4. The plots confirm an almost

perfect matching between the expected and the empirical average payoff

attained.

In the case of the dynamic strategies, one of the most difficult parts is the

correct estimation of the number of occurrences of each event. These values

were also annotated in the simulations of the optimized 4-period dynamic

strategies, in order to contrast them with the theoretical estimation. The

results are displayed in Fig 5.4, which only shows four of the 15 payoff

matrices (M1,M5,M10 andM15) because the results on the others are similar.

An almost perfect matching was achieved between the expected and the

empirical average number of events of each type.

89

Chapter 5. Considering statistical dependence between actions and events

Event

e5e4e3e2e1

O
c
c
u
r
r
e
n
c
e
s

200

150

100

50

0

(a) M1

 !"#$

e5e4e3e2e1

%
&
&
'
(
(
"
#
&
"
)

200

150

100

50

0

(b) M5

 !"#$

e5e4e3e2e1

%
&
&
'
(
(
"
#
&
"
)

200

150

100

50

0

(c) M10

 !"#$

e5e4e3e2e1

%
&
&
'
(
(
"
#
&
"
)

200

150

100

50

0

(d) M15

Figure 5.4: Number of occurrences of each event during a 500-step simulation with

4-period dynamic strategies for four of the payoff matrices. Empirical (gray boxes)

and expected values (lines outside the boxes) after 100 independent runs with each

payoff matrix.

90

5.3. Experiments and results

39

44

49

54

59

64

69

74

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

P
a
y
o

ff
 a

tt
a
in

e
d

 b
y
 S

 (
%

 o
v
e
r

m
a
x
im

u
m

)

Payoff matrix

Expected static

Expected dynamic
4 periods

Figure 5.5: Expected payoff of the best static and 4-period dynamic strategies

found by SADE in five independent runs. Values expressed as percentages over

the maximum possible.

5.3.1 Static vs dynamic strategies: performance

comparison

We now analyze the performance of both static and dynamic mixed strategies

by comparing their expected payoff to answer the second question asked

above. For this experiment, the strategies tested are the best strategies

obtained for each payoff matrix after five independent runs of the SADE

optimization algorithm. The results are shown in Table 5.2 and Fig. 5.5.

The most important conclusion on this figure is the following. In all

the payoff matrices tested, the optimal 4-period dynamic mixed strategy

consistently outperformed the optimal static strategy. The differences are

statistically significant (p = 6.1E-5) at any significance level according to

a paired Wilcoxon signed rank test with the two samples of Table 5.2 (the

samples are paired due to the payoff matrices they share). Recall that each

value of the table does not come from a simulation but from a prediction

91

Chapter 5. Considering statistical dependence between actions and events

Table 5.2: Payoff attained by static and dynamic strategies found by SADE, as a

percentage over the maximum.

Strategy: M1 M2 M3 M4 M5 M6 M7 M8

Static 72.54 65.41 59.34 54.63 50.70 73.22 67.69 63.40

Dyn H=4 73.04 67.03 61.95 57.55 53.50 73.68 68.90 65.47

Strategy: M9 M10 M11 M12 M13 M14 M15

Static 60.11 55.87 50.65 46.74 43.85 41.64 39.89

Dyn H=4 62.59 58.16 54.42 51.39 49.01 47.61 46.25

made using the expressions, so it is not influenced by random factors apart

from the payoff matrix generated for each scenario. Notice that the greater

gain in performance was achieved in matrices M11 to M15, which are those

where the highest payoff is much greater than the rest. This is a particularly

encouraging result for problems in which it is very important to do the best

action as many times as possible because its payoff is much greater than that

of the rest of the alternatives.

5.3.2 On the influence of the number of periods

In order to provide insights on the impact the number of periods of a dynamic

mixed strategy has over the performance, an experimental sampling with

different number of periods has been done. Again, the SADE optimization

algorithm has been run five times independently to find a dynamic strategy

with a fixed number of periods, and the average of the best solutions found

in the five runs has been annotated. This has been repeated for H P

t1, 2, 4, 6, 10u in two different contexts: one with L “ 500 steps and one

with L “ 1000 steps, in order to assess how the number of steps affects the

conclusions. The improvements for each payoff matrix with respect to the

optimal static mixed strategy (H “ 1) are displayed in Fig. 5.6.

Fig. 5.6(a) shows that increasing the number of periods causes a severe

improvement at the beginning, but becomes less pronounced after four periods,

reaching its maximum at ten periods. This means that using more than four

periods hardly enhances performance. Therefore our choice of H “ 4 was a

good one to show the benefits of the dynamic strategies approach (although

92

5.3. Experiments and results

0

2

4

6

8

10

12

14

16

18

1 2 4 6 10 15 20

P
a
y
o

ff
 i

m
p

ro
v
e
m

e
n

t
(%

 o
v
e
r

s
ta

ti
c
 s

tr
a
te

g
y
)

Number of periods

M15

M14

M13

M12

M11

M5

M4

M3

M10

M9

M8

M2

M7

M1

M6

(a) L = 500 steps

0

2

4

6

8

10

12

14

16

18

1 2 4 6 10 15 20

P
a
y
o

ff
 i

m
p

ro
v
e
m

e
n

t
(%

 o
v
e
r

s
ta

ti
c
 s

tr
a
te

g
y
)

Number of periods

M15

M14

M13

M12

M11

M5

M4

M3

M10

M9

M8

M2

M7

M1

M6

(b) L = 1000 steps

Figure 5.6: Improvement achieved with dynamic mixed strategies for different

numbers of periods. Average results over 5 independent runs of the SADE

optimization algorithm for each payoff matrix.

93

Chapter 5. Considering statistical dependence between actions and events

some additional gains are also observed for up to ten periods). Further,

it is confirmed once again that dynamic mixed strategies provide a higher

improvement when applied to more difficult payoff matrices. For instance,

M15 is the most difficult one and where the improvement is the largest,

followed by M14 and M13. The same happens for matrices M5, M4 and M3,

and also for M10, M9 and M8.

In Fig. 5.6(b) the trend is similar, but the improvement is gradual and

continues growing until reaching 20 periods (although the gain when moving

from 15 to 20 is quite small). Since 1000 steps are being considered here,

we can expect that there is more room for improvement using more periods

because there is more time available to switch to a new strategy. Intuitively,

this should be done when T has learnt S’s strategy and can no longer be

deceived, except by switching to a new set of weights.

Notice that the optimal value of H also depends on the length of the

simulation, since it is necessary to play a given strategy for long enough

(before switching to a different one) in order to cause the intended manipulation,

reflected in how agent T ’s observation matrix changes. For this reason, the

improvement is small after H “ 4 and stops at H “ 10 with 500 steps,

but keeps growing gradually until H “ 20 when 1000 steps are played. The

trend of Fig. 5.6(b) also confirms that SADE still works well when increasing

the number of unknowns, as additional gains are achieved with H “ 15 and

H “ 20 provided that the simulation is long enough. Therefore, the little

and subsequent no improvement at all after H “ 10 in Fig. 5.6(a) is due

to the number of steps of the simulation (too short for strategies with more

than ten periods), and not to a fail of the optimization process.

5.4 Conclusions

An extension to an existing adversarial model has been proposed consisting

in introducing statistical dependence between actions and the next event.

Static and dynamic mixed strategies for an agent in this extended model have

been successfully designed using heuristic optimization methods. Analytical

expressions of the expected payoff for both strategies have been provided and

validated also from an empirical point of view. The design of good strategies

94

5.4. Conclusions

has been tackled as a non linear mixed optimization problem and solved

using heuristic techniques. Furthermore, dynamic mixed strategies found by

SADE have shown to outperform the best static mixed strategies found by

the same algorithm in all the scenarios tested, specially when the difference

between the payoff of the best action and the payoff of the rest of actions

becomes greater.

95

Chapter 6

Estimation of Fuzzy Stationary

Probabilities of a Markovian

patrolling strategy

The preceding chapters have focused on an imitation model. We have pre-

sented several strategies for agent S in the original model and in two extensions

of it. All the strategies share one feature: they assume that the adversary

has no information other than the past observations about S’s decisions.

Therefore, agent S intentionally makes decisions that are aimed at being

observed and recorded by T , so that in the long term, they will cause

deception. In this chapter, we switch our view to the other player, i.e. to

the watching agent, and propose a way to obtain more information from the

observations of the behaviour of a moving agent.

The application that motivates this work is the use of game-theoretic

techniques to develop patrolling models for autonomous robots. They are a

particular example of a Security Game played by the patrolling agent (robot)

and the potential intruder. As in the imitation game described so far, the

patroller computes the optimal randomized (Markovian) patrolling strategy.

Since the area being patrolled is assumed big enough to make it impossible to

protect all the locations all the time, randomness is necessary to prevent the

exploitation of some uncovered1 locations that would arise in a deterministic

1Not covered with enough frequency to avoid a successful attack. We will provide more

97

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

movement pattern. The intruder first learns the probabilities that guide

the randomized movement, which happens to be a Markov chain, and then

chooses a location to attack. Note that the only information to learn the

patroller’s probabilities consists of past observations about the patroller’s

behaviour. This has a clear similarity with the observations of agent T and

the deceptive actions of agent S in our imitation model.

In the remainder of this chapter, we present a mathematical technique

that allows the observer (in this case, the potential intruder) based on fuzzy

numbers and fuzzy Markov chains to extract more useful information from

the past observations about the patrolling strategy. The method is valid for

any Markov chain. As a simple example, consider that an external observer,

after conducting surveillance of a robot moving in an area, comes up with

vague information expressed in the following terms: The robot goes very

often to location 6 when it is in location 1; it almost never goes from there

to location 2; it does not come very often to location 3; it tends to go to

state 8 when it is located in location 5 almost surely, etc. The mathematical

method we present allows to capture the uncertainty associated with these

statements, and to carry computations with them. Finally, we also describe

an implementation of the method as an R package, and show how it can be

applied to the patrolling problem.

6.1 Markov chains

Markov chains are well-established probabilistic models of a wide variety of

real systems that evolve along the time. Countless examples of applications

of Markov chains to successfully capture the probabilistic nature of real

problems include areas as diverse as biology [3], medicine and particularly

disease expansion models [38, 77, 42, 39, 63], economy [45] -with emphasis on

market modelling [87], social science and many other engineering problems

such as wind speed modeling [75]. They are also the basis for Hidden

Markov models, which constitute themselves another active research field

with important applications in such problems as speech recognition [46] and

details later when the model is fully explained.

98

6.1. Markov chains

automatic music generation [78], just to cite a few. A broader survey can

be found in [28]. For our purposes, a Markov chain successfully represents a

randomized patrolling strategy of an autonomous agent following a randomized

movement to defend an area.

Assume we observe the state of a system at certain time points (i.e.,

time is discretized for our observations). An observation Xt obtained at

time t represents one state the system can be in. In fact, the collection

of observations X0, X1, . . . , Xn represent an indexed sequence of random

variables, each of which can take values within the system state space S “

t1, . . . , ru, which we will assume finite. Such indexed sequence tXt, t “

0, 1, 2, . . .u is known as a stochastic process [60] in discrete time and discrete

state space S.

A stochastic process tXt, t “ 0, 1, 2, . . .u with discrete state space and

discrete time is a Markov chain if, and only if, it has the Markov property,

which can be stated in simple terms as the fact that the state of the system

at the next time point depends only on the state at the current time, and it

is independent of the succession of states reached in the past. Formally, this

independence from the past is expressed as

P rXt`1 “ xt`1|Xt “ xt, Xt´1 “ xt´1, . . . , X0 “ x0s “

“ P rXt`1 “ xt`1|Xt “ xts (6.1)

When the probabilities P rXt`1 “ xt`1|Xt “ xts do not depend on the time

points t, t ` 1 but only on the time difference h between them, the chain is

said to be homogeneous (in the preceding example, h “ 1). In that case, it is

usual to collect the transition probabilities in a (stochastic) transition matrix

P phq “ pp
phq

ij q with dimensions r ˆ r representing the transition probabilities

in h steps, p
phq

ij “ P rXt`h “ j|Xt “ is. In general, P phq “ P h.

One of the features that characterize certain kinds of Markov chains is the

stationary distribution, which represents the probability of the chain being at

each state after an infinite number of time steps. It can also be thought of as

the percentage of time the chain spends at each of its states. The computation

of such probabilities requires an accurate knowledge of the transition matrix

of the chain. If it is not available, it has to be estimated in some way,

possibly from a set of observations of the chain, with the uncertainty that

99

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

any estimation procedure involves.

6.1.1 Related work

Several methods have been proposed to estimate transition probabilities, see

[31] and more recently [100]. Other works have addressed the problem of

computing stationary probabilities with uncertain data from a mathematical

programming point of view [16]. The approach adopted in the remainder of

this work is based on using fuzzy sets [103, 104] to cope with uncertainty,

thus considering fuzzy transition probabilities that constitute a fuzzy Markov

chain.

Quite a lot of research has been conducted on fuzzy Markov chains. Zadeh

himself envisaged their potential importance in fuzzy Markov algorithms in

[106]. Other recent successful applications of fuzzy Markov chains are [50]

which deals with processor power, [85] for speech recognition, and [35, 10] for

multitemporal image classification. Some works consider a fuzzy state space

[47]. On the contrary, in our proposal we consider crisp states but fuzzy

probabilities. In [51, 12] and in most of the works mentioned previously on

fuzzy Markov chains, the uncertain transition matrix is modeled as a fuzzy

relation between the states. Hence there is no restriction on the values it can

take, as far as they are membership grades in the closed interval [0, 1] that

in fact represent a perception of a classical Markov chain [50].

Another, more restrictive approach presented in a series of more general

works on fuzzy probability theory [22, 23, 24, 25, 26] consists in defining

fuzzy numbers for the transition matrix, subject to the crisp constraint

that they must add to 1, no matter how uncertain they are. Operations

with the fuzzy transition matrix are carried using a restricted fuzzy matrix

multiplication. Little work has been done in this line regarding Markov

chains, and the author’s ideas still remain as a theoretically feasible procedure

whose practical applicability has not been investigated. It may be suitable

when the input is a sequence of crisp observations of the chain. For those

reasons we have developed a new software package called FuzzyStatProb for

the R environment [73]. Moreover, to the best of our knowledge, currently

there are no implementations available -either free or proprietary- of any of

100

6.2. A method to compute fuzzy stationary probabilities

the fuzzy Markov chain approaches, so this aims to be the first one and pave

the way for further programming efforts in this field.

The method can be summarized as follows: the Fuzzy Probabilities of

the fuzzy transition matrix will be first decomposed in their α-cuts, which

will be used to solve the problem in separate pieces, and finally the results

will be aggregated to re-construct the fuzzy stationary probabilities we are

searching for. The starting point of the problem is a finite sequence of

observations of the system state at each step. This is the input required by

the FuzzyStatProb package we have developed. The output is provided as a

list of fuzzy numbers, one for each state of the input Markov chain, using the

FuzzyNumbers package described in [36] that provides plotting functionality

and is currently under active development.

The chapter is structured as follows. In Section 6.2, the background

and the mathematical method are formally developed. Section 6.3 describes

implementation details and the signature and options of the public function

of the package. Section 6.4 shows use examples and provides insights on

the effect of a greater number of observations over the fuzzy output of the

method. Finally, Section 6.5 is devoted to conclusions and further work.

6.2 A method to compute fuzzy stationary

probabilities

An homogeneous Markov chain is said to be irreducible if all states form a

single group so that every state is accessible from every other state, be it in

one or more than one step. A finite, irreducible Markov chain with transition

matrix P has a stationary distribution π such that π “ πP [60]. The

FuzzyStatProb package is aimed at computing a vector of fuzzy stationary

probabilities π̃ “ pπ̃1, . . . , π̃rq departing from an uncertain (fuzzy) transition

matrix P̃ . The remainder of this section briefly summarizes the ideas on

fuzzy Markov chains presented in [23], as they lie at the very core of our

package.

101

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

6.2.1 Fuzzy numbers

Let us consider an uncertain transition matrix P̃ “ pp̃ijq in which one or

more elements are uncertain. We capture the uncertainty regarding some of

the elements by substituing them by fuzzy numbers, which are a special case

of fuzzy set [103, 62]. Roughly speaking, a fuzzy set Ã over a universe U is a

set whose characteristic function is not binary, f : U Ñ t0, 1u as in a classic

set, but takes values in the unit interval, µ : U Ñ r0, 1s, so that µÃpxq is the

degree to which element x P U belongs to the fuzzy set Ã. A fuzzy number is

a fuzzy set over R representing a number with uncertainty [32]. For instance

the uncertain quantity “about 2” may be represented as a fuzzy number Ã

whose membership function reaches its maximum value 1 at x “ 2, but also

assigns non-zero membership degrees to other values close to 2, since a value

of, say, 1.8 is also (‘belongs also to’) “about 2”, not with degree 1 but a

bit less, say, 0.6. Then µÃp2q “ 1 and µÃp1.8q “ 0.6. We now explain this

concept formally as it is the mathematical structure used in our package to

cope with uncertainty in the transition and stationary probabilities.

