
Lean Software Development Domain

Marcelo Udo
1
 and Tiago Stegun Vaquero

2
 and José Reinaldo Silva

2
 and Flavio Tonidandel

1

1Centro Universitário da FEI

IAAA – Artificial Intelligence Applied in Automation Lab – São Bernardo do Campo - Brazil
2Escola Politécnica – Universidade de São Paulo

Design Lab, Mechatronics and Mechanical Systems Department – São Paulo - Brazil

m_udo@fei.com.br, tiago.vaquero@poli.usp.br, reinaldo@usp.br, flaviot@fei.edu.br

Abstract

The AI Planning field has pursued the goal of applying all
developments already achieved in order to conquest real and
successful cases. Considering this objective, interesting and
challenging real problems are found in the software
development field. This paper was elaborated based on
complex problems encountered in the software development
area regarding planning, scheduling and domain knowledge,
where the main goal was to demonstrate an implementation
of AI Planning and Knowledge Engineering (KE) for
Planning & Scheduling for solving such real problems. This
text details how we acquired domain knowledge by using
itSIMPLE (through UML), a KE tool, and a planner in order
to keep planning and scheduling safe and sound for a Lean
Software Development domain. After acquiring domain
knowledge from the Lean Software Development domain,
we were able to (re-)plan software development activities
by using itSIMPLE in conjunction with Metric-FF to have,
when necessary, a new plan to give feedback about installed
capacity of the domain and resources. By doing so, we
reduce some old problems commonly found in software
development processes. We also present some benefits
achieved so far by using both KE and AI Planning
technologies.

Introduction

 The professionals involved with planning and
management activities in the software development field
have showed several problems regarding delivering
software systems on time, on budget, and on quality.
 However, there is another calamitous problem in this
field: lack of standardization of activities, work products,
product components, and products (it is important to
mention that work products and final products are different
concepts; considering work products the customers do not
receive them and they are actually used just as outputs of
development processes activities (Kulpa and Johnson
2003)). In this way, approaches such as Lean Software
Development (Poppendieck and Poppendieck 2003) have
been receiving great attention because of its level of
standardization, which is sometimes considered better than

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

other approaches of software development. The Lean
Software Development domain can be enriched with better
results when combined with Knowledge Engineering (KE)
processes. Since the Lean Software Development involves
a lot of planning and scheduling activities, mainly in
management tasks, it is an interesting real domain to be
modeled in an automated planning & scheduling approach
in order to observe the benefits of applying such
techniques for software development processes.
 By dealing with real problem, KE processes and tools
are essentials for acquiring domain knowledge. According
to Dana Nau (2007), acquiring domain knowledge is one of
the most important issues of automated planning research.
In fact, planners could be more useful and reliable for real-
world problems with new methods, tools, and practices for
acquiring domain knowledge. For this reason, some
researchers identified necessary improvements for KE
applied to Automated Planning (McCluskey 2000).
 The KE tool we used in the current work was itSIMPLE
(Integrated Tools Software Interface for Modeling
PLanning Environments) (Vaquero, Tonidandel, and Silva
2005), first demonstrated during ICKEPS’05, which was
an initiative towards accelerating Knowledge Engineering
research. The continuous use and improvements of this KE
tool have generated works to demonstrate the importance
of Requirements and Knowledge Engineering in the AI
Planning & Scheduling area and also the fundamental role
of a structured design life cycle in real applications
(Gomes et al. 2007; Vaquero et al. 2006; Vaquero et al.
2007; Vaquero, Tonidandel, and Silva 2005).
 In this paper we aim to overcome some problems
encountered in management, planning and scheduling
activities during software development process while
emphasizing the important role of knowledge about actions
necessary to produce software in different platforms and
technologies. In this work we show how we are so far
treating some of these problems by using AI Planning and
Knowledge Engineering for Planning & Scheduling
(KEPS) with a Lean Software Development approach. We
also present some tests and some issues, which brought us
new understandings about the use of a KE tool together
with the planner Metric-FF (Hoffmann 2003) for
simulations and re-planning applied for the Lean Software
Development.

