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Abstract

Considerable progress has been made over the last 15
years on building adaptive control systems to assist pi-
lots in flying damaged aircraft. Once a pilot has re-
gained control of a damaged aircraft, the next problem
is to determine the best site for an emergency landing.
In general, the decision depends on many factors includ-
ing the actual control envelope of the aircraft, distance
to the site, weather en route, characteristics of the ap-
proach path, characteristics of the runway or landing
site, and emergency facilities at the site. All of these
influence the risk to the aircraft, to the passengers and
crew, and to people and property on the ground. We de-
scribe an ongoing project to build and demonstrate an
emergency landing planner that takes these various fac-
tors into consideration and proposes possible routes and
landing sites to the pilot, ordering them according to es-
timated risk. We give an overview of the system archi-
tecture and input data, describe our preliminary mod-
eling of risk, and describe how we search the space of
landing sites and routes.

Introduction
On July 19, 1989, United flight 232, a DC-10 enroute from
Denver to Chicago, suffered an uncontained failure of the
fan blades in the number two (rear) engine. The resulting de-
bris severed hydraulic lines in the airplane’s tail resulting in
loss of all hydraulic fluid, and consequent loss of all aircraft
control surfaces. Miraculously, a DC-10 flight instructor on
board the aircraft was able to regain some semblance of con-
trol using differential thrust from the two remaining engines.
An emergency landing was subsequently attempted at Sioux
City, IA. Because of the high landing speed, high descent
rate, and limited control, the aircraft broke up on impact,
but 10 of 11 crew members and 175 of the 285 passengers
survived the accident (NTSB 1990).

This accident, and others involving structural damage to
aircraft, motivated research on adaptive control systems,
aimed at allowing a pilot to continue to fly a damaged air-
craft using stick inputs. The adaptive controller translates
those inputs into novel combinations of thrust vectoring and
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control surface movements in order to achieve the pilots in-
tent. Testing of these controllers in full motion simulation,
and in test aircraft has been very successful so far (see for
example (Burcham et al. 1996; Burken & Burcham 1997;
Gundy-Burlet et al. 2004)). As a result, such control sys-
tems are being seriously considered for next generation mil-
itary and civil transport aircraft. This capability, while quite
remarkable, only addresses the first piece of the problem –
regaining control of the aircraft. Once this is achieved, the
next problem is to determine the best site for an emergency
landing. In general, the decision depends on many factors
including the actual control envelope of the aircraft, distance
to the site, weather en route, characteristics of the approach
path, characteristics of the runway or landing site, and emer-
gency facilities available at the site. All of these influence
the risk to the aircraft, to the passengers and crew, and to
people and property on the ground. A purely secondary con-
sideration is airline and passenger convenience.

Although pilots are highly trained in emergency proce-
dures, structural damage and the consequent changes in
flight characteristics strain the limits of their intuition and
ability to assess different possible options. It would there-
fore be very useful to have an automated system that could,
in seconds, generate and evaluate different possible emer-
gency landing plans, and present the best options to the pilot.
Furthermore, as the flight progresses, it is necessary to con-
tinually update and reevaluate the set of options to take into
account the changing location, altitude and velocity of the
aircraft, subsequent degradation or failures that change the
predicted control envelope, and updated weather and airport
information.

Fundamentally, this problem is a 3D path planning prob-
lem involving dynamics (aircraft speed and direction), with
complex optimization criterion. It may, for example be pos-
sible for the aircraft to fly through a region of moderate tur-
bulence, but because of the limited control authority, there
is increased risk of loss of control. It might also be easier
(as it was for United 232) for the aircraft to make right turns
rather than left turns, or to handle a right crosswind, rather
than a left crosswind.

Traditionally, difficult path planning problems have been
solved using either discretization of the space, or by generat-
ing probabilistic road maps. For this problem, discretization
often results in paths that have turns in them, even if the ac-



Figure 1: A display of reachable emergency landing sites for a disabled aircraft (small center triangle). In this example, sites
are ranked according to distance and runway length.

tual travel could be in a straight line. Since turning increases
risk, this artificially biases the search against paths that do
not go 0, 45, or 90 degrees to the axes of the grid. The gen-
eration of probabilistic roadmaps is possible in this domain,
and we are currently investigating their use for short-range
planning. In this paper, we show a different, more system-
atic method of generating long-range roadmaps that relies on
the typical characteristics of obstacles in this domain. The
planning search is then a modified A* that searches for paths
of low risk in this roadmap.