Definition 1. The α-cut of a fuzzy set Ã for any α P r0, 1s is defined as the

set of elements that belong to Ã with degree α or greater:

Ãpαq “ tx P U : µÃpxq ě αu

Definition 2. A fuzzy number Ã is a fuzzy set on R such that

(i) Ãpαq are nonempty convex sets @α P r0, 1s

(ii) Ãpαq are compact sets @α P r0, 1s

(iii) Ãpαq satisfy:

(a) Ãpαq Ď Ãpβq for α ą β

(b) Ãpαq “
Ş

βăα Ãpβq for α P p0, 1s

Since α-cuts of a fuzzy number are closed intervals of R, they can be

written as Ãpαq “ rÃLpαq, ÃRpαqs.

The first two conditions are basically equivalent to the fact that the

membership function of a fuzzy number must be continuous and monotone,

102

6.2. A method to compute fuzzy stationary probabilities

which are two features of the output fuzzy numbers computed by our method

as will be shown later.

6.2.2 Fuzzy transition probabilities from observations

As stated in Section 6.1, our data consists of a finite sequence of observations

drawn from the system at consecutive time points. Each observation is the

state of the system at that time point, represented as an integer belonging to

the state space of the chain. In such sequence, an estimation of the transition

probability pij can be computed as the number of times Nij that state i was

followed by j in our data, divided by the number of transitions Ni observed

from i to another state (including i itself). However, this would be just a

point estimate and does not capture the uncertainty associated to it. Interval

estimation would be the next step as it also takes into account the sample size

and variance of the data, but it calculates an interval only for a significance

level that is fixed beforehand.

Our aim is to model each uncertain transition probability as a fuzzy

number that properly captures all the uncertainty of the data, regardless of

external parameters such as the confidence level. For this purpose, the fuzzy

number is obtained by the superposition of confidence intervals for the true

transition probabilities at different confidence levels, one on top of another, as

done in [23]. Although the significance level and the membership degree are

numerically the same in this case, it should be noted that they are completely

different concepts for which the letter α is commonly used. Such intervals

are in fact simultaneous confidence intervals for multinomial proportions,

since the problem of estimating the transition probabilities from a given

state can be reduced to that of estimating the parameters (proportions) of a

multinomial distribution. The method applied was introduced by Sison and

Glaz [80, 56] although many others had been proposed before.

103

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

6.2.3 Fuzzy Markov chains and restricted matrix

multiplication

As we have said, fuzzy numbers are used in those entries of the transition

matrix on which there is uncertainty. The rest of the elements could be

crisp since a crisp number is a special case of fuzzy number. However, the

uncertainty is on the probabilities but not on the fact that every row must add

to 1. Now assume a Markov chain with r states and fuzzy transition matrix

P̃ , then for a given α P r0, 1s, P̃ pαq “ pp̃ijpαqq represents a matrix of intervals.

Such matrix can also be thought of as the set of all rˆr matricesM such that

their elements fall inside their corresponding interval, mij P p̃ijpαq, and every

row adds to 1,
řr

j“1mij “ 1, i “ 1, . . . , r. The domain of row i for a given α

value is defined as the set of r-dimensional vectors that simultaneously fulfill

those two constraints for row i, i.e., the set of probability distributions that

row i could take in our uncertain transition matrix when we take its α-cuts

for that α. If we call ∆r “ tpx1, . . . , xrq : xi ě 0 and
řr

i“1 xi “ 1u, then

Domipαq “

˜

r
ą

j“1

p̃ijpαq

¸

č

∆r (6.2)

The domain of the matrix for a fixed α, Dompαq is defined as the Cartesian

product of the domain of every row and represents the space of matrices

we admit when the uncertainty level is α. Dompαq is closed and bounded

(compact) because it is the Cartesian product of compact sets. Therefore,

any continuous function applied to its elements will have a compact image. In

particular, as explained in [23, Chapter 6], the pow to exponent n of the rˆr

transition matrix (which is done as successive matrix multiplications) can be

thought of as a collection of r2 independent functions f
pnq

ij : Rr2 Ñ R, each of

which calculates the value of one entry of the resulting matrix by operating

with the entries of P : p
pnq

ij “ f
pnq

ij pp11, . . . , p1r, p21, . . . , p2r, . . . , pr1, . . . , prrq.

Such functions are continuous and thus, when applied on a compact set

like Dompαq for a concrete α, the image of all of them is another compact

set (a closed interval) of R. Such interval can be viewed as an α-cut of

the fuzzy number p̃
pnq

ij , i.e., p̃
pnq

ij pαq “ f
pnq

ij pDompαqq. By the representation

theorem [62], it is possible to reconstruct the fuzzy number p̃
pnq

ij as the union

104

6.2. A method to compute fuzzy stationary probabilities

of its α-cuts which, in theory, can be computed using the restricted fuzzy

multiplication described before with different values of α. For our problem,

we will use the superior of the α values as the union operator.

In particular, the stationary distribution π matches any of the (identical)

rows of a matrix Π such that Π “ limnÑ8 P
n, which means that theoretically,

π can be computed using matrix multiplication. We are thus in the same

case explained above which guarantees that the resulting images are compact

sets over R, or more precisely the α-cuts of the fuzzy stationary probabilities

we aim to calculate.

6.2.4 User-specified fuzzy transition probabilities

The package also supports user-specified fuzzy transition probabilities. Instead

of departing from a sequence of observations of the state of the chain at

consecutive time instants, the user provides a fuzzy transition matrix composed

of fuzzy numbers that constitute the transition probabilities. As explained

before, despite being fuzzy, these numbers must form a probability distribution

for each row. According to previous works [40], this can be formalized by

imposing the constraint that p̃i1‘p̃i2‘. . .‘p̃in Ě 1χ for each row i “ 1, . . . , n.

Here, Ã Ě B̃ Ø µÃpxq ě µB̃pxq@x P R, the symbol ‘ stands for the fuzzy

sum, and 1χ is the real number 1 represented as a fuzzy number (singleton).

Note this is a necessary condition to ensure that Dompαq is not empty, as

proved in [97] and, therefore, our code first checks this condition and stops

if it is not fulfilled.

One of the main applications of fuzzy probabilities is related to linguistic

probabilities [40], as we explain next. In case no data of the chain are

available, we may have to elicit the transition probabilities from a human

expert or group of experts. However, it can be difficult for them to express

their expertise using numeric probabilities which, in addition, must fulfill the

requirement of having a sum of exactly 1. Therefore, natural language can

help express probabilities in a more natural way. The transition probability

becomes a linguistic variable whose possible values are linguistic terms [105],

such as Very unlikely, Most likely, It may, Extremely likely and so on. Each

linguistic term has an underlying fuzzy number that captures the vagueness

105

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

inherent to natural language. The input information would consist of subjective

statements like The robot goes very often to location 6 when it is in location

1, it almost never goes from there to location 2, when it is placed in location

5 it seems to go to state 8 almost surely, etc.

It is not relevant for our implementation whether the fuzzy transition

probabilities have an associated linguistic term or not, but each fuzzy number

of the input transition matrix must be referred by a name when calling the

function (see the next section).

6.2.5 Computation of fuzzy stationary probabilities

The approach outlined in Section 6.2.3 did not make direct use of the member-

ship functions of the fuzzy transition probabilities, but worked only with their

α-cuts to establish Dompαq. Thus it is not necessary to fully reconstruct such

fuzzy numbers; it suffices to compute their α-cuts for the desired levels of

α. Each of those levels provides us with an interval transition matrix that

defines a domain, i.e., a space in which we admit our uncertain transition

matrix lies.

Now, in order to find the α-cuts of the fuzzy stationary probabilities

for a certain α, we just have to find, for each state of the chain, a pair

of matrices within Dompαq which respectively minimize and maximize the

stationary probability of that state. This is repeated independently for

every state. In other words, assuming a Markov chain with r different

states, and focusing on a significance level α, we have to solve r independent

minimization problems and r independent maximization problems in order

to compute r different α-cuts of the fuzzy stationary probabilities we are

looking for. Note that the search space is the same for all the problems,

Dompαq, but the objective function is not: for each state sj whose stationary

probability π̃j is being computed, it is the expression which yields that

stationary probability as a function of the entries of the transition matrix.

The function is first minimized to find the lower bound of the α-cut π̃jpαq,

and then maximized to find the upper bound. It seems clear that a general

expression cannot be calculated for any r-state chain to apply conventional

optimization techniques, since such function (in which all the coefficients pij

106

6.2. A method to compute fuzzy stationary probabilities

will be symbolic as well) would be too complicated for chains with more than

5 or 6 states. Furthermore, R symbolic capabilities are very poor and make

it unsuitable. For both reasons, heuristic search (optimization) algorithms

will be employed, as suggested in [23].

The α-cuts can be written as follows. Let gj : Rr2 Ñ R be a function that

represents the calculation of the j-th component of the stationary distribution

of an r-state Markov chain whose transition matrix is expressed as an r2-

dimensional vector pp11, . . . , prrq. As explained in the previous section, such

distribution can be obtained by means of matrix multiplication that converges

to a matrix Π with identical rows that are indeed the stationary distribution.

Using the same notation and assuming we are only interested in the first row

of Π, we can set gj “ limnÑ8 f
pnq

1j , i.e., gj is the function that computes

the element Π1j. Such function only applies sums and products during the

calculation process, so it is continuous and hence gjpDompαqq is a compact

set on R, i.e., an α-cut. Then

π̃jpαq “ rπjLpαq, πjRpαqs, j “ 1, . . . , r (6.3)

πjLpαq “ mintwj|wj “ gjpp11, . . . , prrq, pp11, . . . , prrq P Dompαqu (6.4)

πjRpαq “ maxtwj|wj “ gjpp11, . . . , prrq, pp11, . . . , prrq P Dompαqu(6.5)

Eq. 6.4 and 6.5 state that, in order to compute the lower and upper bounds of

an α-cut of π̃j (the j-th fuzzy component of the fuzzy stationary distribution

vector π̃), we must find the minimum and the maximum of the j-th component

of all the crisp stationary distributions corresponding to feasible crisp matrices,

understanding feasibility as belonging to the space Dompαq for that α. In

practice, the condition wj “ gjpp11, . . . , prrq is implemented as w “ wP .

The final step is to calculate an analytical expression for the membership

function of the fuzzy stationary probabilities. If the above α-cuts were exact,

i.e., if we could guarantee that the solutions for the optimization problems are

global optima, then the adequate way to proceed would be to interpolate the

lower and upper bounds for every sampled α to separately obtain expressions

for the left and the right sides of the membership function. The number of

points depends on how much precision we need for the membership function.

If the membership function has to be reconstructed very accurately, we should

probably sample α values in [0, 1] in steps of, say, 0.01, which yields 100 points

107

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

in each side. A larger step size of about 0.05 (20 points) is probably enough

for most real problems and is less time consuming.

However, since we have no guarantee that the α-cuts are exact because

they have been obtained by heuristic optimization procedures, regression

may also be a good choice, and the loss of precision is globally quite small.

The form of the regression function depends on what the points look like.

In order to allow for the maximum flexibility, it is the user who can choose

between spline interpolation or some kind of regression to be applied. More

details are provided in Section 6.3.

Numerical example. The first part of the example does not use data

from observations but serves to illustrate the mathematical procedure. Let

Ã “ pa, b, cq, where a, b, c P R, a ď b ď c, be a Triangular Fuzzy Number

(TFN), which can be viewed as a particular case of fuzzy number with the

following membership function:

µÃpxq “

$

’

&

’

%

px ´ aq{pb ´ aq a ď x ă b

pc ´ xq{pc ´ bq b ă x ď c

0 otherwise

Now consider the fuzzy transition matrix depicted on the left, formed by

TFNs which, in this particular case, are symmetric (although they do not

have to). Note some of them carry more uncertainty than others. Focusing

on a concrete value for α, for instance α “ 0.5, this matrix yields the interval

matrix P̃ p0.5q “ pp̃ijp0.5qq on the right, constituted by the 0.5-cuts of the

fuzzy transition probabilities of P̃ .

P̃ “

˜

(0.6, 0.7, 0.8) (0.2, 0.4, 0.6)

(0.3, 0.4, 0.5) (0.55, 0.6, 0.65)

¸

P̃ p0.5q “

˜

[0.65, 0.75] [0.3, 0.5]

r0.35, 0.45s [0.575, 0.625]

¸

Dom1p0.5q “ tpx, yq P R2 : x ` y “ 1, x P r0.65, 0.75s, y P r0.3, 0.5su

Dom2p0.5q “ tpx, yq P R2 : x ` y “ 1, x P r0.35, 0.45s, y P r0.575, 0.625su

Domp0.5q “ tpp11, p12, p21, p22q P R4 : pp11, p12q P Dom1p0.5q,

pp21, p22q P Dom2p0.5qu

108

6.2. A method to compute fuzzy stationary probabilities

Let g1, g2 be the functions that, for the given α “ 0.5, compute the elements

Π11 and Π12 of the (crisp) stationary matrix Π corresponding to each of the

2 ˆ 2 feasible matrices tP “ pp11, . . . , p22q P Domp0.5qu. Let us rename the

crisp stationary distribution pΠ11,Π12q of a feasible matrix as w “ pw1, w2q.

We are interested in finding four feasible matrices P1, P2, P3, P4 P Domp0.5q

which, respectively, minimize and maximize w1, and minimize and maximize

w2. The minimum and maximum w1 act as the lower and upper bounds of

the 0.5-cut π̃1p0.5q, and the same applies to w2 with respect to the 0.5-cut

π̃2p0.5q:

π1Lp0.5q “ mintw1|w1 “ g1pP q, P P Domp0.5qu “ mintw1|w “ wP,

P P Domp0.5qu

π1Rp0.5q “ maxtw1|w1 “ g1pP q, P P Domp0.5qu “ mintw1|w “ wP,

P P Domp0.5qu

π2Lp0.5q “ mintw2|w2 “ g2pP q, P P Domp0.5qu “ mintw2|w “ wP,

P P Domp0.5qu

π2Rp0.5q “ maxtw2|w2 “ g2pP q, P P Domp0.5qu “ mintw2|w “ wP,

P P Domp0.5qu

This procedure should be repeated by sampling α in [0, 1] with a step size

that depends on the precision desired to reconstruct the fuzzy stationary

vector from its α-cuts.

Now, suppose we do not depart from a fuzzy transition matrix (provided

by a human expert, for instance) as in the example above, but from a

collection of observations of the state of the chain at several consecutive

time instants, e.g. t1, 3, 2, 3, 4, 4, 2, 3...u. Then, in order to estimate the

α-cuts of the fuzzy transition probabilities that are needed to establish the

domains for each α, we resort to simultaneous confidence intervals at level

α of multinomial proportions, using the number of times that the chain

transitioned from one state to any other as the input. Once the CIs for the

transition probabilities have been computed to compose the interval matrices

P̃ pαq for each α, we can define the domains and go on with the rest of the

process as it remains unchanged. In this case, matrix P̃ is never constructed

109

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

explicitly because we are only interested in the α-cuts of the fuzzy entries,

as they constitute the constraints of the optimization problems.

6.3 The FuzzyStatProb package

We now describe the R implementation of the method in the FuzzyStatProb

package. The signature of the only public function is

fuzzyStationaryProb(data, options, step = 0.05, ...)

where:

• data: This argument can be: (a) An array of either strings or natural

numbers representing the observed states of the chain at consecutive

time points. The function first coerces the elements to a factor. (b) A

2D square matrix of strings representing fuzzy transition probabilities

directly given by the user. Each string should be contained in names

(fuzzynumbers) and refers to the corresponding FuzzyNumber object

in the fuzzynumbers vector (see below). When the transition probability

from state i to j is 0 (in the crisp sense), then entry pi, jq must be NA.

The matrix should have colnames and rownames set.

• options: a tagged list containing the following parameters:

– verbose: boolean, set to TRUE if progress information should be

printed during the process. It is set to FALSE if this option is not

specified.

– states: an array of strings indicating the states for which the

stationary distribution should be computed. The values should

match those specified in the data argument. If this option is not

specified, the fuzzy stationary probabilities are computed for every

state of the chain.

– acutsonly: boolean, set to TRUE if no regression should be done

after computing the α-cuts. This option is set to FALSE if not

specified.

– regression: a string with the type of the regression to be applied

at the end of the algorithm for fitting the membership functions

110

6.3. The FuzzyStatProb package

of the fuzzy stationary probabilities. Possible values are ‘linear’,

‘quadratic’, ‘cubic’, ‘gaussian’, ‘spline’ and ‘piecewise’ (piecewise

linear). In all cases (including the gaussian), a different curve is

fitted for each side of the fuzzy number. The gaussian option fits

curves of the form µpxq “ exp
`

´1
2

ˇ

ˇ

x´c
s

ˇ

ˇ

m˘

. The spline option

performs interpolation by a monotone cubic spline according to

the Hyman method (check ?splinefun) while piecewise computes

a piecewise linear membership function by connecting consecutive

points of the α-cuts with straight lines, using the built-in subclass

PiecewiseLinearFuzzyNumber of the FuzzyNumbers package. If

this option is not specified, quadratic regression is carried out by

default. If acutsonly is set to true, this option is ignored.