 This paper is organized as follows. In the first section
we clarify some of the main difficulties raised in the
Software Development and the Chaos Report. In the next
section we briefly discuss the Lean Software Development
Domain. Then, we demonstrate the KE process of
Acquiring Domain Knowledge and some evidences and
issues rose during testing. Finally, we conclude and give
some future works.

Software Development and the Chaos Report

According to the Chaos Report developed in 1994 by
Standish Group (1995), the majority of software projects
fail in terms of budget, time, specification, and so forth. To
have a clear understanding, just 35% of software projects
are delivered on time and on budget.
 The Chaos Report raised some problems with planning
and scheduling in this area and also the fact that managers
do not have appropriate knowledge of the software
development activities. Oftentimes there are no
standardized tasks and work products to define how the
domain knowledge works. One of the tools very typical to
reduce problems in planning and scheduling is the
Microsoft Project, but it requires a professional called
Project Manager to solve the conflicts above at any time
using this tool.
 In fact, any company that produces software systems
needs information about its installed capacity which is
given based on current planning and scheduling and it also
needs to have a development methodology. Nowadays, one
of the methodologies that has been successful applied is
the Lean Software Development – An agile methodology
(Poppendieck and Poppendieck 2003). This approach is
described in the following section.

Lean Software Development Domain

In the late 1940s, a small company called Toyota changed
the way of producing cars and the way managers believed
production should work. Since then, many companies have
changed their production management by the Lean
Thinking (Ohno 1988).
 One of the domains affected by the Lean Thinking was
the Software Development, which generated the term Lean
Software Development, according to the works of Mary
and Tom Poppendieck (2003).
 The Lean Software Development approach guides
companies to standardize methods, activities, and work
products by following some main principles: eliminate
wastes; amplify learning; decide as late as possible; deliver
as fast as possible; empower the team; and built integrity in
(Poppendieck and Poppendieck 2003).
 One of the main and interesting features of the Lean
Software Development approach is the treatment of all
work products as they were pieces that compound
functionalities of a software release, such as specification,
data model, test plan, user guide, and others. This feature is

the main focus of this paper where Knowledge Engineering
for Planning & Scheduling was used to support and help
software development managers and teams to coordinate
their actions while performing and packaging the work
products (pieces) properly.
 We tested our assumption that Knowledge Engineering
for Planning & Scheduling together with Automated
Planning technology can be seen as a great solution for the
learning time and the production efficacy of Lean Software
Development domain because it could diminish the human
factor of trying to understand domain knowledge in detail
and let it stored into a knowledge base created by a KE
tool. In addition, it would let planners do what is necessary
when (re-)planning the software production.

Acquiring Domain Knowledge

As mentioned before, in this work we used a Lean
Software Development domain because all tasks, activities
and work products are standardized and this contributed
during KE process in terms of time. In this section we
focus on the part of the domain that deals with the
production line of a Lean Software Development process.
 The most important here is to treat software as a group
of small components. Therefore, in the production line we
have software releases that own several pieces such as
specification, test plan, unit testing, user guide, and so on
(see partial UML class diagram in Figure 1). In the
following topics we present the main elements of the
domain model.

 Fig. 1. Software Release and its components.

Acquiring Knowledge Objects

In the current topic we present a list of knowledge objects
that compound a software release. According to Nick
Milton (2007), Knowledge Objects are the elements that
make-up a knowledge base, such as classes or types,
relations or predicates, attributes, actions, and values.
 The type Release (illustrated in Figure 1) owns a
relationship “whole-parts” with Functionality and this
means how many functionalities a software release has to

 Fig. 2. Class diagram of the Lean Software Development Domain.

have. This characteristic is represented by the relationship
groups, also represented as predicate (groups ?rel –
Release ?fun – Functionality) in PDDL (Planning Domain
Definition Language) (Fox and Long 2003). When the
software releases are complete, the attribute built shows
whether it is built or not, also represented as predicate
(built ?rel - Release). According to the class diagram in
Figure 1, it is possible to observe that there are many
“whole-parts” relationships among the type Functionality.
 There is a kind of knowledge object in the Lean
Software Development domain that has the responsibility
to change the states in the domain and they are also called
Agents. The agents of the current domain model are:

 TechnicalWriter: is the agent responsible for
documenting technically software functionalities;

 Tester: is the agent responsible for planning test
coverture and for performing test execution;

 Developer: is the agent responsible for codifying
knowledge in some computer language;

 Manager: is the agent responsible for managing lean
software production;

 Analyst: is the agent responsible for eliciting, analyzing,
and modeling domain knowledge;

 DA (Data Analyst): is the agent responsible for modeling
data for databases.