In the sections that follow, we give an overview of the sys-
tem architecture, describe how obstacle information is ob-
tained, describe how we assess risk, and describe the details
of our prototype path planning algorithm.

Architecture
The Emergency Landing Planner is one component of the
Integrated Flight Planning and Guidance (IFPG) subsystem
of the Integrated Resilient Aircraft Control (IRAC) Project
(see Figure 2). In the IFPG architecture, when some sort of
damage or failure occurs that impairs the aircraft in some
significant way, several things happen. First, the Adaptive
Flight Control subsystem helps the pilot retain or regain
control of the aircraft. While this is happening, the IFPG
subsystem dynamically gathers data from the Integrated In-
telligent Flight Deck (IIFD) for airports and obstacles, In-
tegrated Vehicle Health Management (IVHM) for aircraft

Figure 2: An overview of the IFPG Architecture in IRAC,
including the Emergency Landing Planner.

health, and the Maneuvering Envelope subsystem for air-
craft control limitations in order to construct the 3D planning
problem to be solved by the Emergency Landing Planner.

As the Emergency Landing Planner finds usable solutions
that do not violate any of the obstacle or controllability con-
straints, it consults the Trajectory Planner to refine these
solutions into more detailed flight plans.1 The pilot then
chooses from among the proposed flight plans.

This IFPG emergency planning architecture allows for

1The trajectory planner has a much more detailed but computa-
tionally more expensive model of aircraft performance and dynam-
ics.



flexibility in the amount of autonomy delivered by the IFPG
subsystem. The pilot can choose any of the solutions pro-
posed by the IFPG subsystem based on experience, and
on the information and predictions delivered by the IIFD,
IVHM, and Adaptive Flight Control subsystems.

The planning problem to be solved consists of the follow-
ing:
1. The start state, consisting of the current position, altitude
and velocity of the aircraft.
2. The control envelope for the damaged aircraft, including
airspeed range, allowable bank angles, descent range, and
control responsiveness.
3. The potential landing sites within the estimated land-
ing range of the aircraft, together with the characteristics of
those landing sites, such as urban density, runway length,
weather conditions and emergency facilities.
4. All of the “obstacles” that must be considered while flying
to any landing site. Some of these may be hard obstacles like
terrain, but others may be regions with weather conditions
that simply present increased risk.

Within these constraints, the Emergency Landing Plan-
ner searches, based on explicit modeling preferences, for the
best solutions that can be found. These are then presented to
the pilot (see Figure 1) as possible landing sites. Alterna-
tive landing sites are regularly re-evaluated to account for
the evolution of the plane’s situation. A priority is assigned
to each landing site depending on its current estimated value
and the duration spent since its last update, and the site with
the highest priority is updated first.

Obstacles
To determine the best routes and landing sites, the planner
has to consider a set of dynamic and static obstacles. These
obstacles are derived from various on-line sources. There
are five rough categories of obstacle data which, in the cur-
rent work, cover the continental US, northern Mexico and
southern Canada. These obstacles consist of:
• Terrain elevations
• Urban development
• Radar observations (thunderstorms)
• Special use airspace and temporary flight restrictions
• Icing and turbulence observations

These physical and administrative phenomena, when they
are relevant to the planning process, generate corresponding
obstacles. The obstacles can be either hard or soft and are
columnar in nature. They are generated by taking the 2D
boundary of the phenomenon, forming a convex hull around
it, and recording the floor, ceiling and risk associated with
the obstacle.

The terrain elevations are used to generate hard “terrain
obstacles” for the area within the landing range of the air-
craft. The obstacles are derived from data gathered by
the Navy Fleet Numerical Oceanography Center (FNOC) at
Monterey, CA.2 This data consists of a grid of elevations at
10′ intervals, for both latitude and longitude.

2http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO5/TOPO

Urban development data also comes from the FNOC data
and is used as an estimation of population density along
the approach path for each possible landing site. Areas of
high population density are soft obstacles, corresponding to
regions of increased risk (for persons and property on the
ground) when the aircraft is at low altitude within 10 miles
of the landing site.

The radar observations being used are the standard
weather precipitation observations as reported by the Na-
tional Weather Service (NWS). They are grouped into cells,
lines, and areas of rain showers and thunder storms. They
are retrieved at incident time3 and updated dynamically as
needed. They are reported as a location, size, direction of
movement, speed, maximum elevation, severity, and, in the
case of lines and areas, a saturation percentage. These ob-
servations are used to generate soft obstacles with risk de-
termined by saturation, severity, and controllability of the
aircraft.