– ncores: positive integer representing the maximum number of

cores that can be used when running in parallel. If set to more

than 1, then each processor takes care of all the computations

involving one of the values of α that have to be sampled, via

parLapply function of the parallel package. Defaults to 1 (se-

quential) if not specified. If ncores is greater than the actual

number of cores in the computer, all available cores are used.

– fuzzynumbers: a tagged list with all the different FuzzyNumber

objects that appear in data when data is a matrix of labels;

ignored otherwise. Every element of the list must have a name,

referenced in at least one entry of data.

• step: step size for sampling α when computing the α-cuts. The

smallest α is always present and equals 0.001, and the rest of values are

calculated as α “ k¨ step for k ě 1. The greatest sampled value that is

always present as well is α “ 0.999. It is set to 0.05 when this option

is not specified.

• dots Further arguments to be passed to DEoptim.control to customize

the algorithm that finds the lower and upper bounds of the α-cuts by

solving a minimization and a maximization problem.

The value returned by the function is a tagged list that belongs to a

111

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

new S3 class called FuzzyStatObj. This class has only two specific methods,

print and summary, and both print exactly the same: a brief summary of

the processing that has been done, including the number of states, number

of observations, regression type, step size and time elapsed, and information

about the names of the two tags that should be queried to retrieve the

results, namely $fuzzyStatProb and $acuts. The former is a tagged list

of FuzzyNumber objects (see the FuzzyNumbers package cited before) whose

length equals length(options$states) and whose names match those in

options$nstates. The latter is another tagged list with the same length

and names, consisting of data frame objects that contain the α-cuts of

every output stationary probability, represented as pairs pπ̃jLpαq, αq and

pπ̃jRpαq, αq. The object at each position represents the fuzzy stationary

probabilities and α-cuts of the element of the options$states list that is in

the same position. Note that in case the user specifies within options$state

a state that is not found among the elements of the data argument, then the

corresponding position of $fuzzyStatProb and $acuts will be NA. When

setting acutsonly = TRUE, the object returned does not have a $fuzzyStat

Prob tag but only $acuts. Section 6.4 contains a fragment of code and the

R output showing how our function should be called.

6.3.1 Implementation issues

This section describes how each step of the mathematical process explained

before has been implemented in R and the external packages used. A general

scheme of the package is depicted in Figure 6.1, which has two possible

starting points depending on whether the user provides a sequence of observa-

tions or a fuzzy transition matrix.

Confidence intervals. The first step is to build the fuzzy numbers of the

fuzzy transition matrix, as the superposition of confidence intervals. The

procedure samples several α from 0 to 1; the step size of the sampling is

specified by the user in the step argument of the function. For each α

and for each state si of the chain, the method builds as many simultaneous

confidence intervals as transitions to other states sj have been observed from

112

6.3. The FuzzyStatProb package

= .001
DEoptim

(4 times)
Sequence of
observations
1, 3, 2, 2, 4…

DEoptim

(4 times)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

.999

.001

.999

.001

(a) (e)(f) (b) (c) (g)(h) (d)

cuts of cuts of

 nlm

(regression)

.999

.001

.999

.001

Fuzzy
transition

matrix

MultinomialCI

= .999

Get cuts
*

(*) Using function FuzzyNumbers::alphacut

Figure 6.1: Diagram of the function workflow and the R packages used in each

phase.

si. The procedure makes use of the MultinomialCI package created by

the first author [93] which implements the Sison and Glaz method [80] to

calculate simultaneous confidence intervals for multinomial proportions. It is

a direct R translation of the SAS code published in [56]. The FuzzyStatProb

loads this package during the execution.

If the user has provided directly the fuzzy transition probabilities, this

step is omitted and the α-cuts are taken directly from the fuzzy numbers

passed to the function.

Computation of α-cuts of stationary probabilities. The second (and

main) step of the method is to solve the optimization problems of Eq. 6.4 and

6.5, using some heuristic optimization technique. As explained in Section

6.2.5, the confidence intervals which are the α-cuts of the fuzzy entries

of the transition matrix are used in this step as box-constraints for the

optimization that searches for the minimum and maximum value of each

stationary probability within Dompαq. The DEoptim package [61] was employed

for this purpose. It is an implementation of the Differential Evolution (DE)

algorithm [83, 71] that has exhibited excellent performance in a wide variety

of hard continuous optimization problems. The package provides built-in

capabilities to specify box-constraints for every variable but cannot handle

equality constraints (in this case, the probabilities of every row of the matrix

being evaluated must add to 1), so they have to be controlled directly in the

113

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

objective function.

Computation of membership functions via regression. The third

and last step is to reconstruct the membership function of the fuzzy stationary

probabilities whose α-cuts were computed in the preceding step. Focusing on

regression, the user can choose among linear, quadratic, cubic and gaussian

regression. When fitting a quadratic or cubic membership function, care

should be put to avoid non-monotonous functions, not allowed in this context

for fuzzy numbers. To be precise:

• Since the membership function has to be continuous, it should intersect

with the horizontal axis in at least one point between 0 and the central

(core) point of the fuzzy number for the left-side function, and between

the central point and 1 for the right-side function. If the function cuts

the X axis in more than one point, only the greatest of those between

0 and the central point is considered, as well as the smallest of those

between the central point and 1.

• The function only needs to be monotonic in those intervals so local

minima cannot exist within them.

• The left and right functions (before normalizing to [0, 1]) must satisfy

f(core) = g(core) = 1, so the degrees of freedom decrease in one because

it is possible to write one of the curve parameters as a function of the

others.

It is clear that the problem can be viewed as a constrained minimization

of the squared error function with respect to the cloud of points representing

the α-cuts. First, the nls function for Non-linear least squares regression

is called. The diminished degrees of freedom are expressed in the formula

passed to nls, in which one of the parameters of the curve is expressed as

a function of the others. This function yields a solution satisfying f(core)

= 1, but the rest of the conditions are not guaranteed by nls so they have

to be checked in the obtained solution. If they are fulfilled, the solution is

accepted and returned.

114

6.3. The FuzzyStatProb package

If they are not fulfilled, and taking into account that regression accuracy

at this stage is not as fundamental as the satisfaction of all the constraints,

again Differential Evolution is used to minimize the total quadratic regression

error function for gaussian, quadratic and cubic regression. Constraints were

implemented in the objective function of DE. For quadratic regression, the

vertex must not fall between the horizontal cut-points and the core, and

such cut-points cannot be negative nor greater than 1. For cubic regression,

a turning point must not exist between the cut-points and the core. Linear

and gaussian regression are themselves monotonic so the only constraint to

be considered is the intersection with the horizontal axis. By definition, the

gaussian function does not intersect the horizontal axis at any point but for

practical purposes, it can be rounded to 0 when the membership degree is

smaller than, say, 0.01.

Computation of membership functions via interpolation. This option

always yields good and fast results, although the expression of the solution

is a bit more complicated. Interpolation with cubic spline functions can be

applied to the α-cuts to obtain a membership functions with a soft shape,

yet continuous. Monotonicity is guaranteed by the use of the hyman option

of the splinefun function of the stats package; see the associated vignette

for details. An alternative interpolation method supported is linear piecewise

interpolation, provided by the subclass PiecewiseLinearFuzzyNumber of the

FuzzyNumbers package. The membership function is built by connecting a

monotone2 sequence of points pxi, µpxiqq with straight lines.

Parallelism. The most computationally demanding task is the calculation

of the α-cuts of fuzzy stationary probabilities. It requires running DE twice

per each α value, and it is expected that any user samples at least ten α

values, which yields 20 full executions of the optimization process for each

state whose stationary probability has to be calculated. In our implementation,

when α has been set, the α-cuts are computed for all the chain states

indicated by the user, which means that lengthy computations have to be

2xi ă xi`1 ô µpxiq ď µpxi`1q for the left side function and xi ă xi`1 ô µpxiq ě

µpxi`1q for the right side

115

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

done before moving to another α value. For this reason, and since the

computations with each α are independent of the rest, we have introduced

parallelism at this level by using the built-in parLapply function of the

parallel package over a vector containing all the α values to be sampled.

Each physical core thus takes care of all the computations for a given α,

i.e., runs a minimization and a maximization for every state of the chain.

With this approach, possibly all the cores available will be engaged in heavy

computations since the number of sampled α’s will most likely be greater

than the number of processors. Such coarse grain parallelization is enough,

although the DEoptim function provides a built-in option to run in parallel

as well. Parallelism is disabled initially in our package (ncores = 1 by

defult) to prevent a sudden slowdown of the computer when getting all the

available processors engaged in our computations, but can be enabled by

setting ncores to a higher number, which is strongly recommended to keep

computation times within affordable limits.

6.4 Application example

Now we will show how the package can be used in a patrolling example.

We will generate a realization of a 10-state Markov chain which controls the

randomized movement of an autonomous robot that patrols an area, modeled

as a two-dimensional grid (Figure 6.2). Each cell of the grid is a state of the

chain, and the robot can only move to an adjacent cell at a turn (a discrete

time instant). The movement is based on a probability distribution over

the adjacent cells. Such distribution depends only on the current cell, and

not on the trajectory followed by the robot in the past to reach that cell, so

clearly it is a Markovian movement. It is time-homogeneous as well, since the

probabilities used by the robot do not change along the time. Such models

are very common in the field of autonomous robotic patrolling [6, 11]. There

are two main reasons that justify the randomness of this kind of strategies:

• The area is large enough to prevent full coverage with a deterministic

patrolling scheme, since some locations would remain uncovered in the

sense that the time between two consecutive visits is larger than the

116

6.4. Application example

01 02 03 04 05

06 07 08

09 10 11 12 13

0.05

0.95

0.41

0.59

0.23

0.44

0.33

1

0.65

0.35

0.55

0.450.53

0.47 0.52

0.48 0.35

0.35

0.3

1

0

0

0

0

0

0

0

0

(a)

01 02 03 04 06 07 09 10 11 12

01 0 0.05 0 0 0.95 0 0 0 0 0

02 0.41 0 0.59 0 0 0 0 0 0 0

03 0 0.23 0 0.44 0 0.33 0 0 0 0

04 0 0 1 0 0 0 0 0 0 0

06 0.65 0 0 0 0 0 0.35 0 0 0

07 0 0 0.55 0 0 0 0 0 0.45 0

09 0 0 0 0 0.53 0 0 0.47 0 0

10 0 0 0 0 0 0 0.48 0 0.52 0

11 0 0 0 0 0 0.35 0 0.35 0 0.3

12 0 0 0 0 0 0 0 0 1 0

(b)

Figure 6.2: (a) Optimal Markovian patrolling strategy according to game-theoretic

techniques for a map with 13 cells. Reproduced from [11]. Non-reachable states

5, 8 and 13 were not considered for the Markov chain. (b) The 10x10 transition

matrix.

117

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

time needed by the intruder to successfully penetrate that location.

• The robotic movement should be unpredictable when facing a full

knowledge opponent, i.e., one that has perfectly learnt the robot’s

patrolling scheme. This situation arises when the opponent has been

observing the robot’s movement for a long time before choosing the

cell to attack. A randomized movement leads to maximizing the robot

payoff even in this case, since the only knowledge the intruder may

acquire is the exact probability distribution employed by the robot, not

the actual trajectory he will follow at each walk. Note that considering

the strongest adversary is the common assumption in game theory as

it is the worst case one may face.

Although the problem is usually solved with game-theoretic techniques3,

it represents indeed a good example of a Markov chain with very large state

space (actually, proportional to the extension of the area under consideration).

The concept of stationary distribution becomes relevant since it gives an

idea of the locations in which the robot spends less time or, in other words,

the places that have less coverage and are thus the most promising to be

attacked4. If the assumption of perfect adversarial knowledge is eliminated,

i.e., if we consider a more realistic situation in which the adversary only

has a sequence of observations of the robot’s movement, then what the

opponent does is actually an estimation of stationary probabilities based

on the observations from an unknown Markov chain that guides the robot’s

movement. A fuzzy estimation captures more information about the observa-

tions than a point estimate.

6.4.1 Departing from a sequence of observations

The Markov chain of Figure 6.2 depicts the game-theoretic solution [11]

against a full knowledge opponent in a map with 13 cells, three of which

3Most often the equilibrium strategy in security games is computed using Mixed Integer

Linear Programming.
4This deserves further discussion since a poorly covered location may not be worth

attacking if the benefits of a successful attack are low for the attacker, but intuitively

coverage is modeled by the stationary distribution.

118

6.4. Application example

are not reachable and thus discarded for our Markov chain. Assume the

adversary observes a realization of 200 time instants of this chain. The

R code that generates such sequence of observations and then computes

the fuzzy stationary probabilities is shown below. robotStates = c("01",

"02", ..., "12") is a 10-component string vector with the names of the

states, and transRobot is the transition matrix of Figure 6.2. Both variables

are defined in an .Rda file attached to the package. The states argument

is not specified in the call to fuzzyStationaryProb, which means the fuzzy

stationary probabilities of all the states should be computed.

R> library(‘‘markovchain")

R> mcPatrol <- new("markovchain", states = robotStates, byrow = TRUE,

+ transitionMatrix = transRobot, name = "Patrolling")

R> set.seed(666);

R> simulatedData <- rmarkovchain(n = 200, object = mcPatrol,

+ t0 = sample(robotStates, 1))

R> mcfit = markovchainFit(simulatedData)

R> vsteady = steadyStates(mcfit$estimate)

R> quadratic = fuzzyStationaryProb(simulatedData, list(verbose = TRUE,

+ regression = "quadratic", ncores = 4), step = 0.1);

Parallel computation of a-cuts in progress...finished successfully

(elapsed: 194.04 s.)

Applying quadratic regression to obtain the membership functions of

fuzzy stationary probabilities...

Fitting memb.func. for state: 01 02 03 04 06 07 09 10 11 12

Now we demonstrate different types of regression to fit the membership

function of the fuzzy stationary probabilities.

R> linear = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression="linear", ncores = 4), step=0.1)

R> cubic = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "cubic", ncores = 4), step = 0.1)

R> gaussian = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "gaussian", ncores = 4), step = 0.1)

R> splines = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

119

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

+ regression = "spline", ncores = 4), step = 0.1)

R> pwlinear = fuzzyStationaryProb(simulatedData, list(verbose = FALSE,

+ regression = "piecewise", ncores = 4), step = 0.1)

Finally we are going to depict in a figure the α-cuts of the fuzzy stationary

probabilities computed by our program, and the functions fitted to them. The

code relies on the plot function for FuzzyNumber objects that were created

for each state as a result of the regression. In order to compare to the

output given by the steadyStates function of the markovchain package,

dashed lines have been drawn at the stationary probabilities calculated by

that function, using function abline.

R> m <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 11), nrow = 4,

+ ncol = 3, byrow = TRUE)

R> layout(mat = m, heights = c(0.25, 0.25, 0.25, 0.25))

R> for (i in robotStates){

+ par(mar = c(4, 4, 2, 1))

+ plot(linear$fuzzyStatProb[[i]], col = "blue", main =

+ paste("State ", i), cex.lab = 1.1, lwd = 2);

+ plot(quadratic$fuzzyStatProb[[i]], col = "red", cex.lab = 1.1,

+ lwd = 2, add = TRUE);

+ plot(cubic$fuzzyStatProb[[i]], col = "springgreen4", cex.lab =

+ 1.1, lwd = 2, add = TRUE);

+ plot(gaussian$fuzzyStatProb[[i]], col = "black", cex.lab = 1.1,

+ lwd = 2, add = TRUE);

+ plot(splines$fuzzyStatProb[[i]], col = "orange", cex.lab = 1.1,

+ lwd = 1, add = TRUE);

+ abline(v = vsteady[1,i], lty = "dashed");

+ points(linear$acuts[[i]]);

+ }

R> plot(1, type = "n", axes = FALSE, xlab = "", ylab = "")

R> plot_colors <- c("blue", "red", "springgreen4", "black", "orange")

R> legend(x = "top", inset = 0,

+ legend = c("Linear", "Quadratic", "Cubic", "gaussian", "Spline"),

+ col = plot_colors, lwd = 2, cex = 1, bty = "n", horiz = FALSE)

R> summary(quadratic)

120

6.4. Application example

. Fuzzy stationary probabilities of a Markov chain with 10 states

. Probabilities have been computed for states: 01

. Number of input observations: 200

. Parameters:

Step size: 0.1

Execution was done in parallel (4 cores used)

Regression curve for output membership functions: quadratic.

To retrieve the results use $fuzzyStatProb and $acuts with

this object

. Computation of alpha-cuts took 194.04 seconds

. Membership functions regression took 34.71 seconds

Let us retrieve the FuzzyNumber object corresponding to the stationary

probability of state 01, and the α-cuts from which such number was built.

The α-cuts are returned as a data.frame object in which the first column

represents the probability and the second, the membership degree α. Note

there are always two rows (rows 1 and 10, 2 and 11, etc) with the same y

(membership) value, one for the lower bound and the other for the upper

bound of that α-cut. This way, the limits of the α-cuts can be plotted as if

they were 2D points.

R> quadratic$fuzzyStatProb[["01"]]

Fuzzy number with:

support=[0, 0.294939],

core=[0.15054, 0.15054].