 These agents are responsible for the workflow of the
production line in a Lean Software Development domain.
The most important predicates or relationships of those
agents listed above are the ones that defines the availability

of an agent to start a given task or action, for instance,
(availableDeveloper ?dev – Developer). This predicate
holds the availability of Developers for working on an
order.

Acquiring Actions for the domain

Now we present a list of actions (in PDDL format)
performed by agents in the Lean Software Development
Domain (see also the complete UML class diagram for this
domain in Figure 2):

 (:action makeDocuments) – is a technical writer’s action
dedicated to document user guides for software releases;

 (:action planTest) – is a tester’s action dedicated to plan
tests that cover all functionalities that compound
software releases;

 (:action performTests) – is another tester’s action
dedicated to perform tests once planned;

 (:action codifies) – is a developer’s action dedicated to
software code;

 (:action assemblies) – is another developer’s action for
assembling web services;

 (:action deploy) – is a manager’s action for deploying
software releases to customer systems environments;

 (:action specifiesUseCase) – is an analyst’s action
dedicated to specification. In our case, we use Use Cases
documents;

 (:action modelsDB) – is a DA’s action for modeling
databases.

Knowledge about Agents using Lean Principle

As a principle, Lean Software Development domain will
split any project into software releases. So, the production
line agents will have a good view of what constitutes the
software project.

We describe here the main activities performed by the
agents of Lean Software Development domain and its
implications with other knowledge objects.

Production Manager compounds software releases with
functionalities. The main responsibility of manager of the
production line is to integrate software releases grouping
all functionalities necessary to a given release.

Production Manager compounds functionalities with
work products. Other responsibility of manager of the
production line is to constitute functionalities with
specifications, unit testing scripts, test plans, codes, web
services, and so forth.

Each Agent of the production line creates work
products that compounds functionalities. At first, the
responsibility of analyst is to specify all documents
necessary for the functionalities. Afterwards, there are two
agents that can go on: Tester and Data Analyst (DA).
Tester will elaborate a test plan and prepare unit testing
scripts. Data Analyst will design a data model. Both will
do them incrementally.

Planning Problem Example

In this topic we present the initial and goal states of a
common planning problem for the Lean Software
Development domain.

 Initial State: there are all agents available and software
releases to be built with their functionalities.

 Goal State: all software releases are completed with
their functionalities. Each completed functionality will be
together with its work products such as specification, test
plan, unit testing, code, web service, user guide, and so
forth.

 Supposing a simple and illustrative planning problem
scenario where a software release must be develop by a
software team that has the following members: Analyst
(CARLOS), Data Analyst (ALBERTO), Testers (RAFAEL
and ALINE), Technical writer (CELIO), and a Developer
(DANIEL). These members are the agents of this domain
scenario and they will probably perform actions such as:
specifies Use Case, models DB, testers plan Tests, codifies
program, testers perform Tests, technical writers make
documents, managers deploy releases, and so forth. In this
example there are also domain objects, such as
functionality (F1), specification (SPEC1), data model
(DM1), test plan (TP1), unit tests (UT1), program
(PROGRAM1), user guide (UG1) that must be arranged
and coordinated to produce the software release R1. At the
end, customers will receive the software system with the
aimed release R1 with a set of functionalities required (in
this case only F1).