Special Use Airspaces (SUAs) and Temporary Flight Re-
strictions (TFRs) are, as their names imply, areas where
flight is restricted or prohibited. The SUAs are derived from
an FAA publication4 and are relatively static. They consist
mainly of airspace reserved for military purposes, and range
in size from a couple of nautical miles to covering signifi-
cant portions of a state. SUAs are given as descriptions of
an area boundary, a designated floor and ceiling, and times
during which the given restriction is in force.

TFRs are similar to SUAs, but generally designate non-
military restrictions. They consist of such events as air
shows, major sporting events, large public gatherings, fire
fighting activity, rescue operations, volcanic activity, VIPs,
security restrictions, and so on. However, they are far more
dynamic than SUAs, and are therefore retrieved and updated
dynamically from the FAA5. They are represented in much
the same way as SUAs, with a boundary, floor, ceiling, and
enforcement times. Since an aircraft in distress is allowed
to violate airspace restrictions, we treat SUA and TFR ob-
stacles as soft, with risk associated with military and/or law
enforcement activity.

Pilot Reports (PIREPs) of icing and turbulence are gen-
erated continually, and depending on severity, constitute re-
gions of higher risk. PIREPs are retrieved dynamically6 and
updated frequently. Each icing and turbulence report con-
sists of a location, floor, ceiling, intensity, and time of obser-
vation. Turbulence and icing reports generate soft obstacles
with risk dictated by severity and controllability of the air-
plane.

All of the obstacles described above are columner in na-
ture – that is, they have a 2D boundary, a floor and a ceil-
ing. We represent them using a convex polygon together
with their floor and ceiling altitudes, and an associated risk.

3From http://www.atmos.albany.edu/weather/data1/surface/rad
4“Special Use Airspace”, JO 7400.8P,

http://www.faa.gov/airports airtraffic/air traffic/publications
5http://tfr.faa.gov/tfr2/list.html
6http://weather.aero/pireps



Assessing Risk
There is risk associated with various phases of an emergency
landing – en route, approach, landing, and emergency re-
sponse. We use expected loss of life as our measure of risk,
because it allows us to take into consideration casualties on
the ground, as well as passengers and crew. It is difficult
to give precise estimates of risk, given all the uncertainty
associated with aircraft capabilities, pilot performance and
weather. However, our purpose here is simply to provide a
rough means of ranking alternatives for presentation to the
pilot, and to allow the pilot to focus on the most critical fac-
tors affecting the decision on landing site.

En Route Risk
The primary factors influencing risk en route to the land-
ing site are: controllability of the aircraft, distance and time
to the site, complexity of the flight path (e.g. number of
turns), weather along the path (thunderstorms, icing, and
turbulence) and risk of further deterioration in aircraft per-
formance and handling. The en route portion of the flight is
generally at sufficiently high altitude (in the US) that terrain
is not an issue.

We represent controllability in terms of the probability of
loss of control for different flight regimes. Initially, we con-
sider:
Pstable : we assume that the probability of not losing con-

trol while traversing an edge decreases exponentially with
the length of the edge. That is, the probability of keep-
ing control is (1 − Pstable)

D, where Pstable ∈ [0, 1] and
D is the distance traversed in nautical miles (nm). Intu-
itively, Pstable represents the probability of failing at each
infinitely small step of the traverse or, loosely speaking,
the probability of failure per nm.

Pturn as the probability of loss of control when a turn is
initiated.

Thus for a flight path of total length D with T turns, the risk
would be:

Risk = B
(

1 −
(

Pstable
)D (

Pturn
)T

)

where Px ≡ (1−Px) and B is the total number of crew and
passengers.

Risk associated with weather is also assumed to follow an
exponential law with respect to the length traversed, but of
course it depends on the severity of the weather, as well as
the controllability of the aircraft. Initially, we take the prob-
ability of loss of control per nautical mile due to weather to
be:

PW = 1−
(

Pstable ∗ Pw
)S

where S is the severity of the thunderstorm, icing, or turbu-
lence, with 1 being light, and 5 being extreme. Initially, we
have chosen Pw, the inherent risk per nm associated with
light weather to be .1. For a normally functioning transport
aircraft, (Pstable ≈ 0), this means that the chance of loss of
control when flying through extreme thunderstorms, icing
or turbulence is 1 − .95 ≈ .41/nm. This may prove to be
too high, but for now, it biases the planner away from routes
through significant weather obstacles.