R> quadratic$acuts[["01"]]

x y

1 0.0001480569 0.001

2 0.0336437600 0.100

3 0.0510534166 0.200

4 0.0725788506 0.300

5 0.0936139309 0.400

6 0.1111090020 0.500

7 0.1300688992 0.600

121

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

8 0.1387885412 0.700

9 0.1505397380 0.999

10 0.3822915287 0.001

11 0.3046761228 0.100

12 0.2549764457 0.200

13 0.2434278879 0.300

14 0.2104871378 0.400

15 0.1949950486 0.500

16 0.1763232720 0.600

17 0.1625293319 0.700

18 0.1505397380 0.999

An important remark should be made here. There are no output α-cuts

for α “ 0.8 and α “ 0.9. This is due to the fact that the intervals of

the input interval matrices were very small, and thus the minimization and

maximization problems for each of these values have all the same solution.

It is because the multinomial confidence intervals are very small when the

required confidence level is also very low. This happens for α “ 0.8, 0.9 and

0.999. In practice, the corresponding output α-cuts are points rather than

intervals, and actually it is the same point for those three values of α. By

the representation theorem [62], the membership degree of all the elements

within such very small output α-cuts is actually the greatest of them, i.e.,

0.999, so the others can be discarded and the 0.999 is the only one retained.

In our implementation, before carrying the regression we always discard those

α-cuts such that the distance from the lower or upper bounds of the α-cut

to the fuzzy number vertex (which is the point estimate of the stationary

probability) is less than 0.005.

The graphical output of the above code is the plot of Figure 6.3. A

number of details can be observed. The gaussian curve usually provides the

best fit, and this is actually the reason for which it was included as an option

in our package. However, it has the most complicated expression. Cubic

fitting also fits quite well. Regarding the shape of the figures, it is clear that

the fuzzy numbers are in general not symmetric around the point estimate

as the vertex is sometimes very close to 0 or 1 so the points cannot spread

much in that side.

122

6.4. Application example

0.0 0.1 0.2 0.3 0.4

0
.0

0
.4

0
.8

State 01

x

0.00 0.10

0
.0

0
.4

0
.8

State 02

x

0.0 0.2 0.4

0
.0

0
.4

0
.8

State 03

x

0.0 0.2 0.4

0
.0

0
.4

0
.8

State 04

x

0.0 0.2 0.4

0
.0

0
.4

0
.8

State 06

x

0.00 0.10 0.20

0
.0

0
.4

0
.8

State 07

x

0.00 0.10 0.20 0.30

0
.0

0
.4

0
.8

State 09

x

0.00 0.15 0.30

0
.0

0
.4

0
.8

State 10

x

0.0 0.2 0.4

0
.0

0
.4

0
.8

State 11

x

0.00 0.10 0.20

0
.0

0
.4

0
.8

State 12

x

Linear

Quadratic

Cubic

Gaussian

Spline

Figure 6.3: Fuzzy stationary distribution of the Markov chain of Figure 6.2,

computed using 200 observations (several fitting curves available are shown).

Dashed lines correspond to stationary probabilities returned by the function

steadyStates of markovchain.

123

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

Moreover, fuzzy stationary probabilities provide more information than

a point estimate based on the transition proportions from the sequence of

observations. A comparison between stationary probabilities of states 6

and 8 serves to illustrate how beneficial it is to have fuzzy estimations.

According to point estimates (which are the central point of the output

fuzzy numbers), the stationary probability of being at state 6 is smaller

than that of state 8. However, the α-cuts of fuzzy stationary probability

for state 6 are wider and the fuzzy number is more right-skewed than state

8, indicating there is more uncertainty on this value and suggesting that

it could be actually greater. In fact, the true stationary probabilities are

π6 “ 0.1946, π8 “ 0.1154, and therefore π6 ą π8. Note, additionally,

that the output of the function steadyStates from markovchain consists

of punctual estimates of stationary probabilities. The package is able to

compute bootstrap confidence intervals for the transition probabilities but

not for the stationary probabilities. Therefore fuzzy transition probabilities

are more informative. As could be expected, the point estimates of stationary

probabilities given by steadyStatesmatch the 1-cuts of our fuzzy stationary

probabilities.

6.4.2 Departing from user-specified fuzzy transition

probabilities

Now we depart from a matrix of fuzzy numbers that constitute the fuzzy

transition probabilities and are given directly by the user. In this case we

assume they are linguistic probabilities as each of them is represented by a

(meaningful) linguistic term: EU (“extremely unlikely”), VLC (“very low

chance”), SC (“small chance”), IM (“it may”), MC (“meaningful chance”),

ML (“most likely”), EL (“extremely likely”). However, we could have chosen

the names to be meaningless labels like ”L1”, ”L2”, . . . , ”Ll” where l stands

for the number of different fuzzy numbers employed in the matrix. The

linguistic transition matrix created for our problem (Figure 6.4(a)) is similar

to that in Figure 6.2(a). We have used Trapezoidal Fuzzy Numbers (TrFNs)

in accordance to previous studies about the probability ranges that human

people associate with each linguistic expression [17] (Figure 6.4(b)). Every

124

6.4. Application example

row of the fuzzy matrix fulfills the condition of being a well-formed probability

distribution in the sense stated in Section 6.2.4.

1 2 3 4 5 6 7 8 9 10

1 - VLC - - ML - - - - -

2 IM - IM - - - - - - -

3 - SC - SC - IM - - - -

4 - - EL - - - - - - -

5 MC - - - - - SC - - -

6 - - IM - - - - - IM -

7 - - - - IM - - IM - -

8 - - - - - - IM - IM -

9 - - - - - SC - IM - SC

10 - - - - - - - - EL -

(a)

0,0

0,5

1,0

0 0,2 0,4 0,6 0,8 1

Very low
chance
(VLC)

Small
chance
(SC)

It may
(IM)

Meaningful
chance
(MC)

Most
likely
(ML)

Extremely
unlikely (EU)

Extremely
likely (EL)

(b)

Figure 6.4: (a) User-specified linguistic transition matrix. (b) Associated TrFNs.

The code to compute the fuzzy stationary probabilities from this matrix

is the following. Variable linguisticTransitions is a matrix of labels

(strings) defined in an .Rdata file of the package. Its entries should match

the names of allnumbers, which is a list of FuzzyNumbers.

R> EU = TrapezoidalFuzzyNumber(0, 0, 0.02, 0.07);

125

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

R> VLC = TrapezoidalFuzzyNumber(0.04, 0.1, 0.18, 0.23);

R> SC = TrapezoidalFuzzyNumber(0.17, 0.22, 0.36, 0.42);

R> IM = TrapezoidalFuzzyNumber(0.32, 0.41, 0.58, 0.65);

R> MC = TrapezoidalFuzzyNumber(0.58, 0.63, 0.8, 0.86);

R> ML = TrapezoidalFuzzyNumber(0.72, 0.78, 0.92, 0.97);

R> EL = TrapezoidalFuzzyNumber(0.93, 0.98, 1, 1);

R> allnumbers = c(EU, VLC, SC, IM, MC, ML, EL);

R> names(allnumbers) = c("EU", "VLC", "SC", "IM", "MC", "ML", "EL");

R> rownames(linguisticTransitions) = robotStates;

R> colnames(linguisticTransitions) = robotStates;

R> linear = fuzzyStationaryProb(linguisticTransitions, list(verbose =

+ TRUE, regression = "linear", ncores = 4, fuzzynumbers =

+ allnumbers), step=0.1)

The code that plots the results (Figure 6.5) is similar to the previous

section so we will not reproduce it again. Notice the perfectly trapezoidal

shape of the output fuzzy sets defined by its α-cuts, mirroring the shape of

the input probabilities. In this case, package markovchain cannot deal with

uncertain transition probabilities directly, in absence of data.

6.4.3 On the reduction of uncertainty with more

observations

It is clear that the longer we observe a chain, the more certain we are about its

behaviour. The causes of this intuitive idea can be mathematically explained

as follows. When the number of observations increases, the simultaneous

confidence intervals for multinomial proportions are smaller, representing a

less uncertain value or, equivalently, a more accurate estimation. Since such

intervals are indeed the α-cuts of our fuzzy transition matrix at the input, this

means that the membership functions of our fuzzy transition probabilities

are narrow and sharper in shape (they tend to be more singleton-like).

Equivalently, as the intervals act as bound constraints for our optimization

problems to compute the minimum and maximum stationary probabilities

that are possible for each of the chain states, the feasible region of those

optimization problems gets smaller and therefore, the minimum and the

126

6.4. Application example

0.05 0.15 0.25 0.35

0
.0

0
.4

0
.8

State 01

x

0.00 0.04 0.08 0.12

0
.0

0
.4

0
.8

State 02

x

0.00 0.05 0.10 0.15 0.20 0.25

0
.0

0
.4

0
.8

State 03

x

0.00 0.04 0.08

0
.0

0
.4

0
.8

State 04

x

0.1 0.2 0.3 0.4

0
.0

0
.4

0
.8

State 06

x

0.00 0.05 0.10 0.15 0.20

0
.0

0
.4

0
.8

State 07

x

0.05 0.10 0.15 0.20 0.25

0
.0

0
.4

0
.8

State 09

x

0.05 0.10 0.15 0.20 0.25

0
.0

0
.4

0
.8

State 10

x

0.05 0.15 0.25

0
.0

0
.4

0
.8

State 11

x

0.00 0.04 0.08 0.12

0
.0

0
.4

0
.8

State 12

x

Linear

Figure 6.5: Fuzzy stationary distribution of the Markov chain of Figure 6.2,

computed from user-specified fuzzy transition probabilities.

127

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

maximum found are closer to each other. This leads to smaller output α-cuts,

which yields narrow, sharper fuzzy stationary probabilities as they also more

singleton-like, mirroring the same phenomenon we have described for the

input fuzzy transition probabilities.

In order to check this empirically, the following experiment has been

designed. We have drawn a sequence of 1000 observations of the same Markov

chain. From them, we take only the first 100 observations and use them to

estimate the stationary probability of one of the states. After that, we do the

same with the first 300 observations, then 500 and then the whole sequence of

1000 observations. The aim is to compare the uncertainty of the output fuzzy

stationary probabilities obtained with every sequence. We have focused only

on state 1, because the resulting fuzzy number in Figure 6.3 is quite wide so

there is space for improvement. We have used a step size of 0.1 and piecewise

linear fitting for the output membership function. The R code written (run

just after the code shown above) for this experiment is shown below.

R> mcPatrol <- new("markovchain", states = robotStates, byrow = TRUE,

transitionMatrix = transRobot, name = "Patrolling")

R> set.seed(666);

R> data4 = rmarkovchain(n = 1000, object = mcPatrol, t0 = sample(

+ robotStates, 1))

R> data1 = data4[1:100];

R> data2 = data4[1:300];

R> data3 = data4[1:500];

R> pw1 = fuzzyStationaryProb(data1, list(states = "01", regression =

+ "piecewise", ncores = 4), step = 0.1)

R> pw2 = fuzzyStationaryProb(data2, list(states = "01", regression =

+ "piecewise", ncores = 4), step = 0.1)

R> pw3 = fuzzyStationaryProb(data3, list(states = "01", regression =

+ "piecewise", ncores = 4), step = 0.1)

R> pw4 = fuzzyStationaryProb(data4, list(states = "01", regression =

+ "piecewise", ncores = 4), step = 0.1)

R> plot(pw1$fuzzyStatProb[["01"]], cex.lab = 1.1, lwd = 2, main =

+ "State 01")

R> plot(pw2$fuzzyStatProb[["01"]], add = TRUE, cex.lab = 1.1, lwd = 2,

+ col = "springgreen4")

128

6.4. Application example

R> plot(pw3$fuzzyStatProb[["01"]], add = TRUE, cex.lab = 1.1, lwd = 2,

+ col = "red")

R> plot(pw4$fuzzyStatProb[["01"]], add = TRUE, cex.lab = 1.1, lwd = 2,

+ col = "blue")

R> plot_colors <- c("black", "springgreen4", "red", "blue")

R> legend(x = "topright", inset = 0.1, xjust = 1,

+ legend = c("100 observations", "300 observations",

+ "500 observations", "1000 observations"), col = plot_colors,

+ lwd = 2, cex = 1, horiz = FALSE)

R> abline(v = 0.14045093);

Now we will retrieve the support (0-cut) of the FuzzyNumber objects representing

the fuzzy stationary probability of state 01 departing from different number of

observations in order to check whether increasing the observations decreases

the uncertainty (hence the amplitude of the fuzzy number).

R> support1 = alphacut(pw1$fuzzyStatProb[["01"]], 0);

R> support2 = alphacut(pw2$fuzzyStatProb[["01"]], 0);

R> support3 = alphacut(pw3$fuzzyStatProb[["01"]], 0);

R> support4 = alphacut(pw4$fuzzyStatProb[["01"]], 0);

R> cat("Support amplitude of stat.prob. of state 1 with 100 obs: ",

+ abs(support1[1] - support1[2]), "\n",

+ "Support amplitude of stat.prob. of state 1 with 300 obs: ",

+ abs(support2[1] - support2[2]), "\n",

+ "Support amplitude of stat.prob. of state 1 with 500 obs: ",

+ abs(support3[1] - support3[2]), "\n",

+ "Support amplitude of stat.prob. of state 1 with 1000 obs: ",

+ abs(support4[1] - support4[2]), "\n")

Support amplitude of stat.prob. of state 1 with 100 obs: 0.3874938

Support amplitude of stat.prob. of state 1 with 300 obs: 0.325542

Support amplitude of stat.prob. of state 1 with 500 obs: 0.2910723

Support amplitude of stat.prob. of state 1 with 1000 obs: 0.2541191

The results are plotted in Figure 6.6, which confirms our hypothesis. The

black fuzzy number is the widest, although (by chance) the center is already

a fairly good approximation of the true π1. The green fuzzy number is a bit

129

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

State 01

x

100 observations

300 observations

500 observations

1000 observations

Figure 6.6: Fuzzy stationary probability of state 1 (piecewise linear fitting)

obtained after 100, 300, 500 and 1000 observations. The vertical line is the true

π1 “ 0.14045093.

narrower. The red and blue fuzzy numbers exhibit a sharper shape, indicating

they carry less uncertainty. The blue one, computed after a sequence of 1000

observations, is the narrowest, hence carries the least uncertainty, and is

centered around a good punctual approximation. The phenomenon can be

checked in the amplitudes of the base (support) of the membership functions,

as shown at the end of the above fragment of code. The explanation for this is

that the more observations we have, the narrower the multinomial confidence

intervals for the transition probabilities, or equivalently, the narrower the

α-cuts that constitute the fuzzy number of the stationary probability.

As a concluding remark concerning the uncertainty represented by a fuzzy

number, it should be pointed out that, in some cases, fuzzy numbers are

asymmetric as they tend to indicate where the true value could be located.

This can be observed in some of the plots of Figure 6.3, specially in states 2

and 4. In both cases, the α-cuts have very large upper bounds at the base,

indicating that values greater than the center are more likely than those

smaller than it, i.e., the possibility that values located in the right side are

130

6.5. Conclusions

the true stationary probability is greater. This is the kind of information

that crisp numbers cannot provide.

6.5 Conclusions

In this chapter we have proposed a method to obtain more information

from the observations of the randomized (Markovian) behaviour of a moving

agent. We have adopted the role of a potential intruder who first conducts

surveillance about the defender in a conflict situation and then decides the

best location to attack. We have approached this problem as the estimation

of stationary probabilities of an unknown Markov chain from a sequence of

observations of the patroller’s behaviour. The transition probabilities are first

estimated using fuzzy numbers, and then we carry all the computations with

them to obtain fuzzy stationary probabilities. Our work serves as a proof of

concept of the method proposed in [23] and, at the same time, provides

the first freely available, ready-to-use implementation of a fuzzy Markov

chain estimation procedure in a widely extended programming environment,

namely the R language.

The R package developed for this purpose, FuzzyStatProb, has a number

of advantages. The main of them is the ease of use: it just requires to have

a sequence of observations represented as integers. In addition, it provides

great flexibility as it allows the user to specify the kind of regression to be

used for the output membership functions, and it can run in parallel, thus

exploiting the computational facilities of modern multi-core architectures

of conventional computers without any additional software requirement for

parallelism. The results rely on the FuzzyNumbers package that has been

recently published, is under active development and will most likely be

adopted by the fuzzy community working on the R implementation of other

fuzzy tools and methods.

The implementation has demonstrated the usefulness of the method, and

the advantages of having fuzzy estimations for stationary probabilities. Fuzzy

numbers are able to better capture uncertainty on the output, and this

is indicated by the asymmetric, wider α-cuts. Defuzzification can better

approximate the true crisp stationary probabilities. Furthermore, the method

131

Chapter 6. Fuzzy Stationary Prob. of a Markovian patrolling strategy

paves the way to the computation of linguistic stationary probabilities, which

are more intuitive than crisp values and may be in turn the only type of

output suitable when the input information about the chain is given in a

linguistic manner, which is inherently uncertain.