 The following list of actions represents the plan
generated by an automated planner for producing the
release R1 in the described scenario. However, when
considering a real scenario the planner must reason about
producing several releases with sets of functionalities using
the resources adequately in the Lean Software
Development domain:

0.00: (SPECIFIESUSECASE SPEC1 F1 CARLOS) [10.00]

10.01: (MODELSDB DM1 F1 ALBERTO SPEC1) [8.00]

18.02: (PLANTESTS SPEC1 F1 TP1 RAFAEL UT1) [4.00]

22.03: (CODIFIES PROGRAM1 F1 DANIEL) [10.00]

32.04: (PERFORMTESTS TP1 F1 UT1 ALINE) [10.00]

42.05: (MAKEDOCUMENTS UG1 F1 CELIO) [8.00]

50.06: (DEPLOY R1 F1) [4.00]

When manager has the solution plan for the production
line, he prints cards, according to that plan, which are work
orders to the software team. Each card is put on a board
called Kanban (Ohno 1988; Poppendieck and Poppendieck
2003), which is a Lean Visual Tool for monitoring and
controlling activities. When there is a strong deviation in
the plan detected in the Kanban, it is necessary to re-plan
the software releases. Since re-planning (from scratch) is
the approach used in this work, it is necessary to define
current state and goals to generate a new plan that
considered the deviation (other approaches besides re-
planning, such as plan repair and reuse, will be researched
in future works). For the definition of the current states and
the goal states we used itSIMPLE (Vaquero et al. 2007)
together with Metric-FF (Hoffmann 2003) for generating
plan (either for planning or re-planning), and also the Lean
Visual Tool for monitoring activities status. In addition,
managers can visualize and track (before the execution) the
use of resources through itSIMPLE (Vaquero et al. 2007).

This approach helps managers to visualize problems
with the software releases or project which will not be
delivered on time. However, they will have time to apply
corrective actions to the plan for maintaining commitments
with customers.

We used this approach to contrast with the traditional
tool of software development management and planning
activities: Microsoft Project. Another commercial tool used
for project management that is important to mention is the
Primavera Systems. However, this tool would be a waste
according to the lean thinking, because it would increase
the complexity of management (Jeong 2003). Thus, we
will show in the next section the approach discussed for
testing it against some issues.

Testing some Issues

During the whole KE process for the Lean Software
Development domain we captured some issues about the
use of KE for Planning & Scheduling and Automated
Planning. The first issue was that Manager takes too long

to control a project schedule when it is in a low level of
detail. It becomes a paradox because in order to Manager
have as much control as he can, he must control activities
in a low level of detail. The second issue we elicited was
that Manager looses the control of project schedule when
he needs to simulate new project schedules and they are in
a low level of detail. It also becomes a paradox because all
the time salesmen needs feedback about future installed
capacity of software production and new simulations need
to be performed. The third issue is the fundamental idea of
Lean Software Development by which software production
companies should work like industrial companies.
 For testing all issues listed above as we were modeling
the Lean Software Development domain, the following
scenario was elaborated and repeated for each set of
software releases to compare results between two different
ways of planning and managing:

 Three sets of samples of software releases (20, 40 and 80
releases);

 Each set of sample was tested using both itSIMPLE &
Metric-FF and MS Project 2003;

 When Manager used itSIMPLE & Metric-FF (i.e., using
AI Planning), he should simply update the current
situation and/or the desired situation of production line
and its resources. Then, he should simulate the new plan
for production line.

 When Manager used MS Project 2003, he should update
each task affected by the current situation manually. He
should visualize each resource affected and solve
conflicts with resources overload. This Manager should
take care of not skipping any action necessary in the
schedule;

 The size of team was the same for each test;

 Actions and Time consuming were analyzed given the
use or not of AI Planning.