Risk of further deterioration in aircraft capabilities is dif-
ficult to assess. Ultimately, we assume that this will be given
to us by the control and diagnostic systems, and will depend
on the nature of the damage or failures. For now, we as-
sume that the probability of loss of control due to further
degradation, Pdegr, is relatively low, but non-zero. Specif-
ically, we assume Pdegr = .02/nm. This introduces an
additional mild bias for selecting shorter routes and closer
landing sites.

Using all these factors (Pstable, Pturn, PW and Pdegr) we
can assess the risk of any given route whether it goes through
or around weather obstacles.

Approach Risk
When the aircraft reaches the approach environment (low
altitude in the vicinity of the landing site) several additional
risk factors come into play: urban development along the ap-
proach path, ceiling and visibility, wind shear, and risk due
to configuration changes (deployment of flaps, slats, landing
gear, etc.). At present, we ignore wind shear and configu-
ration changes, but allow for the fact that the probability of
loss of control per nautical mile may be different in the ap-
proach configuration. We refer to this probability as Pappr
and assume that it is provided to us.

In general, the probability of loss of control on the ap-
proach depends on weather conditions as well as the control-
lability in the approach configuration. Assuming the aircraft
navigation equipment is functioning normally, there is little
additional risk associated with approaches where the ceiling
is at least 1000 ft above the ground. However, if the ceiling
is below 200 ft, the risk is high.7 We take the probability of
loss due to the ceiling as:

PCeil =







0 if Ceil ≥ 1000
1 − Ceil−200

800 if 1000 > Ceil > 200
1 if Ceil ≤ 200

Similarly, there is little risk when the visibility is greater than
3 miles, and extreme risk when it is less than half a mile. We
therefore take the probability of loss due to ceiling as:

PVis =







0 if Vis ≥ 3
1 − V is−.5

2.5 if 3 > Vis > .5
1 if Vis ≤ .5

We assume that loss of control of a transport category air-
craft over a densely populated area will cause loss of life
within at least a .1 square mile area. Thus, if the approach
path takes us a distance D over population density N the
risk is:

Risk = (.1N + B)
(

1 − PCeil ∗ PVis ∗
(

Pappr
)D

)

Thus, if controllability is still high (e.g. loss of one engine),
and weather is good, there is little bias against approach
paths over heavily populated areas. However, if control-
lability or weather is poor, there is additional bias for low
population density approach paths.

7Actually, we use the published Decision Height (DH) or Min-
imum Descent Altitude (MDA) for the approach. DH is typically
200ft for a category I ILS approach.



Runway Risk
The primary risk factors associated with runway choice are
runway length, width, braking condition, and relative wind.
In general, the length required is determined by landing
speed, braking condition and relative wind. Landing speed
may be much higher than normal if controllability is low, but
we assume this is given to us as part of the control envelope.
As a general rule, an aircraft needs about 40ft of runway for
each knot of speed at touchdown, thus:

Runway-reqd ≈ 40 ∗ (Approach-speed− Headwind)

This can go up by as much as a factor of two if braking qual-
ity is poor (water, snow or ice on the runway). It can also go
up considerably if pitch or speed controllability is poor, so
these two factors need to be added to the above equation.
If runway length is sufficient, as computed above, there is
no additional risk; risk increases as the runway length is re-
duced below that. We therefore compute probability of loss
of life due to runway overrun as:

Plength = 1 −
Rnwy-length
Rnwy-reqd

when Rnwy-reqd > Rnwy-length. Thus, if the runway
length is zero, the result is considered equivalent to a crash.
Additional factors are required if the runway width is low,
or if the crosswind is too high, given aircraft controllability.
So overall risk due to the runway can be assessed as:

Prnwy = 1 − Plength ∗ Pwidth ∗ Pxwind
Riskrnwy = B ∗ Prnwy

Airport Risk
Finally, there is risk associated with the availability of emer-
gency facilities at the airport and in the surrounding commu-
nity. If facilities are absent this may result in greater loss of
life if the aircraft loses control on landing, or runs off the end
of the runway. If we represent emergency facilities as being
a number between zero (no facilities) and 1 (good facilities)
we can estimate the runway risk as follows

Riskrnwy = B ∗

(

1 −
(

Prnwy
)(2−facil)

)

Thus, if emergency facilities are good, no additional risk is
incurred, but if they are poor, the risk increases somewhat.