132

Chapter 7

A patrolling model for a UAV

protecting an area against

terrestrial intruders

This chapter, which constitutes the last contribution of the thesis, presents an

application of adversarial decision making to the defense of an environment.

Here we move from imitation games to the security games framework. We

describe a novel game-theoretic model of an Unmanned Aerial Vehicle (UAV)

patrolling over an industrial area to protect it against potential intruders.

The equilibrium solution prescribed by Game Theory provides the optimal

patrolling route in terms of the benefits it may achieve. Along the chapter we

discuss several computational issues that arise when attempting to compute

the equilibrium and outline some possible remedies.

The contribution of this chapter consists of (i) a mathematical model

of the situation, including realistic physical limitations of the UAV and the

intruders, (ii) a mathematical program to compute the optimal patrolling

strategy, and (iii) an approximate approach to solve large instances of the

problem, since the mathematical program is unfeasible when scaling the

problem to a real situation. The computational experiments concerning the

third contribution are yet to be done, but we provide enough details to fully

implement the proposal.

133

Chapter 7. A patrolling model for a UAV against terrestrial intruders

7.1 Problem statement

Suppose an environment, possibly an urban-like area, with a number of

locations containing valuable items that need to be defended against terrestrial

intrusions (e.g., prevented from being robbed, from suffering terrorist attacks,

and so on). The accessibility of the locations depends on the topology of the

urban area, defined by streets and buildings. Some of the locations are more

valuable for the intruder than others, hence the adversarial preferences should

also be taken into account when designing a solution. It is assumed that the

intruder enters the environment from an access point, moves at a certain

speed throughout the streets to reach the target point, waits there for some

time which depends on the concrete target, and then penetrates the target.

If this is accomplished without being detected, the UAV will have failed in

protecting the target.

We have a UAV (in the future, the research might be extended to a team

of UAVs) flying over the environment and equipped with a video camera

that is able to send what it records in real time to a ground station, where

either a human operator or an automatic image analysis system can detect the

presence of the intruder in the video (Fig. 7.1). The UAV uses a battery with

limited duration. For this reason, we define a ground base in the environment,

where the UAV must periodically return to change the battery. This means

the patrolling routes performed by the UAV must depart from the base and

return to it before the battery goes flat.

This problem statement admits a number of user-specified parameters,

such as the preferences over the targets, the time required to penetrate each

target, the speeds of the UAV and the adversary, the UAV perception radius,

and so on. The challenge consists, firstly, in designing a theoretical framework

that captures this situation as realistically as possible, and secondly, in

solving the model proposed, as the formal solution is far from easy once the

problem has been mathematically formalized. The patrolling model proposed

is developed in Section 7.3.

134

7.2. State of the art

Figure 7.1: View of an industrial area from a UAV flying at an altitude of about

70 meters.

7.2 State of the art

Since we will approach our problem from a Security Game perspective,

please refer to section 2.2 for a general introduction to Security Games and

patrolling models. Here we review in more detail those works that are more

closely related to our proposal, in order to emphasize the similarities and

differences.

The series of papers which bear more resemblance to our approach are

those by Basilico, Gatti and Amigoni; see [13] and references therein. They

introduced the BGA model in [11] for a single-agent setting. Such model

considers arbitrary topologies, abstracted as a 2D grid. Space is discretized

in cells and time is discretized in turns. Both the patroller and intruder move

in the same grid at a constant speed of one cell per turn, and in each turn the

patroller can sense the cell where it is located. Their proposal explicitly takes

into account patroller’s and adversary’s payoffs separately, and the problem

is modeled in game-theoretic terms as a leader-follower game whose solution

135

Chapter 7. A patrolling model for a UAV against terrestrial intruders

is the Stackelberg equilibrium. Our proposal is directly inspired by posterior

refinements of such model presented in [14], where the intruder’s actions are

paths from access areas to the target locations. Note, however, that this

model does not admit different movement constraints for the players as they

both move on the ground. In addition, no physical considerations are made,

such as what happens while the agents are moving between locations, the

possibility of different speeds, detection radius, and so on.

Other important work to which our model is closely related is [88]. The

authors propose a two player model of area transit, in which a player must

cross a graph from one side to the other while the adversary tries to intercept

him by doing closed routes (called closed walks here) that start and depart

in a base node. This is applied to a transit simulation in the Gulf of Arden,

where pirate ships (patroller) try to intercept vessels that need to traverse the

area. The situation is modeled as a zero-sum normal-form game. Differently

from other works, the patroller does not just indefinitely patrol along the

graph but in closed walks that return to the base, capturing patroller’s limited

autonomy (battery, fuel, etc) as we will do in our proposal. Such approach

yields a huge action set for the patroller which makes the computation of Nash

equilibrium infeasible with classic techniques, as also happens in our proposal;

hence the authors used oracle techniques for this task. In [19], the authors

try to provide insights on a basic issue, namely strategy representation in

patrolling models. An interesting remark found there is that when a player

starts traversing an arc between two targets, it is engaged in that movement

until reaching the destination, unless intermediate decision nodes are added

to the graph. This can be also observed in the UAV’s graph of our model.

Finally, one key feature of our model, namely the continous-time nature of

the attacks, has been studied in [34]. The authors develop a game-theoretical

model to protect a mobile ferry moving in a straight line repeatedly, escorted

by patrol boats which are able to detect an intruder within a fixed detection

radius. The model has been deployed and is currently being employed in the

Staten Island Ferry in New York. The way to solve continuous-time games

like these can be summarized as finding the key time instants where the

behaviour of the game and expected payoff changes. Attacking between two

of these points makes no difference in terms of the attacker’s payoff, therefore

136

7.3. Methodology

the interest is in determining those points and computing the outcome in each

time interval. We adopt a similar approach in the present work.

7.3 Methodology

7.3.1 Game-theoretic Formulation

The problem stated in Section 7.1 can be formalized as follows. The envi-

ronment can be viewed by the intruder (referred to with subscript or su-

perscript e in the equations) as a weighted graph Ge “ pVe, Eeq where the

arcs represent the streets and the nodes represent: either target locations,

crossroads between streets, or access points to the environment from outside

(Fig 7.2(a)). Weights on the arcs measure the spatial distance between

nodes. Due to how we will bind this graph to the UAV’s movement, it is

mandatory that the graph mirrors the spatial disposition of the environment,

i.e. the nodes are defined by their Cartesian coordinates, and the weights

are computed as the Euclidean distance between them.

That being said, the crucial aspect of the model is the following: the

environment to be covered is so large that no deterministic route can protect

all the targets all the time, in a way the UAV can guarantee that the

time between two consecutive visits to every target is smaller than their

respective penetration times. For that reason, what we are searching for

is a randomization over routes that at leasts guarantees a strictly positive

capture probability for any action of the intruder.

Regarding the UAV (referred to with subscript or superscript u in the

equations), it moves in the air independently of the intruder’s graph (Fig.

7.2(b)), hence the movement has no constraints except for the need to return

to the base node before the battery goes flat. As we will explain, the UAV

flies high enough so that windows of the buildings cannot be filmed by the

camera, hence privacy is not an issue. We need to define flying routes for

the UAV to guarantee the maximum level of protection for the environment,

assuming that the UAV will be flying continuously over the area. Due to

the absence of flying constraints, we have the ability of defining any graph

for the movement, even with curve-like trajectories, as long as the movement

137

Chapter 7. A patrolling model for a UAV against terrestrial intruders

Target 1 (time:d1)

Payoffs: X1, Y1

Target 2 (time:d2)

Payoffs: X2, Y2

Target 3 (time:d3)

Payoffs: X3, Y3

Access-6

Access-3

Access-4

Access-2

Access-1

Access-5

(a) Intruder’s graph.

Grafo del

intruso

Base

c1

last(c1)

(1)

(2)

(3)

(4)
(5)

(6)

(7) (8)

(9)

(10)

(11)

(b) Manually designed UAV’s graph (green), and one sample intrusion

path c1. The solid line represents the first two closed walks (1) - (5) and

(6) - (11) of a UAV’s route. The numbering indicates the order in which

the UAV traverses the arcs. Each closed walk is supposed shorter than

the UAV’s battery.

Figure 7.2: UAV’s and intruder’s sample graphs on an industrial area.

138

7.3. Methodology

can be characterized in terms of nodes and arcs because the UAV will be

randomizing between routes defined by nodes and arcs, even when no intruder

is present. Although the problem of defining the appropriate graph for the

UAV in the air poses interesting challenges by itself, at this stage of research

we assume the UAV’s fly graph Gu “ pVu, Euq has been previously fixed and

is independent of the intruder’s graph. Hence, we assume the UAV moves at

constant speed in straight lines between two flight nodes defined in the air,

and only changes the direction in the nodes 1.

The UAV is equipped with a video camera which records video images

of the ground that are sent in real time to a human operator that visualizes

them in a ground base. We model this as a circular detection area centered

on the UAV with a configurable detection radius ϵ which depends on the

UAV altitude and camera specifications (mainly resolution and UAV speed,

so it is possible for the human operator to identify a moving intruder in the

video). One of the nodes of the UAV’s graph is labeled as the base node,

meaning that the patrolling routes must depart and arrive to that node since

it is the place where the UAV recharges the battery2, which takes a time tch.

The problem will be approached in an adversarial manner, which means

that we explicitly take into account players’ preferences over the target nodes

(we assume the crossroad nodes report no payoff as they cannot be attacked).

The higher the value of a location for the adversary, the higher the adversarial

payoff we assign to that node in the intruder’s graph. Crossroads are assumed

to give no reward for the players. When a location is successfully penetrated,

the UAV gets punished for it, hence it receives a negative reward. It is

reasonable to think that the higher the intruder’s payoff for penetrating a

location, the higher the punishment for the UAV because the goods existing

in that location are very valuable. However, both quantities do not have

to be necessarily equal-but-opposed. For instance, if the UAV belongs to

a security company providing security services simultaneously to different

1A Wookong UAV [2] can follow a user-defined route of GPS points doing (almost)

straight lines at (approximately) constant speed.
2The time to recharge battery is a model parameter, although we could consider two

different UAVs that alternatively depart from the base as soon as the other one returns,

leading to a negligible charging time.

139

Chapter 7. A patrolling model for a UAV against terrestrial intruders

customers having targets in the same area, then the punishment when a

location is penetrated depends on the contract signed between the security

company and the target’s owner (i.e. a customer), which ultimately depends

on the customer’s budget dedicated to security in relation to the budget

employed by the rest of customers in the area. This does not necessarily

match the actual value for a potential intruder of the items stored in that

location.

According to this, there are three real numbers associated to each target

i “ 1, ..., |T |:

• Xi is the reward (punishment) obtained by the UAV in case target i is

successfully penetrated.

• Yi is the reward obtained by the intruder in case target i is successfully

penetrated.

• di is the time in seconds the intruder needs to remain in location i for

being able to penetrate it.

In addition, X0 and Y0 are the payoffs attained by the UAV and the intruder,

respectively, when the intruder is detected by the UAV. In this case, Y0 can

be seen as a punishment. It is expected that X0 ą Xi (capturing the intruder

is always better for the UAV) and Y0 ă Yi (being captured is always worse

for the intruder than penetrating any location).

With the aforementioned elements, we can formalize the UAV patrolling

problem as a two-player, non-constant sum strategic- form game where:

• The players are the UAV and the intruder.

• The game is played only once.

• The possible outcomes of the game are either (a) intruder-capture, when

the intruder is detected by the UAV at any point, or (b) penetration-i

when the intruder successfully robs target i and escapes through an

access point without being detected.

• The players’ utility functions are as follows: when the outcome is

intruder-capture, the UAV receives X0 and the intruder receives Y0.

140

7.3. Methodology

When it is penetration-i, the UAV receives Xi and the intruder receives

Yi.

• The set of actionsR available to the UAV are all the possible successions

of closed walks taken by the patroller within a definite time horizon of

H working hours (e.g. six hours from 9 am to 5 pm), where H is a

model parameter. Each of these closed walks must start and return

to the base node of the UAV, and must have a duration smaller than

the UAV’s battery M . The total time elapsed by the patroller in the

succession of closed walks must be greater or equal toH, which does not

need to be a multiple of M . The patroller’s speed is assumed constant,

vu.

• The set of actions C ˆ r0, Hs available to the intruder consists of all

the pairs pcl, tkq, where cl is a path connecting an access node in the

intruder’s graph with a target node i, and tk is the time instant in

which the path cl is initiated. In our case, in order to restrict the huge

space of player actions, we will assume the intruder always follows

the shortest path between the access point and the target selected, at

constant speed ve and without stopping at any intermediate vertex.

For the attack to be completed, the intruder must traverse the path

selected, remain in the target i for di seconds, and traverse the path

back to the same access location, all without being detected and within

the H hours time interval.

Note that in our model, differently from [11], intruder’s actions do not

take into account the UAV’s position at the moment of starting the path to

the target. One reason for this is that the attack must be completed within

H hours, and during that period the UAV might never reach the position

required to start the attack. It could also be argued that the attacker does

not have the possibility to wait in an access point without being detected

(not by the UAV but possibly by any other protection system) until the UAV

reaches the desired position.

141

Chapter 7. A patrolling model for a UAV against terrestrial intruders

Utility Functions

As explained before, we suppose no deterministic route covers all the targets

with the guarantee that the time between two consecutive visits to one

target i is smaller than its penetration time di. Moreover, we assume the

intruder has observed the UAV’s behaviour and has learned it perfectly before

launching an attack, hence the UAV must not behave in a deterministic

but randomized way. We further elaborate on this assumption in the next

section. This means we are searching for a probability distribution over the

patrolling routes so that, even though the intruder knows this distribution

perfectly, there is no attack path that guarantees a successful penetration.

But certainly some paths and attack time instants have a smaller probability

of being detected than some others.

Equations 7.1 and 7.2 show the utility functions for the UAV and the

intruder respectively. These expressions give the expected payoff for each

player when the UAV uses a probability distribution α “ pα1, ..., α|R|q where

R is the set of feasible routes being considered.3. In game-theoretic terms,

the expected payoff for a player as a function of all players’ lotteries is

defined as the sum of that player’s payoffs for every possible strategy profile

pri, pcl, tkqq P RˆpCˆr0, Hsq of the game, where each term of the summation

is weighted by the probability that the profile eventually arises. In our case,

only the UAV randomizes over his routes as explained in section 7.3.2, hence

α is referred to the |R|-dimensional probability distribution used by the UAV.

Uupα, cl, tkq “ Xtargpclq

`

1 ´

R
ÿ

i“1

αiφpri, cl, tkq
˘

` X0

R
ÿ

i“1

αiφpri, cl, tkq

(7.1)

Uepα, cl, tkq “ Ytargpclq

`

1 ´

R
ÿ

i“1

αiφpri, cl, tkq
˘

` Y0

R
ÿ

i“1

αiφpri, cl, tkq

(7.2)

3Although |R| is a very large number, we will later explain how to restrict the number

of routes to a subset of the total feasible routes space.

142

7.3. Methodology

where targpclq is the target location of path cl, and φpri, cl, tkq “ 1

when route ri can detect an adversary attempting path cl in time tk, and 0

otherwise. Note the detection is deterministic and thus does not depend on α.

The intersection will be calculated using a mathematical abstraction of the

players’ movement as explained in section 7.3.2. The term
řR

i“1 αiφpri, cl, tkq

is the probability of the intruder being caught when it chooses path cl at

time instant tk.

Solution Concept: Stackelberg Equilibrium

In the scenario described so far, it is clear that the UAV starts patrolling

before the intruder decides to attack. Therefore, the UAV has an strategic

advantage for arriving first to the place where the game is to be played,

and thus is able to impose his (randomized) strategy. The intruder has to

adapt to the strategy imposed by the leader by issuing a best response to it.

This setting is known as a leader-follower game, since one of the players (the

leader) explicitly commits to a strategy (or to a randomization among the

actions) which he reveals to the opponent (the follower), who has a strong

reason to trust the leader’s commitment. In this case, the intruder trusts the

leader’s randomized strategy because it is what the intruder has observed and

learned before attacking. This assumption is customary in security games.

The solution concept for this kind of game is the Stackelberg equilibrium,

in which the leader chooses the probability distribution over the actions that

maximizes his own expected payoff, taking into account what the follower’s

response will be in the (most commonly assumed) case the follower is a

perfectly intelligent player (known as a best-responser). Such best response

is always a single strategy, and not a randomization over the follower’s

strategies [30].

It should be pointed out that a lot of research is being carried for dealing

with non-best-responsers, known as bounded-rationality, since it is possible

to change the leader’s strategy to achieve higher expected payoff when the

leader faces a weaker (not fully rational) adversary. Such assumption is

generally closer to the way humans perceive and act. Although this might

be addressed in future refinements of our patrolling model, at this stage of

143

Chapter 7. A patrolling model for a UAV against terrestrial intruders

research we focus on the ideal (best responser) case.