 After testing all samples, when Manager used MS
Project he had to control all resources and tasks so that he
did not have resources overload. For this reason, he needed
much more time to solve those conflicts using the tool. On
the other hand, when he used itSIMPLE (Vaquero et al.
2007) with Metric-FF (Hoffmann 2003), he first defined
the initial state and the goal state of software production
and then generating the plan. For each change in the
production he re-planned by putting current state in the
place of the initial state maintaining the goal state. This re-
planning activity of the Manager using itSIMPLE &
Metric-FF was agile and all actions could be transformed
into work orders for the software team.
 We present in the table below some comparisons
between the use of automated planning and the current way
of managing software activities. These tests were
performed from January to April of 2008 (4 months). We
used a real company order to perform these tests.
 In the first test, described in Table 1, the production line
had a sample of 20 releases for a software team of 50

Releases Team Actions
Time of

Planning &
Scheduling

Using AI
Planning

20 50 147 28 hours No

20 50 140 9.7 hours Yes

40 50 299 39 hours No

40 50 283 11 hours Yes

80 50 590 67 hours No

80 50 567 17 hours Yes
Table.1. (Re-)planning activities: AI Planning x Manual Planning

members (Agents in the domain) and for this situation the
respective number of Actions and Time consuming with
Planning using MS Project 2003 are showed in the table.
The second test was equal to the first one, except that
Manager used itSIMPLE & Metric-FF. The other tests
were simply an increasing in the sample of software
releases.
 The more software releases increases, the more time will
be necessary for the activities of planning and scheduling.
In this way, as software releases increases, the use of MS
Project becomes very time consuming instead of what took
place with itSIMPLE & Metric-FF (Figure 3). Curiously,
when the Manager used itSIMPLE & Metric-FF to make
production simulations, it became an interesting support
tool like other ones used in Manufacturing; for example,
Preactor software tools solutions (Liddell, 2008). For a
clear understanding about the tests, Figure 3 illustrates the
differences cited above.

Fig. 3. MS Project 2003 x itSIMPLE & Metric-FF.

 By analyzing the results in Figure 3, we can describe the
following. When Manager used MS Project 2003 to plan
and re-plan, taking in consideration resources overload, for
20 software releases he needed 28 hours whereas by using
itSIMPLE & Metric-FF he needed only 9.7 hours. For 40
software releases, by using MS Project 2003 he took 39
hours whereas by using itSIMPLE & Metric-FF he used 11
hours. We tested up to 80 software releases for MS Project
2003 with 67 hours and for itSIMPLE & Metric-FF with
17 hours. The curve regarding itSIMPLE & Metric-FF
represents a great result in terms of time used for planning,
re-planning, and scheduling in software management

activities. In addition, the manager can avoid mistakes
derived from manual planning & scheduling process.
 Thus, we had some observations regarding the issues
rose before the tests:

 First issue: Manager takes too long to control a project
schedule when it is in a low level of detail. That is true
and principally when using MS Project;

 Second issue: Manager looses the control of project
schedule when he needs to simulate new project
schedules and they are in a low level of detail. That is
also true nowadays in the area, but applying AI Planning
together with KE, the results can be different;

 Third issue: software production companies should work
like industrial companies. That is true from our point of
view because we observe that a shop floor tool for a
software production company can have AI Planning
Technology.

 As mentioned before, nowadays many managers in the
software production count on software tools like Microsoft
Project to perform activities like those we treated in this
paper and the main problem of them is the lack of
automatic scheduling and the dependence of personal
knowledge to correct plan manually. We could use tools
like Preactor solutions (Liddell 2008) but we would lose
explicit knowledge acquired in the Knowledge Engineering
process.

Applying the KE process, we were able to create a
knowledge base with all knowledge necessary for
itSIMPLE tool together with a planner Metric-FF to
generate a plan which is translated into work orders for the
lean software team.
 The other important gain achieved with KE for Planning
& Scheduling is that we could hire a new Manager without
demanding that he understood as soon as possible all
standards the Lean Software Development domain owns at
once. In addition, itSIMPLE maintains the domain
modeled in UML which is a language familiar to the
software team members (Berardi et al. 2003).