Taken together, all of this risk information for route, ap-
proach, runway and airport facilities allow us to evaluate dif-
ferent possible emergency landing plans. Currently, we are
not actively using all of this information to guide the search
for good paths, but this is an obvious next step.

Path Planning
The role of path planning is to determine the best path from
the current position of the plane to any candidate landing
site. There has been extensive previous work on path plan-
ning and obstacle avoidance. See (Choset et al. 2004) for
a survey of this field. Our research in the IRAC project
lead us to experiment with several approaches, including cell
decomposition, roadmaps and probabilistic algorithms. In
this paper, we report on our current approach, which is a
roadmap algorithm used for long range path planning.

Roadmaps
A roadmap is a topological representation of the environ-
ment that captures the connectivity of the free space. For-
mally, it is a graph G = (V , E) where vertices v ∈ V repre-
sent specific locations in the environment and edges e ∈ E
represent free paths between neighboring locations. We as-
sume that a vertex v0 ∈ V representing the starting state is
included in the graph, as well as vertices vg ∈ V represent-
ing goal locations. Each edge e = (v, v′) ∈ E is associated
with a distance or cost d(v, v′). In most of our exposition,
we assume that d(v, v′) is the Euclidean distance between v
and v′. More interesting cost functions are discussed at the
end of this section.

Several types of roadmaps have been proposed in the lit-
erature. In this work, we adapt one of the earliest and most
common techniques: the visibility graph. This graph is de-
fined in two-dimensional space. Remember that obstacles
are represented as 2D polygons with an associated floor,
ceiling and risk. For the purpose of building the initial vis-
ibility graph, we consider all obstacles above a certain risk
level, neglect the floors and ceilings of the obstacles, and use
only their two-dimensional polygonal representation.8 The
nodes V of the visibility graph include: the start location
v0, the possible destinations vg , and all the obstacle vertices
(corners between two edges of the polygons). The edges E
are straight lines between vertices that do not traverse any
obstacle (see Fig. 3). In 2D, the visibility graph is guaran-
teed to contain the shortest path from the start to the goal.
Unfortunately, this property does not hold if the same ap-
proach is applied in higher dimensions.

The reduced visibility graph or tangent graph is a sub-
graph of the visibility graph that is also guaranteed to con-
tain the the shortest 2D path. Because it contains fewer
edges, it is easier to solve. It is based on the observation
that the shortest path traverses only edges that are tangent
to obstacles. Therefore, non tangent edges may be safely
removed from E (see Fig. 3). Determining the set of tan-
gent edges can be a difficult problem (Liu & Arimoto 2004).
Instead of computing this set exactly, we eliminate edges
whose extremities are not “locally tangent” to an obstacle.
Consider an edge e arriving in vertex v, which represents
the angle between two sides s and s′ of the polygonal obsta-
cle. Then, e is locally tangent in v if s and s′ fall on the same
side on the line passing through e. A tangent edge may not
contain an extremity that is not locally tangent (but the con-
verse is not true). Therefore, we can safely eliminate edges
with an extremity that is not locally-tangent. This eliminates
fewer edges than the real tangent graph, however, as testing
for local tangency is very cheap (Cormen et al. 2001), it is a
good overall compromise.

So far, we have limited the discussion to a two-
dimensional framework. In our emergency landing frame-
work, obstacles have a floor and a ceiling, and it is some-
times possible to fly above or below some of them. To ac-
count for this possibility, the tangent graph is augmented

8In order to account for aircraft dynamics and turn radius, we
expand the size of each obstacle by an amount determined by air-
craft controllability.



Figure 3: Three types of roadmaps (from left to right): visibility graph (58 edges), tangent graph (45 edges), and extended
tangent graph (69 edges). The aircraft is represented by the small triangle in the center of the figure, and the targeted landing
site is the blue circle labeled “KTRC” in the top of the figure.

with a set of secondary edges and vertices.
To build secondary edges, we first consider connecting v0

to vg . We enumerate all obstacles that intersect the segment
between these two vertices, and all ground-level variations
along this segment. As shown in Fig. 4, the path from v0 to
vg is divided into a series of slices inside of which the ground
level is constant and the same set of obstacles is traversed.
We represent this cut through the 3D space by a chain of
(secondary) vertices and edges: there is one secondary edge
for each slice in Fig. 4, and one secondary vertex between
each two consecutive slices.