In order to compute the Stackelberg equilibrium, we proceed with a

mixed-integer linear programming (MILP) approach as in [43]. Following the

formulation introduced in such work, we can identify the intruder’s paths cl,

along with the attack time intervals that could eventually be the intruder’s

best response, as the potential targets to be covered. It should be noticed

that, while some time instants can be proven to never be optimal for a path

cl disregarding the patroller’s randomization over the routes, some others

do depend on the probability distribution and could be optimal under an

adequate α. This generates a number of nl candidate intervals for each

intruder’s path cl, each of which makes a strategy pc˚
l , rt

˚
j sq the optimal

with respect to any other pc˚
l , rtj1sq, j1 “ 1, ..., nl, j

1 ‰ k for the same path,

and also with respect to any other pci, rtjsq, ci P C, ci ‰ cl, j “ 1, ..., ni for

the rest of the paths. In this formulation, the rtjs “ rt
p1q

j , t
p2q

j s should be

understood as time intervals, since the exact instant is irrelevant for both

players (given its corresponding attack path cl), because all attack instants

within an interval lead to the same payoffs. This is caused by detection

function φpri, cl, tjq which remains constant for all the tj within a given attack

interval associated to path cl. We will have a binary variable ajl P t0, 1u for

each pair pcl, rtjsq, l “ 1, ..., |C|; j “ 1, ..., nl.

In the MILP formulation, we search for the probability distribution over

the UAV’s routes that maximizes the UAV’s expected payoff, subject to

the constraint that the intruder’s payoff is also maximized for one of the

candidate attack intervals of one attack path under such distribution (hence

a best-responser should play that strategy). In formal terms, for each cl P C,

find the nl time instants tk that can be optimal under the proper α. After

they all have been found, solve the following MILP program:

max
d,k,tαiu,ta

j
l u

d (7.3)

s.t: (7.4)

d ´ Uupα, cl, rtjsq ď Mp1 ´ ajl q

k ´ Uepα, cl, rtjsq ď Mp1 ´ ajl q

0 ď αi ď 1 , i “ 1, ..., |R|

144

7.3. Methodology

|R|
ÿ

i“1

αi “ 1

ajl P t0, 1u

|C|
ÿ

l“1

nl
ÿ

j“1

ajl “ 1

In all cases: l “ 1, ..., |C|; j “ 1, ..., nl (7.5)

7.3.2 Mathematical Representation of Trajectories to

Compute Capture Probabilities

Checking if a route detects a path

In order to compute the capture probabilities, we resort to the physical model

of the UAV and the separate graphs both players move along, as well as the

UAV’s detection radius ϵ. Suppose we want to check whether a patroller’s

route ri with |ri| arcs can detect the intruder when he does a path cl. We

are going to compute the exact time instants in which the intruder can start

the path without being detected.

Focusing on the UAV, the position within each segment of a route in the

UAV’s graph is given by a position function fkptq : R` Ñ R2 where k stands

for the segment going from node pxk, ykq to pxk`1, yk`1q.

fkptq “ rxk ˘ vu¨ t¨ cosβk, yk ˘ vu¨ t¨ sinβksT , t P r0, τuk s (7.6)

In the above function, βk stands for the (acute) angle formed by the segment

and the horizontal axis, and τuk “ vu?
pxk´xk`1q2`pyk´yk`1q2

is the time needed

by the UAV to traverse the segment. The sign ˘ will be positive for the

first component whenever xk`1 ą xk, and for the second component when

yk`1 ą yk, and negative otherwise. The intruder’s trajectory is represented

by a similar function g on the intruder’s graph in an analogous way; let gj be

its analytical expression when the intruder goes from pxj, yjq to pxj`1, yj`1q.

Therefore, checking whether the UAV will detect the intruder is equivalent to

finding a time instant in which the Euclidean distance between both players’

positions is equal or smaller than the detection radius ϵ.

145

Chapter 7. A patrolling model for a UAV against terrestrial intruders

Both the patroller’s and defender’s movement across one arc of their

respective graphs can be represented as lines in a 3D space, defined by their

parametric equations, in which the time acts as the free parameter. Detection

thus depends on the relative positions of both lines, which is equivalent

to the relative moment in which each player starts its segment. Applying

the geometrical and analytical procedures described in Appendix 7.5, it is

possible to compute the time sub-intervals of r0, H] in which an intruder

should not start the path cl because it will be detected for sure by a patroller

doing ri. We will refer to them as the unsafe intervals for the intruder

according to the patrolling route ri. If the intruder starts cl at any time

outside such intervals, it will not be detected that route (although might be

detected by other routes).

Computing the detection probability of a path by a set of routes

When considering several routes and a probability distribution α over them,

an intruder starting cl at a time instant that falls within one of the unsafe

intervals of one of the routes, say ri, will not be detected unless route ri

is actually chosen by the patroller, which may happen with probability αi.

Therefore, the probability that the intruder is detected when starting a path

cl in a time instant that is unsafe according to route ri is αi. When a

time interval, or a part of it, is unsafe according to more than one route,

say ri1 , ri2 , ri3 where 1 ď i1, i2, i3 ď |R|, then the probability of detecting

an intruder starting his path within that time interval is the sum of those

routes’ probabilities, αi1 ` αi2 ` αi3 . Figure 7.3 represents this aggregation

in the case of three routes.

Note in some cases, some intervals can never be optimal, no matter the

value of α. As shown in the figure, given an attack path cl, if the capturing

probability of one interval is α3 and the probability of another interval for the

same path is α2 `α3 (left-most interval), then the attacker’s expected payoff

if he chooses cl within the interval with probability α2 `α3 cannot be greater

than the former, because α3 is contained on the latter and both are referred

to the same path, with the same payoff when reaching the target of that path.

However, if there is an interval with detection probability α1, another with

146

7.3. Methodology

0 H

1

2

3

2

+

3

 1 1

+

3

1 1

+

2

2

+

3

3 1

+

3

 1 1

+

2

Figure 7.3: Capture probabilities for each interval in which the intruder may start

his path cl, for a setting with three routes. Probabilities that can be minimal

under certain values of α have been highlighted.

α2 ` α3, and there is no interval with probability α2 alone or α3 alone, then

both intervals could be optimal (i.e. maximize the attacker’s expected payoff)

under certain values of α1, α2, α3. For this reason, we would need to consider

two separate linear programs: one that maximizes the patroller’s expected

payoff while ensuring the interval with α1 is the best for the intruder, and

the other ensuring the interval with α2 ` α3 is the intruder’s best response.

Finally, consider the case of two different paths cl, cl1 whose targets provide

the attacker a payoff of Ytargpclq and Ytargpcl1 q respectively, such that Ytargpclq ă

Ytargpc1
lq
, with detection probabilities α1 for cl and α1 ` α2 for c1

l in some

attack intervals. Then, both attack intervals could be optimal, each under

the proper probability values, because c1
l provides a larger payoff despite

having a higher probability of being captured in the corresponding interval,

thus the attacker’s expected payoff when attacking c1
l could be higher than

attacking cl for some values of α1, α2. In other words, when Ytargpc1
lq

ą Ytargpclq,

then Ytargpcl1 qp1 ´ α1 ´ α2q could be greater than Ytargpclqp1 ´ α1q for some

values of α1, α2. Again, the two paths with their corresponding intervals

would constitute two separate problems.

147

Chapter 7. A patrolling model for a UAV against terrestrial intruders

7.4 Towards an approximate solving strategy

Implementing a simulator of the model described so far in a real scenario

is not trivial. First of all, it is necessary to obtain the lengths of the arcs

and the angles with the reference axes (OX and OY). The easiest way to

accomplish this is to use Google Maps to draw the graphs of the UAV and

the intruder, and use the exact coordinates of the vertices. After this has been

done, and assuming we restrict the intruder’s paths to the shortest routes

between an access point and a target location, we must implement a shortest

path algorithm such as Floyd-Warshall [20] to generate the intruder’s set

of actions. Moreover, the implementation of Algorithm 2, described in the

Annex of this chapter, is difficult due to the specific data structures required

to maintain the attack intervals associated to each route separately, check

the overlapping and merge them. The C++ code that implements this part

has been developed and is available under demand.

Once the model has been programmed, we should be able to solve it

according to Eq. 7.3 and obtain the optimal mixed strategy for the UAV,

i.e. the probability distribution over all the existing patrolling routes that

maximizes the UAV’s expected payoff. Recall that such strategy is the

solution to the game as it constitutes the Stackelberg equilibrium. Unfortu-

nately, this MILP problem is unsolvable in practice due to the huge number

of feasible patrolling routes that exist even with a small time horizon, for

example H = 2 hours. As pointed out in [43], commercial solvers run

out of memory if we attempt to solve it directly, a common issue when

solving the large scale problem instances that arise in the real world. Some

proposals have been published to overcome this drawback, mainly based on

transforming the original problem or exploiting some specific structure of the

strategies so that they can be represented in a compact way that allows a

fast resolution [34]. This is not the case here, since the complete route does

not admit a compact representation.

In spite of this, the technique known as column generation, commonly

used in very large linear programs, can be applied to Security Games in an

efficient manner as shown in previous works [43]. The method is combined

with a branch-and-price algorithm developed for general Security Games. In

148

7.4. Towards an approximate solving strategy

simple terms, column generation is aimed at considering only a subset of the

defender’s actions (decision variables) involved in the optimization problem.

They grow this set iteratively by adding the variable which improves most

the optimal value of the objective function, if possible. The branching part

works on the attacker’s actions (represented as binary decision variables) and

establishes lower bounds on the quality of the solution. These methods are

quite difficult to implement in an efficient manner, and column generation is

usually cut off before it finishes by itself, so it turns out to be an approximate

algorithm even though it always returns the optimal solution in theory.

Unfortunately, branch-and-price is not an out-of-the-box approach as stated

in [43], and the proposal presented in that work for general security games

requires specific adaptation and an important programming effort to be

applied to each concrete security problem.

In this work, we propose a different scheme to compute a well-performing

mixed patrolling strategy for the UAV, namely the use of approximate optimi-

zation methods (metaheuristics) to find a good subset of patrolling routes

involved in the optimization. The randomization employed by the UAV will

then be restricted to this subset of routes. Note that the solution given by a

metaheuristic differs from the solution computed by the MILP of Eq. 7.3. As

we will explain, at the end of the execution of the metaheuristic, the output

consists of three things: (a) a good (not necessarily optimal) subset of routes

over which the UAV should randomize, (b) the UAV’s expected payoff when

it uses the best possible randomization over the aforementioned subset of

routes, and (c) the probability distribution that provides the expected payoff

described in (b).

Since we are restricting to a subset of routes, (b) is not the optimal

payoff that the UAV could attain if all the patrolling routes were considered,

but just a reasonably good one. On the other hand, this solution can be

obtained within reasonable time and with an affordable amount of RAM

memory. Items (b) and (c) are computed solving the MILP with the subset

of routes of (a). In fact, during the execution of the metaheuristic, many

subsets of routes are explored and assessed according to the UAV’s expected

payoff by applying Eq. 7.3 to that subset; we will explain this in detail later.

Of course, if we had no limitations on the RAM memory available, we could

149

Chapter 7. A patrolling model for a UAV against terrestrial intruders

solve the MILP of Eq. 7.3 considering all the possible patrolling routes, not

just a limited subset, and the MILP would return the optimal payoff and the

optimal probability distribution.

7.4.1 Components of a population-based metaheuristic

Metaheuristics [15, 37] allow to optimize any metric that can be computed

from a feasible solution, not necessarily a mathematical function with an

analytic expression but also other metrics computed through simulations or

any computational procedure. Moreover, many of the difficulties posed by

some mathematical functions such as being non-differentiable are overcome

by metaheuristics. However, they have proved to work well from a empirical

point of view, but have no theoretical guarantee of convergence to the function

global optimum. Indeed, they find good solutions (local optima) within a

reasonable time, where other techniques often fail to find any solution.

We now describe how to solve the problem of finding a good subset (of

a prefixed size) of patrolling routes for the UAV using a metaheuristic. Due

to the characteristics of the problem, we believe the class of metahueristics

called population-based will perform better than departing from a single

solution. We now describe how the basic components of a population-based

metaheuristic can be adapted to this problem, namely the representation of

a solution (individual), how to generate an initial set of feasible solutions,

how to mutate a solution, how to “merge” two solutions to obtain two new

solutions different from the original ones, and how to evaluate a solution

(fitness function).

The number of routes |R| to be considered in the set has to be fixed

before the algorithm starts and does not change during the execution. Some

experimentation is required to empirically determine a good value for this. If

|R| is too large, the MILP to be solved to evaluate a subset of routes (fitness

function) will be more difficult and slower to solve. If it is too small, the

subset is too restrictive so it will impossible to compute a good randomization

to attain a reasonably large expected payoff for the UAV.

The rest of the components are the following:

• Computational representation of a solution: an individual is a set

150

7.4. Towards an approximate solving strategy

of patrolling routes r1, ..., r|R| where each route ri is composed by a

succession of closed walks, each with a duration smaller than the battery,

and with a route total time greater or equal to the time horizonH being

considered (e.g., 2 hours, a working day, one night, etc).

• Fitness function: a feasible solution (subset of routes) will be evaluated

solving the MILP of Eq. 7.3 restricted to the patrolling routes prescribed

by that solution. The fitness value associated to that solution is the

patroller’s expected payoff under the Stackelberg equilibrium computed

by the MILP.

• Crossover mechanism: two alternatives will be analyzed separately.

First, binary crossover between sub-subsets of individuals, which means

thatK routes of the first individual, r1, ..., rK are interchanged with the

first K routes of the second individual. This way, the new individuals

generated are always feasible. Secondly, it is also possible to interchange

parts of each route instead of complete subsets of routes. To ensure

feasibility, the routes can be crossed when they are at the base location,

where the UAV charges the battery.

• Mutation mechanism: it is the mechanism by which a feasible solution

is modified to obtain another feasible solution. The mutation operator

in this case consists in randomly generating a new closed walk within

a route, which also ensures feasibility of the new solution.

• Initial set of solutions: although many problems employ a totally random

initialization, in this case it is necessary to generate the initial set

of individuals in an intelligent manner to ensure that the routes are

complementary, in the sense that they cover different attack intervals

and attack paths. Otherwise, it is almost sure that there will be at

least one attack path and one time interval that guarantees a successful

penetration for the intruder.

A way to achieve this is to use the following idea. First, N routes are

randomly generated, ensuring that they are composed of feasible closed

walks. Then, we compute the time intervals that are covered by 0, 1,

... and N routes, and sort them from the earliest to the latest. After

151

Chapter 7. A patrolling model for a UAV against terrestrial intruders

this, we repeat iteratively the next actions: (a) from those intervals,

select the one that is closest in time to the current moment and that is

still possible to reinforce. Let cl be its associated attack path; (b) find

a patroller arc that could detect any attack arc of the path cl; (c) wait

the time necessary so that the coverage matches the interval we want

to reinforce (doing some random waiting); and (d) travel to the origin

vertex of that patroller arc and traverse the arc. We have to check that

the routes generated this way are still feasible in terms of battery.

At the end of the process, the algorithm returns the best solution found,

which is a good subset of patrolling routes that maximizes the fitness (i.e.

the patroller’s expected payoff under the Stackelberg equilibrium when we

restrict to this subset of routes), along with this fitness value. Despite not

being optimal, if the metaheuristic works well, we can expect this value to

be large and not very far from the really optimal one. The module relative

to the metaheuristic is not trivial but easier to implement than the simulator

itself. The computational experiments concerning this part are part of the

future work.

7.5 Conclusions

A novel patrolling model for a UAV defending an area against terrestrial

intruders has been presented. We have provided the game-theoretical formula-

tion as a Stackelberg game, following the framework of Security Games, and

we have explained how it can be solved. The solution to the model is a

randomized patrolling strategy consisting of an optimal probability distribu-

tion among the patrol routes, that constitutes the Stackelberg equilibrium to

the game. As customary in Security Games, a Mixed-Integer Linear Program

is used for this purpose. When scaling up the model, we have proposed

a new approach based on a metaheuristic compute a good (not necessarily

optimal) patrolling strategy for the UAV, since the MILP becomes unsolvable

in practice.

The model poses good properties that had not been addressed up to now:

• It takes into account intruder’s and patroller’s payoffs (not necessarily

152

7.5. Conclusions

zero-sum).

• The intruder can attack at any time (not discretized).

• It considers totally independent movement graphs for patroller and

intruder.

• It takes into account the intruder’s paths to target locations, and the

intruder may be detected at any point of the path.

• It considers the patroller’s physical limitations, such a (non-discretized)

limited perception radius and limited battery.

• The problem can still be formulated as a MILP.

Some aspects that can be improved in future versions of the model are

the following:

• We are not considering all possible attack paths (as this would be a

huge space as well).

• None of the players is allowed to hold at any point of their paths.

• We are not considering uncertainty in the payoffs, perception radius,

and speeds.

The experiments are expected to demonstrate the usefulness of the meta-

heuristic in this problem, which may pave the way to a broad adoption of

metaheuristics to tackle large scale Security Games. This has not been done

yet in the Game Theory community. Moreover, if the theoretical model

shows good performance, it may be adapted to physical agents and put into

practice, which will require more practical experimentation.