Conclusion

In this paper we presented the Lean Software Development
domain, which is an important approach in the software
engineering area taking into account software production
issues, where we applied techniques of Knowledge
Engineering for Planning & Scheduling and Automated
Planning (McCluskey 2000). In this application we
illustrated that it is possible to achieve results that are not
achievable by using simply a schedule tool like Microsoft
Project. In addition, it is feasible to maintain the
information of resources and activities status about your
organization updated in a real time monitoring and
execution by using a simple tool like Kanban – a Lean
Visual Tool.
 Of course, as time goes on, managers will diminish the
learning time for acquiring knowledge about Lean
Software Development domain. It succeeds because by

using a tool like itSIMPLE together with a planner for
planning the Master Plan Schedule, managers will feel
more confident to be in charge of a production line as soon
as possible. In fact, managers could be able to give
information about installed capacity of each production
unit regarding resources and customer orders. The mainly
tasks that managers have to do are to take care of master
plan schedule, the events in the production, and the plan
generation.
 These results presented in this paper motivated
innovations in the itSIMPLE for dealing with exogenous
events and simulations for analyzing different courses of
actions.

References

Berardi, D.; Cal, A.; Calvanese, D.; and Giacomo, G. 2003.
Reasoning on UML class diagrams. Technical Report 11-
03. Available at http://citeseer.ist.psu.edu/article/
berardi03reasoning.html.

Fox, M.; Long, D. 2003. PDDL 2.1: An Extension to
PDDL for Expressing Temporal Planning Domains.
Journal of Artificial Intelligence Research 20:61-124.

Gomes, M. L.; Udo, M.; Vaquero, T. S.; Silva, J. R.; and
Tonidandel, F. 2007. Obtaining States Invariants From
Class Diagram in UML.P. In: VIII SBAI - Simpósio
Brasileiro de Automação Inteligente, Florianópolis, Brazil.

Hoffmann, Jörg. 2003. The Metric-FF Planning System:
Translating ''Ignoring Delete Lists'' to Numeric State
Variables. J. Artif. Intell. Res. (JAIR) 20: 291-341.

Jeong, H. 2003. Distributed Planning and Coordination to
Support Lean Construction. PhD thesis 2003, University of
California, Berkeley.

Kulpa, M. K.; Johnson K. A. 2003. Interpreting the CMMI:
A Process Improvement Approach, Auerbach Publications.

Liddell, Mike. 2008. Batch Scheduling in a Lean
Manufacturing World at http://www.preactor.com/
whitepapers.aspx.

McCluskey T. L. 2000. The Knowledge Engineering for
Planning Roadmap in the PLANET final report to the EC,
November 2000.

Milton, N. R. 2007. Knowledge Acquisition in Practice: A
Step-by-step Guide. London: Springer.

Nau, D. 2007. Current trends in automated planning. AI
Magazine 28(4):43–58, 2007.

Ohno, Taiichi. 1988. Toyota Production System, English,
Productivity, Inc. 1988, published in Japanese in 1978.

Poppendieck, M.; Poppendieck, T. 2003. Lean Software
Development, Addison Wesley.

Standish Group 1995. The CHAOS Report (1994). Report
of the Standish Group. Available at

http://www.standishgroup.com/sample_research/chaos_19
94_1.php .

Vaquero, T. S.; Romero, V. M. C.; Sette, F. ; Tonidandel,
F.; and Silva, J. R. 2007. itSIMPLE2.0 : An Integrated
Tool for Designing Planning Domains. In: Proceedings of
17th International Conference on Automated Planning and
Scheduling (ICAPS), Providence, Rhode Island.

Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva, J.
R. 2006. On the Use of UML.P for Modeling a Real
Application to the Planning Problem. In: Proceeding of
16th International Conference on Automated Planning and
Scheduling (ICAPS). Cumbria, UK.

Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva, J.
R. 2007. Modeling a Real Application as a Planning
Problem by using UML.P. In: VIII SBAI - Simpósio
Brasileiro de Automação Inteligente, 2007, Florianópolis,
Brazil.

Vaquero, T. S.; Tonidandel, F.; and Silva, J. R. 2005. The
itSIMPLE tool for Modeling Planning Domains. ICAPS
2005, The First International Competition on Knowledge
Engineering for Planning & Scheduling ICKEPS,
Monterey, California, USA.

http://www.standishgroup.com/sample_research/chaos_1994_1.php
http://www.standishgroup.com/sample_research/chaos_1994_1.php