Similar operations are repeated for connecting different
pairs of vertices in the 2D map:
• v0 or vg to any corner of an obstacle, if the segment inter-

sects another obstacle and does not have any non-locally
tangent extremity;

• two corners of different obstacles, if the segment inter-
sects a third obstacle and does not have any non-locally
tangent extremity.

Next, primary edges (those originally present in the tangent
graph) are replaced by chains of secondary edges to account
for ground level variations along those edges (if the ground
level is constant along the edge, it is left untouched).

We call the resulting graph an extended tangent graph (see
Fig. 3). We can associate with each edge e of E the set of
altitudes that are free of obstacles for all points in e. It is
represented as a finite set of altitude intervals and denoted
Ue = {(fi, ci), i = 1, 2, . . . , ke}. Notations f and c stand
for floor and ceiling as intervals (fi, ci) represent tunnels
along e through which the plane can navigate. If e traverses
no obstacle, then Ue contains a single interval ranging over
all possible altitudes. For instance, slice 3 in Fig. 4 contains
three tunnels and slice 8 only one tunnel.

The extended tangent graph contains more edges than the
tangent graph, and often contains more edges than the vis-
ibility graph. Although it is not guaranteed to contain the
shortest path in 3D space, it allows for some possibilities of
movement that are not represented in the 2D graphs, such as
going above or below an obstacle. In the next paragraph, we
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Figure 4: Cut of the 3D space along the segment from the
plane (v0) to the targeted landing site (vg). The cut is di-
vided into 9 slices where ground elevation and obstacles are
constant. Each slice is represented by a secondary edge in
the extended tangent graph. Secondary vertices’s are added
between each two consecutive secondary edges.

show how to determine, given the vertical maneuverability
of the plane, what trajectories are possible in the 3D cut of
Fig. 4.

Hybrid A*
The extended tangent graph G is a 2D topological map that
accounts for some opportunities of movement in the 3D
space, such as going under or above an obstacle. In our
prototype planner, this graph is exploited by a 3D path plan-
ning algorithm called Hybrid A* (HA*). HA* is an exten-
sion of the A* algorithm that can handle a form of contin-
uous state variables. It can also be seen as a deterministic
special case of the HAO* algorithm (Mausam et al. 2005;
Meuleau et al. 2008). Table 1 summarizes the relations be-
tween these algorithm.

The basic principle of HA* is to reason about hybrid
states s = (v, h), where v is a vertex of G and h ∈ R.



discrete states hybrid states
deterministic A* HA*
stochastic AO* HAO*

Table 1: Relationship between algorithms.

Being in state (v, h) represents being at location v and al-
titude h. States are called hybrid because they have a dis-
crete component v and a continuous component h. The 3D
path planning problem is formalized as the problem of find-
ing a sequence of hybrid states leading from the plane to
the targeted runway which are all particular hybrid states.
An important characteristic of this problem is that there are
(uncountably) infinitely many states that are reachable from
a given position, which must be accounted for during opti-
mization.

HA* addresses this issue by computing finite partitions of
the (infinite) hybrid-state space. Then it performs standard
A* search in the space of partitions. The partitions are built
on the fly, as the search progresses.

Formally, HA* associates with each vertex v of G a finite
set of intervals Rv = {(li, ui), i = 1, 2, . . . , kv} represent-
ing the altitudes at which v can be reached from the current
position of the plane. For convenience, we denote an alti-
tude interval by the triple [v, l, u] where v is the edge of G to
which the interval is attached, and l and u are the bounds on
altitude.

The sets Rv, v ∈ V , may be computed incrementally, by
propagating altitude intervals into G. An interval I0 is cre-
ated to represent the initial situation of the plane: if v0 is
the vertex representing the plane and h0 is the current al-
titude, then I0 = [v0, h0 − ε/2, h0 + ε/2], where ε is any
very small positive number. This seed is added to Rv0

and
then pushed through every edge starting in v0, which creates
new altitude intervals that are propagated through the graph
in turn.