153

Chapter 7. A patrolling model for a UAV against terrestrial intruders

Algorithm 2 DetectionIntervalspri, Cq

INPUT: a patrolling route ri “ă i1, ..., i|ri| ą, where the ij P Eu are the

arcs, and a set of attack paths C

Relative offsets ∆k,j
1 ,∆k,j

2 , k “ 1, ..., |Eu|, j “ 1, ..., |Ee| previously

calculated.

OUTPUT: |C| sets of intervals Lpc1q, ..., Lpc|C|q meaning that ri will detect

path cl if the path starts in a time

instant contained by an interval of Lpclq.

tus Ð
řs´1

a“1 τ
u
a for every s “ 1, ..., |ri|. Whenever the arc represents the

UAV’s recharge, then τua “ tch.

[Recall lq P Ee (resp. ks P Eu) is the arc of cl (resp. ri) traversed in q-th

place in cl (s-th place in ri)]

for each cl “ă l1, ..., l|cl| ąP C do

for q “ 1, ..., |cl| do

teq Ð
řq´1

a“1 τ
e
a

rψs,q
1 , ψs,q

2 s Ð r∆
ks,lq
1 ` tus ´ teq,∆

ks,lq
2 ` tus ´ teqs for every s “ 1, ..., |ri|,

cutting negatives to 0

Lpclq Ð Lpclq Y trψs,q
1 , ψs,q

2 s : s “ 1, ..., |ri|u

end for

Merge those intervals of Lpclq that overlap or subsume each other

end for

return ă Lpc1q, ..., Lpc|C|q ą

154

7.5. Conclusions

Appendix A - Computing detection time

intervals

Functions fk (Equation 7.6) and gj (defined analogously) can be viewed as

the following lines:

fk ”

$

’

’

’

&

’

’

’

%

xukptq “ xk ˘ vu¨ cosβk¨ t

yuk ptq “ yk ˘ vu¨ sinβk¨ t

zuk ptq “ t

gj ”

$

’

’

’

&

’

’

’

%

xejptq “ xj ˘ ve¨ cosβj¨ t

yej ptq “ yj ˘ ve¨ sinβj¨ t

zej ptq “ ∆ ` t

First we study the time windows in which each of the intruder’s arcs

would be detected by each of the patroller’s arcs, as a function of the time

offset ∆ between the instant the patroller starts his arc and the instant the

intruder does the same. This parameter can be positive or negative as it is

measured from the moment at which the patroller starts his arc, which does

not necessarily have to be at the beginning of the H hours working time (e.g.

if the segment is not the first of the route). As the patroller’s route comprises

all the working horizon of H hours, the times when he traverses each arc are

fixed, as opposed to the intruder’s path which can be started at any time

as long as there is enough time to reach the target, rob it and return to the

access point. For this reason, ∆ applies to the intruder only.

Given an intruder arc and a patroller arc, we can compute the values of

∆ for which the intruder is not detected, meaning that if the intruder starts

his arc an amount of time earlier (or later) than the patroller starts his own

arc, then there is no point where the distance between both agents is smaller

or equal to ϵ, hence the intruder avoids detection. Formally, define

dk,jptq “ pxukptq ´ xejptqq2 ` pyuk ptq ` yej ptqq2 ` pzuk ptq ` zej ptqq2

to be the square of the distance between the patroller and the intruder when

they traverse the k-th and j-th arcs respectively, k “ 1, ..., |Eu|; j “ 1, ..., |Ee|.

155

Chapter 7. A patrolling model for a UAV against terrestrial intruders

This is a squared function in t. We want to compute the minimum of it in the

interval of interest, r0,mintτuk , τ
e
j us. As this is a closed interval, the minimum

is reached either at t “ 0, t “ mintτuk , τ
e
j u or at the vertex of the function if

it falls within the interval and the parabola is convex. In the three cases the

minimum is a function of ∆2 so we can impose that it is strictly greater than

ϵ2. Solving for ∆ in the resulting inequation, we get ∆ ă ∆k,j
1 and ∆ ą ∆k,j

2 ,

where ∆k,j
1 ă 0 and ∆k,j

2 “ mint´∆k,j
1 , τuk u ě 0. In other words, the intruder

should start arc j at least |∆k,j
1 | seconds before the patroller starts his k-th

arc, or ∆k,j
2 seconds later, but not in between as it would be detected.

After computing all the ∆k,j
1 ,∆k,j

2 for k “ 1, ..., |Eu|, j “ 1, ..., |Ee|, these

relative offsets must be converted into absolute by adding them to the time

the patroller starts each segment when doing his route. For instance, if

a segment k of the patroller’s graph is traversed in the third and seventh

places of one particular route ri, then we must compute the time instants

t3 and t7 in which the patroller starts those arcs, as tus “
řs´1

a“1 τ
u
a , and

then compute the new absolute intervals rδ3,j1 , δ3,j2 s and rδ7,j1 , δ7,j2 s for every

j “ 1, ..., |Ee|, using the formula δs,j1|2 “ tus ` ∆ks,j
1|2 (cutting negatives to 0)

where ks P t1, ..., |Eu|u is the name of the patroller’s arc traversed in s-th

place in the route ri, and s “ 1, ..., |ri|. Note tu1 = 0. This computation

is not necessary for all the patrolling arcs that are not part of the route ri

being studied. The meaning of these intervals is that the intruder should not

start arc j P Ee within the time rδ3,j1 , δ3,j2 s nor rδ7,j1 , δ7,j2 s because he would be

detected by the patroller. Both intervals denote absolute time instants and

thus, are contained in r0, Hs.

The last step is to particularize the absolute δ’s of route ri computed for

any intruder’s arc, to the intruder’s path cl being studied. Given an intruder’s

arc j P Ee which appears in q-th place in the intruder’s path cl, and given the

absolute δ’s of intruder’s arc j with respect to all the patroller’s arc of route

ri, we can transform the absolute offsets that restrict the absolute moment

of starting each arc appearing in second, third, ... place of the intruder’s

path, into absolute offsets restricting the moment in which the intruder starts

the path cl. Applying the same idea of the previous paragraph, we can

compute the times at which the intruder starts the q-th arc of the path cl as

teq “
řq´1

a“1 τ
e
a . With this, let ψs,q

1|2 “ δ
s,lq
1|2 ´ teq (cutting negatives to 0) where

156

7.5. Conclusions

lq P t1, ..., |Ee|u is the name of the intruder’s arc traversed in q-th place in

the path cl, with q “ 1, ..., |cl|. Note that again te1 “ 0. The ψ’s impose a

restriction on the time instants where the intruder can start his path; thus

he should attack at any time falling outside of all the intervals rψs,q
1 , ψs,q

2 s.

As long as this is met, the exact time instant is indifferent to both the

intruder and the patroller because all yield the same expected payoff. When

considering several routes ri simultaneously, if such interval does not exist

because all the working day r0, Hs is covered by some route for the path cl

being considered, the intruder should attack during the interval of minimal

probability, as explained in Section 7.3.2.

157

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation has focused on the study and development of adversarial

decision making models and their applications to practical problems. The

objectives were the following:

1. To compile the relevant references in the field of adversarial models and

applications.

2. To develop new models and extensions.

3. To propose new strategies for the models, explicitly including a temporal

component.

4. To assess the strategies from a theoretical and empirical point of view.

5. To propose examples of application.

With regards to objective 1, the Background chapter reviews important

references in a variety of fields, with emphasis on those more closely related

to the models we have proposed.

With regards to objective 2, it has been accomplished following two

different approaches:

159

Conclusions and Future Work

• On the one hand, we have continued the research on the imitation

model [67], for which we have developed two extensions. In the first

one, we have shown the importance of having an appropriate model of

the adversary and the negative impact over one of the agents’ payoff

that a wrong assumption about the adversary can have. This extension

explicitly takes into account the temporal component of a strategy in

order to change the randomization that guides the behaviour of one of

the agents. While this leads to an increase in the total payoff when the

adversary abides to the conception we have about him, it can also lead

to severe losses when it does not. In the second one, we have introduced

statistical dependence between the current decision of one agent and

the circumstances (modeled as the set of payoffs attainable) of the

next decision to be made. We show how the same kind of time-varying

behaviour is also successful in this new scenario.

• On the other hand, we have developed an adversarial model for a

real situation in the context of Security Games: a UAV defending

an area against intruders. The proposal takes into account realistic

limitations such as the UAV’s battery and speed, the existence of

separate movement graphs for the UAV and the terrestrial intruders,

the perception radius of the UAV (which depends on the camera it

is carrying), and so on. We have shown the difficulties of computing

the game-theoretic Stackelberg equilibrium of our model due to the

computational intractability of the resulting optimization problem, and

we have suggested heuristic techniques to tackle it.

With regards to objective 3, we have investigated new strategies that not

only are randomized but change the randomization along the time, which

has proven beneficial for causing deception and achieving greater payoff.

This confirms that there is room for strategical manipulation when the only

information accessible to the adversary consists of observations of the past

actions. Therefore, when an agent is aware of a watching adversary, it is

beneficial to modify the way of making decisions in order to cause deception

and attain greater payoff in the long term, as achieved by the time-varying

strategies.

160

8.2. Future Work

In all our publications, we have analyzed the performance of the strategies

both from a theoretical and empirical point of view in order to validate the

theoretical expressions of the expected payoff, as prescribed by objective 4.

We have shown that simulations are not necessary to assess two randomized

strategies if the expression of the expected payoff can be obtained in an

appropriate way using probability concepts. Comparing the expected payoff

is a much more reliable way to determine which strategy performs better.

Finally, in connection with objective 5, we have proposed two applications:

firstly, the aforementioned UAV patrolling model, and secondly, a novel

mathematical technique to improve the information obtained from observa-

tions of a patrolling agent following a randomized Markovian strategy. These

observations constitute the perception that the intruder has about the patroller

when the former watches the latter with the aim of learning his randomization,

as customary in Security Games. We have shown that, by using concepts from

Fuzzy Logic and Fuzzy Numbers, the intruder gets a better approximation

of the true probabilities that guide the patroller’s movement, since a fuzzy

number is more informative as it is able to incorporate the uncertainty about

a quantity. An open-source software implementation of the method has been

released.

8.2 Future Work

Both the imitation game and the patrolling models still deserve further

investigation. In the imitation model, some techniques not addressed here

may yield good results. For instance, the use of more sophisticated learning

mechanisms (for instance, reinforcement learning) by agent T for learning S’s

strategy. The imitation game could be tackled as a classification problem, for

which Machine Learning algorithms could be used to determine which among

the possible actions will be chosen next. Finally, real-life applications of the

model should also be investigated, with emphasis on computer games. A

better prediction of the user’s actions may lead to more intelligent adversaries

and eventually, to a more enjoyable gaming experience.

With respect to the UAV patrolling model, many questions remain open.

The mathematical difficulty of the optimization problem to be solved in order

161

Conclusions and Future Work

to compute the Stackelberg equilibrium opens the door to the application of

approximate optimization techniques, such as bio-inspired metaheuristics,

which have not been applied to security games up to now. The magnitude

of the actions space for both players makes it necessary to consider a subset

of strategies only because the complete problem cannot be solved directly

due to physical memory constraints. This issue arises very often in the

field of Security Games when scaling up the models to real-sized problems.

Experimentation about which metaheuristic performs better and how to

better adapt the problem to a specific metaheuristic should be done. Given

the increasing number of domains that are being solved as security games in

real life nowadays, if the use of metaheuristics proves successful in the UAV

problem, it can lead to a broad adoption in other models that suffer from

the same scalability problems.

Moreover, uncertainty about the physical limitations of the agents, such

as the actual speed of the UAV and the speed assumed for potential intruders,

or the exact duration of the battery, should be included in the model. None of

these parameters can be known precisely so it seems natural to model them as

fuzzy numbers, and resort to existing fuzzy linear programming approaches

to solve the optimization problem and compute the Stackelberg equilibrium.

This has never been done before in Security Games.

162

Bibliography

[1] Horizon 2020 Work Programme 2014-2015 (LEIT - Information

and Communication Technologies). European Commission Decision

C(2014)4995 of 22 July 2014.

[2] Ground Station Wireless Data-link User Manual v.2.8. DJI

Innovations, 2013.

[3] M. Abundo and L. Caramellino. Some Remarks on a Markov

Chain Modelling Cooperative Biological Systems. Open Systems &

Information Dynamics, 3:325–343, 1995.

[4] N. Agmon, C.-L. Fok, Y. Emaliah, P. Stone, C. Julien, and

S. Vishwanath. On coordination in practical multi-robot patrol. In

Proc. of the IEEE Int. Conf. on Robotics and Automation, pages

650–656, 2012.

[5] N. Agmon, G. A. Kaminka, and S. Kraus. Multi-robot adversarial

patrolling: Facing a full-knowledge opponent. Journal of Artificial

Intelligence Research, 42(1):887–916, 2011.

[6] N. Agmon, S. Kraus, and G. Kaminka. Multi-robot perimeter patrol

in adversarial settings. In Proc. of the IEEE Conf. on Robotics and

Automation, pages 2339–2345, 2008.

[7] G. Akhras. Canadian Military Journal, pages 25 – 31, 2008.

[8] T. Alpcan. Network Security: A Decision and Game-Theoretic

Approach. Cambridge University Press, 2010.

163

Bibliography

[9] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous.

Springer US, New York, 2003.

[10] A. O. Alves, G. L. A. Mota, G. A. O. P. Costa, and R. Q. Feitosa.

Estimation of Transition Possibilities for Fuzzy Markov Chains Applied

to the Analysis of Multitemporal Image Sequences. In Proc. of the

4th Int. Conf. on Geographic Object-Based Image Analysis (GEOBIA),

pages 367–371, 2012.

[11] F. Amigoni, N. Basilico, and N. Gatti. Finding the optimal strategies

for robotic patrolling with adversaries in topologically-represented

environments. In Proceedings of the 26th Int. Conf. on Robotics and

Automation (ICRA’09), pages 819–824, 2009.

[12] K. E. Avrachenkov and E. Sanchez. Fuzzy Markov Chains and

Decision-Making. Fuzzy Optimization and Decision Making, 1:143–159,

2002.

[13] N. Basilico, N. Gatti, and F. Amigoni. Patrolling security games:

Definition and algorithms for solving large instances with single

patroller and single intruder. Artificial Intelligence, 184-185:78–123,

2012.

[14] N. Basilico, N. Gatti, T. Rossi, S. Ceppi, and F. Amigoni. Extending

algorithms for mobile robot patrolling in the presence of adversaries to

more realistic settings. In Proc. of the IEEE/WIC/ACM Int. Conf. on

Intelligent Agent Technology, volume 2, pages 557–564, 2009.

[15] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A

survey on metaheuristics for stochastic combinatorial optimization.

Natural Computing: an international journal, 8:239–287, 2009.

[16] J. Blanc and D. d. Hertog. On Markov Chains with Uncertain Data.

Discussion Paper 2008-50, Tilburg University, Center for Economic

Research, 2008.

[17] P. Bonissone and K. Decker. Selecting uncertainty calculi and

granularity: An experiment in trading-off precision and complexity.

164

Bibliography

In Proc. of the Conf. Annual Conf. on Uncertainty in Artificial

Intelligence (UAI-85), pages 57 – 66, 1985.

[18] S. D. Bopardikar, F. Bullo, , and J. ao P. Hespanha. On discrete-time

pursuit-evasion games with sensing limitations. IEEE Transactions on

Robotics, 24(6):1429–1439, 2008.

[19] B. Bosanský, O. Vanek, and M. Pechoucek. Extending security games

to defenders with constrained mobility. In AAAI Spring Symposium:

Game Theory for Security, Sustainability and Health, volume SS-12-03

of AAAI Technical Report, pages 75–82, 2012.

[20] G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice

Hall, Englewood Cliffs, NJ, 1995.

[21] G. Brown, M. Carlyle, D. Diehl, J. Kline, and K. Wood. A Two-Sided

Optimization for Theater Ballistic Missile Defense. Operations

Research, 53(5):745–763, 2005.

[22] J. J. Buckley. Uncertain Probabilities III: the Continuous Case. Soft

Computing, 8:200–206, 2004.

[23] J. J. Buckley. Fuzzy Probabilities: New Approach and Applications,

2nd Edition, volume 115 of Studies in Fuzziness and Soft Computing.

Springer-Verlag, 2005.

[24] J. J. Buckley and E. Eslami. Uncertain Probabilities I: the Discrete

Case. Soft Computing, 7:500–505, 2003.

[25] J. J. Buckley and E. Eslami. Uncertain Probabilities II: the Continuous

Case. Soft Computing, 8:193–199, 2004.

[26] J. J. Buckley and E. Eslami. Fuzzy Markov Chains: Uncertain

Probabilities. Mathware & Soft Computing, 9(1), 2008.

[27] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling

problem. In Proc. of the IEEE/WIC/ACM Int. Conf. on Intelligent

Agent Technology, pages 302–308, 2004.

165

Bibliography

[28] W.-K. Ching and M. K. Ng. Markov Chains: Models, Algorithms and

Applications. Springer-Verlag, New York, 2006.

[29] V. Conitzer. Computing Game-Theoretic Solutions and Applications

to Security. In Proc. of the 26th AAAI Conf. on Artificial Intelligence,

pages 2106–2112, 2012.