Given an edge e = (v, v′) of length d(v, v′) and a tun-
nel (f, c) ∈ Ue, pushing an altitude interval [v, l, u] through
(f, c) consists of computing a new altitude interval [v′, l′, u′]
such that:

u′ = min {min {u, c} − ρnd(v, v′), c}
l′ = max {l − ρxd(v, v′), f}

(1)

where ρx > 0 is the maximum descent rate of the plane and
ρn its minimum descent rate. (If the plane can still climb,
then ρn < 0.) The first line of Eqn. 1 may be understood
as follows: if the set of reachable altitudes in v is (l, u),
then when we enter the tunnel (f, c) leading from v to v′,
our maximum altitude is min {u, c}. During the traversal of
the tunnel, our altitude may increase by the amount −ρnd at
most (which may be positive or negative depending on ρn).
Finally, our altitude when we exit the tunnel may not exceed
c. The second line of Eqn. 1 is derived from a symmetric
equation:

l′ = max {max {l, f} − ρxd, f}

taking into account the fact ρx > 0. Note that if the new
interval is inconsistent (l′ > u′), then it is discarded.

Algorithm 1 Hybrid-A* for 3D shortest path
1: // Initialization
2: Create I0 = [v0, h0 − ε/2, h0 + ε/2] representing the plane.

Set g(I0) = 0. Compute h(I0) as the Euclidean distance from
v0 to vg . Set f(I0) = g(I0) + h(I0). Add I0 to OPEN.

3: // Main Loop
4: while OPEN 6= ∅ do
5: Pick I = arg maxI′∈OPEN [f(I ′)].
6: if the target is included in I then
7: return(success).
8: end if
9: Remove I from OPEN, add I to CLOSED.

10: for all edges e = (v, v′) ∈ G such that g(I) + d(v, v′) is
lesser than the plane range do

11: for all tunnels (fi, ci) ∈ Ue do
12: Compute interval I ′ = [v′, l′, u′] obtained by pushing

I through (fi, ci) using Eqn. 1.
13: if I ′ is consistent (l′ <= u′) then
14: Set g(I ′) = g(I) + d(v, v′). Compute h(I ′) as

the Euclidean distance from v′ to vg . Set f(I ′) =
g(I ′) + h(I ′).

15: MERGE(I ′).
16: end if
17: end for
18: end for
19: end while
20: return(failure).

Pushing an altitude interval (l, u) through an edge e of G
consists of pushing it through every tunnel of Ue, and then
taking the union of the resulting intervals. It creates at most
as many interval as there are tunnels in Ue. This operation is
the basis of the reachability analysis performed by HA*.

The HA* algorithm is presented in Alg. 1. It is a very
similar to standard A*, the main difference being that ver-
tices v ∈ V are replaced by altitude intervals. It impacts the
algorithm in the following ways:
• The OPEN and CLOSED lists contain altitude intervals

instead of nodes. The algorithm stops when the target
is included in the most promising interval picked from
OPEN (line 6).

• Instead of listing all possible successors of a node, HA*
pushes an interval through an edge to get all its successor
intervals (lines 11 to 13).

• When a new node is created, regular A* goes through
a series of tests to check whether this node is already
present in OPEN or CLOSED. In HA*, the situation is
more complex because a newly created interval I may in-
tersect partly with intervals in OPEN, partly with intervals
in CLOSED, and partly with none of the two. Therefore,
the test is replaced by a call to the function MERGE, de-
scribed in Alg. 2. This procedure ensures that each hy-
brid state included in the new interval I receives the same
treatment as discrete states in standard A*.

HA* exhibits the same convergence properties as A*, that
is, it is guaranteed to be optimal if the heuristic is admissi-
ble. A proof of this statement is obtained by adapting the
proof of convergence of HAO* (Meuleau et al. 2008) to the
particular case of deterministic problems.



Algorithm 2 MERGE(I), where I = [v, l, u]

1: // Intersection with intervals in OPEN
2: for all intervals I ′ = [v, l′, u′] ∈ OPEN such that (l, u) ∩

(l′, u′) 6= ∅ do
3: Call I ′′ the interval of v defined by (l, u) ∩ (l′, u′).
4: if g(I) < g(I ′) then
5: Replace I ′ with I ′ \ I ′′ in OPEN.
6: Set g(I ′′) = g(I) and h(I ′′) = h(I).
7: Add I ′′ to OPEN.
8: end if
9: end for

10: // Intersection with intervals in CLOSED
11: for all intervals I ′ = [v, l′, u′] ∈ CLOSED such that (l, u) ∩

(l′, u′) 6= ∅ do
12: Call I ′′ the interval of v defined by (l, u) ∩ (l′, u′).
13: if g(I) < g(I ′) then
14: Replace I ′ with I ′ \ I ′′ in CLOSED.
15: Add I ′′ to OPEN.
16: Set g(I ′′) = g(I) and h(I ′′) = h(I).
17: end if
18: end for
19: // Intervals intersecting with none of OPEN and CLOSED
20: Compute the set difference of I and every interval in OPEN

and CLOSED. The result is a set of altitude intervals called
∆.

21: for all intervals I ′ = [v, l′, u′] ∈ ∆ do
22: Add I ′ to OPEN.
23: Set g(I ′) = g(I) and h(I ′) = h(I).
24: end for
25: delete(I);

Future Work
The path planning algorithm described above focuses on
minimizing the Euclidean length of the path to the target
in the 2D map. For our application, this is not the best way
to generate good candidate routes. Instead we would like
to generate routes that minimize the total risk as described
earlier. The HA* algorithm is very general and can be used
with multiple sorts of cost. In the case of a probabilistic cost
(like risk) this requires assigning costs to edges based on the
logarithm of the probability of retaining control for the edge.
The hardest part is to find an efficient heuristic when costs
no longer have Euclidian structure.

We are currently working on extending the algorithm so
that traversing certain obstacles becomes an option. Of
course, this will generally incur a risk penalty. Technically,
this amounts to adding more edges to the visibility graph,
and defining a rule for pushing altitude intervals through an
obstacle, in such way that the cost function is constant over
each resulting interval.

The difficulty of path planning varies with the scale of
the problem, that is, the range of the aircraft and the dura-
tion it can stay in flight. Whereas the systematic approach
presented here is adapted to large scale problems, planning
for shorter range requires a finer account of the dynamics
of the aircraft. In practice, planning is performed in a high-
dimensional configuration space that includes several vari-
ables relevant to the dynamics of the aircraft. Our current
work explores the opportunity to use probabilistic roadmap
to address this large multi-dimensional space.

Ultimately, the Emergency Landing Planner and the other
components shown in Figure 2 will be integrated and tested
using a full motion 767 simulator on a number of differ-
ent damage models and scenarios. At present, the Emer-
gency Landing Planner calls the detailed trajectory planner
but otherwise functions as standalone software. In doing the
integration, there are a number of user interface issues asso-
ciated with presenting alternatives to the pilot, and allowing
the pilot to change the ranking criteria. Ultimately this will
require input from pilots and other experts on human factors
in the cockpit.

Acknowledgments
This work was supported by the Intelligent Resilient Aircraft
Control program of the NASA Aeronautics Research Mis-
sion Directorate. We thank John Kaneshige for help with
the FLTZ trajectory planning software, and the full motion
simulator. We thank United Captain Mietek Steglinski for
discussion on the factors most relevant to deciding between
alternative emergency landing sites.

References
Burcham, F. W.; Maine, T. A.; Fullerton, C. G.; and Webb,
L. D. 1996. Development and flight evaluation of an emer-
gency digital flight control system using only engine thrust
on an F-15 airplane. Technical Report TP-3627, NASA.
Burken, J. J., and Burcham, F. W. 1997. Flight-test results
of propulsion-only emergency control system on MD-11
airplane. J. Guidance, Controls and Dynamics 20(5):980–
987.
Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L.; and Thrun, S. 2004. Principles of
Robotic Motion: Theory, Algorithms, and Implementation.
Cambridge, MA: MIT Press.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms, Second Edition. Cambridge,
MA: MIT Press. Chap. 33.
Gundy-Burlet, K.; Krishnakumar, K.; Limes, G.; and
Bryant, D. 2004. Augmentation of an intelligent flight
control system for a simulated C-17 aircraft. JACIC
1(12):526–542.
Liu, Y., and Arimoto, S. 2004. Computation of the tangent
graph of polygonal obstacles by moving-line processing.
IEEE Trans. on Robotics and Automation 823–830.
Mausam; Benazera, E.; Brafman, R.; Meuleau, N.; and
Hansen, E. 2005. Planning with continuous resources in
stochastic domains. In Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence, 1244–
1251.
Meuleau, N.; Benazera, E.; Brafman, R.; Hansen, E.; and
Mausam. 2008. A heuristic approach to planning with
continuous resources in stochastic domains. Journal of AI
Research. To appear.
NTSB. 1990. Aircraft accident report – United Airlines
flight 232. Technical Report NTSB/AAR-90/06, National
Transportation Safety Board.