[30] V. Conitzer and T. Sandholm. Computing the optimal strategy to

commit to. In Proc. of the 7th ACM Conf. on Electronic Commerce,

pages 82–90, 2006.

[31] W. Dent and R. Ballintine. A Review of the Estimation of Transition

Probabilities in Markov Chains. Australian Journal of Agricultural

Economics, 15(2):69–81, 1971.

[32] D. Dubois and H. Prade. Operations on fuzzy numbers. Int. Journal

of Systems Science, 9(6):613–626, 1978.

[33] Y. Elmaliach, N. Agmon, and G. Kaminka. Multi-robot area patrol

under frequency constraints. Annals of Mathematics and Artificial

Intelligence, 57(3):293–320, 2009.

[34] F. Fang, A. X. Jiang, and M. Tambe. Protecting Moving Targets with

Multiple Mobile Resources. Journal of Artificial Intelligence Research,

48:583–634, 2013.

[35] R. Q. Feitosa, G. A. O. P. Costa, G. L. A. Mota, and B. Feijó.

Modeling Alternatives for Fuzzy Markov Chain-Based Classification

of Multitemporal Remote Sensing Data. Pattern Recognition Letters,

(32):927 – 940, 2011.

[36] M. Gagolewski. FuzzyNumbers Package: Tools to Deal with Fuzzy

Numbers in R, 2012.

[37] M. Gendreau and J.-Y. Potvin, editors. Handbook of Metaheuristics.

Springer, 2010.

[38] R. C. Gentleman, J. F. Lawless, J. C. Lindsey, and P. Yan. Multi-State

Markov Models for Analyzing Incomplete Disease History Data with

166

Bibliography

Illustrations for HIV Disease. Statistics in Medicine, 13(8):805–821,

1994.

[39] S. Gomez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno.

Discrete-Time Markov Chain Approach to Contact-Based Disease

Spreading in Complex Networks. Euro Physics Letters (EPL),

89(38009):6, 2010.

[40] J. Halliwell and Q. Shen. Linguistic probabilities: Theory and

application. Soft Computing, 13(2):169–183, 2008.

[41] R. Isaacs. Differential Games: a Mathematical Theory with

Applications to Warfare and Pursuit, Control and Optimization, year

= 1965, publisher = John Wiley and Sons, address = New York.

[42] R. Ivanek, Y. T. Grohn, A. J.-J. Ho, and M. Wiedmann. Markov

Chain Approach to Analyze the Dynamics of Pathogen Fecal Shedding

- Example of Listeria Monocytogenes Shedding in a Herd of Dairy

Cattle. Journal of Theoretical Biology, 245(1):44–58, 2007.

[43] M. Jain, E. Karder, C. Kiekintveld, F. Ordoñez, and M. Tambe.

Security games with arbitrary schedules: A branch-and-price approach.

In Proc. of the 24th AAAI Conf. on Artificial Intelligence, pages

797–797, 2010.

[44] M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi, M. Tambe, and

F. Ordónez. Software Assistants for Randomized Patrol Planning

for the LAX Airport Police and the Federal Air Marshal Service.

Interfaces, 40:267–290, 2010.

[45] C. I. Jones. On the Evolution of the World Income Distribution.

Journal of Economic Perspectives, 11(3):19–36, 1997.

[46] B. H. Juang and L. R. Rabiner. Hidden Markov Models for Speech

Recognition. Technometrics, 33(3):251–272, 1991.

[47] R. Kleyle and A. de Korvin. Transition Probabilities for Markov

Chains Having Fuzzy States. Stochastic Analysis and Applications,

15(4):527–546, 1997.

167

Bibliography

[48] A. Kott and W. M. McEneany. Adversarial Reasoning: Computational

Approaches to Reading the Opponents Mind. Chapman and Hall/ CRC

Boca Raton, 2007.

[49] A. Kott and M. Ownby. Tools for real-time anticipation of enemy

actions in tactical ground operations. In Proceedings of the 10th Int.

Command and Control Research and Technology Symposium, 2005.

[50] R. Kruse, R. Buck-Emden, and R. Cordes. Processor Power

Considerations - An Application of Fuzzy Markov Chains. Fuzzy Sets

and Systems, 21(3):289–299, 1987.

[51] M. Kurano, M. Yasuda, J. Nakagami, and Y. Yoshida. A limit theorem

in some dynamic fuzzy systems. Fuzzy Sets and Systems, 51(1):83 –

88, 1992.

[52] D. Li and J. B. Cruz. Game of defending a target: A linear quadratic

differential game approach. In Proc. of the 17th IFAC World Congress,

pages 2643–2648, 2008.

[53] K.-w. Lye and J. M. Wing. Game strategies in network security.

International Journal of Information Security, 4(1-2):71–86, 2005.

[54] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive

algorithms for on-line problems. In Proceedings ACM Symposium on

Theory of Computing, pages 322–333, 1988.

[55] S. Markovitch and R. Reger. Learning and exploiting relative

weaknesses of opponent agents. Autonomous Agents and Multi-Agent

Systems, 10:103–130, 2005.

[56] W. L. May and W. D. Johnson. Constructing two-sided simultaneous

confidence intervals for multinomial proportions for small counts in a

large number of cells. Journal of Statistical Software, 5(6):1–24, 2000.

[57] A. McLennan and R. Tourky. From Imitation Games to Kakutani,

2006. Unpublished.

168

Bibliography

[58] A. McLennan and R. Tourky. Imitation games and computation.

Games and Economic Behavior, 70(1):4 – 11, 2010.

[59] A. McLennan and R. Tourky. Simple complexity from imitation games.

Games and Economic Behavior, 68(2):683 – 688, 2010.

[60] J. Medhi. Stochastic Models in Queueing Theory, 2nd Edition.

Academic Press, Boston, 2002.

[61] K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline. Deoptim:

An r package for global optimization by differential evolution. Journal

of Statistical Software, 40(6):1–26, 2011.

[62] C. Negoita and D. Ralescu. Applications of Fuzzy Sets to Systems

Analysis. John Wiley & Sons, 1975.

[63] P. K. Newton, J. Mason, K. Bethel, L. A. Bazhenova, J. Nieva, and

P. Kuhn. A Stochastic Markov Chain Model to Describe Lung Cancer

Growth and Metastasis. PLoS ONE, 7(4):e34637, 04 2012.

[64] M. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press,

Cambridge, MA, 1994.

[65] P. Paruchuri, J. P. Pearce, and S. Kraus. Playing games for security:

An efficient exact algorithm for solving bayesian stackelberg games. In

Proceedings of 7th Int. Conf. on Autonomous Agents and Multiagent

Systems (AAMAS’08), pages 895–902, 2008.

[66] D. Pelta and R. Yager. Dynamic vs. static decision strategies in

adversarial reasoning. In Proceedings of the Joint 2009 Int. Fuzzy

Systems Association World Congress and 2009 European Society

of Fuzzy Logic and Technology Conf. (IFSA-EUSFLAT’09), pages

472–477, 2009.

[67] D. Pelta and R. Yager. On the conflict between inducing confusion and

attaining payoff in adversarial decision making. Information Sciences,

179:33–40, 2009.

169

Bibliography

[68] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway, M. Tambe,

C. Western, P. Paruchuri, and S. Kraus. Deployed ARMOR Protection:

The Application of a Game Theoretic Model for Security at the

Los Angeles Int. Airport. In Proc. of the 7th Int. Joint Conf. on

Autonomous Agents and Multiagent Systems: Industrial Track, pages

125–132, 2010.

[69] J. Pita, M. Tambe, C. Kiekintveld, S. Cullen, and E. Steigerwald.

GUARDS: Game Theoretic Security Allocation on a National Scale.

In Proc. of the 10th Int. Conf. on Autonomous Agents and Multiagent

Systems - Volume 1, pages 37–44, 2011.

[70] R. Popp and J. Yen. Emergent Information Technologies and Enabling

Policies for Counter-Terrorism. John Wiley and Sons Hoboken, NJ,

2006.

[71] K. Price, R. Storn, and J. Lampinen. Differential Evolution: A

Practical Approach to Global Optimization. Springer - Natural

Computing Series, 2005.

[72] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution

algorithm with strategy adaptation for global numerical optimization.

IEEE Transactions on Evolutionary Computation, 13(2):398–417,

2009.

[73] R Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria,

2015.

[74] J. E. Ricart. Una introducción a la teoŕıa de los juegos. Cuadernos

Económicos, 40, 1988.

[75] A. D. Sahin and Z. Sen. First-Order Markov Chain Approach to

Wind Speed Modelling. Journal of Wind Engineering and Industrial

Aerodynamics, 89(3-4):263–269, 2001.

[76] T. Sandler and D. G. A. M. Terrorism & Game Theory. Simulation

and Gaming, 34(3):319–337, 2003.

170

Bibliography

[77] G. A. Satten and I. M. Longini. Markov Chains With Measurement

Error: Estimating the ‘True’ Course of a Marker of the Progression

of Human Immunodeficiency Virus Disease. Journal of the Royal

Statistical Society C, 45(3):275–309, 1996.

[78] W. Schulze and B. van der Merwe. Music Generation with Markov

Models. IEEE Multimedia, 18:78–85, 2011.

[79] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo,

B. Maule, , and G. Meyer. PROTECT: A Deployed Game Theoretic

System to Protect the Ports of the United States. In Proc. of the 11th

Int. Conf. on Autonomous Agents and Multiagent Systems - Volume 1,

pages 13–20, 2012.

[80] C. P. Sison and J. Glaz. Simultaneous confidence intervals and

sample size determination for multinomial proportions. Journal of the

American Statistical Association, 90(429):366–369, 1995.

[81] D. C. Skinner. Introduction to Decision Analysis, 3rd Ed. Probabilistic

Publishing, Gainesville, Florida, 2009.

[82] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging

rules. Communications of the ACM, 28(2):202–208, 1985.

[83] R. Storn and K. Price. Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces. Journal of

Global Optimization, 11(10):341–359, 1997.

[84] M. Tambe. Security and Game Theory: Algorithms, Deployed Systems,

Lessons Learned. Cambdrige University Press, New York, 2011.

[85] D. Tran and M. Wagner. Fuzzy Hidden Markov Models for Speech and

Speaker Recognition. In Proc. of 18th Int. Conf. of the North American

Fuzzy Information Processing Society (NAFIPS), pages 426–430, 1999.

[86] I. Triguero, S. Garcia, and F. Herrera. Differential evolution

for optimizing the positioning of prototypes in nearest neighbor

classification. Pattern Recognition, 44(4):901–916, 2011.

171

Bibliography

[87] J. van der Hoek and R. J. Elliott. American Option Prices in a

Markov Chain Market Model. Applied Stochastic Models in Business

and Industry, 28(1):35–59, 2012.

[88] O. Vanek, B. Bosanský, M. Jakob, V. Lisý, and M. Pechoucek.

Extending security games to defenders with constrained mobility. In

AAAI Spring Symposium: Game Theory for Security, Sustainability

and Health, volume SS-12-03 of AAAI Technical Report, pages 75–82,

2012.

[89] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry. Probabilistic

pursuit-evasion games: theory, implementation, and experimental

evaluation. IEEE Transactions on Robotics and Automation,

18(5):662–669, 2002.

[90] P. Villacorta and D. Pelta. Evolutionary design and statistical

assessment of strategies in an adversarial domain. In Proceedings of the

IEEE Conf. on Evolutionary Computation (CEC’10), pages 2250–2256,

2010.

[91] P. Villacorta and D. Pelta. Expected payoff analysis of dynamic mixed

strategies in an adversarial domain. In Proceedings of the 2011 IEEE

Symposium Series on Computational Intelligence (SSCI’11), Intelligent

Agents Conf., 2011. In press.

[92] P. Villacorta and D. Pelta. Theoretical analysis of expected payoff in

an adversarial domain. Information Sciences, 186(1):93–104, 2012.

[93] P. J. Villacorta. MultinomialCI: Simultaneous Confidence Intervals

for Multinomial Proportions According to the Method by Sison and

Glaz, 2012. R package available in http://cran.r-project.org/package=

MultinomialCI.

[94] P. J. Villacorta and D. A. Pelta. A repeated imitation model with

dependence between stages: decision strategies and rewards. Int.

Journal of Applied Mathematics and Computer Science, 25(3):617 –

630, 2015.

172

http://cran.r-project.org/package=MultinomialCI
http://cran.r-project.org/package=MultinomialCI

Bibliography

[95] P. J. Villacorta, D. A. Pelta, and M. T. Lamata. Forgetting as a way

to avoid deception in a repeated imitation game. Autonomous Agents

and Multi-Agent Systems, 27(3):329 – 354, 2013.

[96] P. J. Villacorta and J. L. Verdegay. FuzzyStatProb: an R package

for the estimation of fuzzy stationary probabilities from a sequence

of observations of an unknown Markov chain. Journal of Statistical

Software, 2015. In press.

[97] P. J. Villacorta, J. L. Verdegay, and D. A. Pelta. Towards Fuzzy

Linguistic Markov Chains. In Proc. of the 8th Conf. of the European

Society for Fuzzy Logic and Technology (EUSFLAT), pages 707–713,

2013.

[98] J. von Neumann and O. Morgenstern. Theory of Games and Economic

Behavior. John Wiley and Sons, New York, 1944.

[99] H. von Stackelberg. Marktform und Gleichgewicht. Springer, Vienna,

1934.

[100] N. J. Welton and A. E. Ades. Estimation of Markov Chain Transition

Probabilities and Rates from Fully and Partially Observed Data:

Uncertainty Propagation, Evidence Synthesis, and Model Calibration.

Medical Decision Making, 25(6):633–645, 2005.

[101] R. Yang, B. Ford, M. Tambe, and A. Lemieux. Adaptive resource

allocation for wildlife protection against illegal poachers. In Proc. of

the 13th Int. Conf. on Autonomous Agents and Multi-agent Systems,

pages 453–460, 2014.

[102] Z. Yin, A. X. Jiang, M. Tambe, C. Kiekintveld, K. Leyton-Brown,

T. Sandholm, and J. P. Sullivan. TRUSTS: Scheduling Randomized

Patrols for Fare Inspection in Transit Systems Using Game Theory. AI

Magazine, 33(4), 2012.

[103] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338 – 353,

1965.

173

Bibliography

[104] L. A. Zadeh. The Concept of a Linguistic Variable and its Application

to Approximate Reasoning - I. Information Sciences, 8(3):199 – 249,

1975.

[105] L. A. Zadeh. The Concept of a Linguistic Variable and its Application

to Approximate Reasoning - III. Information Sciences, 9(1):43–80,

1975.

[106] L. A. Zadeh. Maximizing Sets and Fuzzy Markoff Algorithms. IEEE

Trans. on Systems, Man, and Cybernetics - Part C: Applications and

Reviews, (28):9 – 15, 1998.

[107] I. Zuckerman, S. Kraus, and J. Rosenschein. The adversarial

activity model for bounded rational agents. Autonomous Agents and

Multi-Agent Systems, pages 1–36, 2010.

174

	Resumen
	Abstract
	Introduction
	Objectives and structure of the thesis

	Background
	Game theory
	Security games
	Search games
	Imitation games
	An adversarial imitation model
	On the unsuitability of game-theoretic equilibrium
	Strategies of the agents

	Theoretical analysis of expected payoff with interpretable strategies
	Calculation of the expected payoff
	Notation and payoff matrix definition
	Expected payoff of R-k-B
	Expected payoff of Proportionally Random
	Expected payoff of B-k-R

	Computational experiments and results
	Results for Proportionally Random
	Results for R-k-B
	Results for B-k-R

	Conclusions

	Forgetting as a way to avoid deception
	Simplified version of the model
	Behaviour of the agents
	Static Mixed Strategy for Agent S.
	Dynamic Mixed Strategy for Agent S
	A generalized notation for the expected payoff

	Forgetting as a way to avoid deception
	Expected payoff with limited memory

	Experiments and results
	Experimental settings
	Results

	Conclusions

	Considering statistical dependence between actions and events
	A model with statistical dependence
	Behaviour of the agents
	Static mixed strategy for S under statistical dependence
	Dynamic mixed strategy for S under statisticaldependence

	Experiments and results
	Static vs dynamic strategies: performancecomparison
	On the influence of the number of periods

	Conclusions

	Estimation of Fuzzy Stationary Probabilities of a Markovian patrolling strategy
	Markov chains
	Related work

	A method to compute fuzzy stationary probabilities
	Fuzzy numbers
	Fuzzy transition probabilities from observations
	Fuzzy Markov chains and restricted matrix multiplication
	User-specified fuzzy transition probabilities
	Computation of fuzzy stationary probabilities

	The FuzzyStatProb package
	Implementation issues

	Application example
	Departing from a sequence of observations
	Departing from user-specified fuzzy transition probabilities
	On the reduction of uncertainty with more observations

	Conclusions

	A patrolling model for a UAV protecting an area against terrestrial intruders
	Problem statement
	State of the art
	Methodology
	Game-theoretic Formulation
	Mathematical Representation of Trajectories to Compute Capture Probabilities

	Towards an approximate solving strategy
	Components of a population-based metaheuristic

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	References

