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Abstract

This paper is focused on how a general-purpose hierarchical
planning representation, based on the HTN paradigm, can be
used to support the representation of oncology treatment pro-
tocols. The planning algorithm used is a temporally extended
HTN planning process capable of interpreting such represen-
tation and generating oncology treatment plans that have been
proven to support clinical decisions in the area of pediatrics
oncology.

MOTIVATION
Hierarchical planning, and more concretely Hierarchical
Task Networks (HTN) planning (Sacerdoti 1975; Tate 1977;
Castillo et al. 2006), is a planning paradigm that sup-
ports the modeling of planning domains in terms of a com-
positional hierarchy of tasks representing compound and
primitive tasks at different levels of abstraction. A hier-
archical planning algorithm mainly decomposes compound
tasks into (compound/primitive) subtasks, following the or-
der constraints described in different (and possible alter-
native) decomposition methods, by means of a reasoning
process driven by the procedural knowledge encoded in
the HTN domain, in order to determine how to perform
a high-level task introduced as problem. This planning
paradigm, from a practical point of view, cannot only be
seen (as is classified in (Ghallab, Nau, and Traverso 2006))
as another way to represent heuristic and control knowl-
edge to speed up planners, by introducing ad-hoc procedural
knowledge that guides the search of a primitive action-based
planner. Indeed, the knowledge representation scheme on
which HTN planning is based is a necessary way to face
a great part of practical problems (Castillo et al. 2007;
Bresina et al. 2005), particularly those in which humans
need either to solve problems or carry out their work or
making decisions guided by the know-how of a given or-
ganization described in preexisting operating procedures or
protocols. In such cases, the main criticism received by this
planning paradigm (there is an additional knowledge rep-
resentation effort for an HTN planner to work that can be
eluded by other means) becomes a need. This is the case of
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the medical domain, and more concretely the field of ther-
apy planning systems (Augusto 2005; Votruba et al. 2006;
Spyropoulos 2000), which are aimed to recommend prede-
fined general courses of action to be applied to a patient, on
the process of treating a disease.

These systems incorporate, on the one hand, a comput-
erized representation of clinical protocols, also called Com-
puter Interpretable Clinical Guidelines (CIGs)(Peleg et al.
2003): evidence-based operating procedures that physicians
follow as a guide in order to perform clinical tasks as well as
making clinical decisions. Most of the research and develop-
ment effort on these systems has been focused on the devel-
opment of languages and frameworks to support modeling,
editing and representing CIGs (Leong, Kaiser, and Miksch
2007), all of them based on ”Task Networks Models” (Pe-
leg et al. 2003) where mechanisms to represent workflow
patterns(Mulyar, van der Aalst, and Peleg 2007) that de-
scribe the process logic between subtasks are also included
(mainly sequential, conditional, iterative and synchroniza-
tion control structures). On the other hand, although less
effort has been devoted to develop techniques to operational-
ize such representations, some systems (Augusto 2005;
Duftschmid, Miksch, and Gall 2002; Terenziani et al. 2006)
incorporate a reasoning process that is driven by the proce-
dural knowledge encoded in protocols and, thus, interprets
such representation by supporting clinical decisions made
by experts.

In principle, it seems that HTN planning is an ade-
quate technique that might support both the representa-
tion of clinical processes and clinical decision making in
therapy planning, by taking advantage of its deliberative
and knowledge driven reasoning process to automatically
generate treatment plans, starting from an accurate repre-
sentation of clinical protocols. However, up to authors’
knowledge, there is no application of HTN techniques to
this field. It might be due to the fact that the great
part of these approaches have centered on temporal con-
straints reasoning (Duftschmid, Miksch, and Gall 2002;
Terenziani et al. 2006) aimed to validate constraints on a
previously generated, hand tailored treatment plan (Votruba
et al. 2006), but very little attention has been paid to the
automated generation of therapy plans (Spyropoulos 2000;
Bradbrook et al. 2005). In addition, an argument used to
reject the application of these techniques (Augusto 2005) is



the lack of support for a flexible execution of plans obtained.
Thus considering that the management of time is a cru-

cial requirement to be fulfilled by any application to therapy
planning, and trying to demonstrate the usefulness of HTN
techniques in the medical domain, in this paper we will de-
scribe an application of temporal HTN planning techniques
to both, represent computer interpretable oncology clinical
protocols, and automatically generate personalized therapy
plans for oncology patients, following a deliberative hierar-
chical planning process driven by the procedural knowledge
presented in such protocols. The representation language
that supports the description of such knowledge also allows
to represent temporal constraints that are incorporated into
the reasoning process in order to obtain temporally valid
plans, suitable to be applied and flexibly executed as on-
cology treatment plans. Furthermore, the representation and
visualization of oncology therapy plans has been developed
in close collaboration with oncologists during a proof of
concept of this technology in the Hospital Complex of Jaén
(Spain).

DOMAIN OF APPLICATION
The work here presented is focused on the pediatrics oncol-
ogy area, in which health assistance (and particularly ther-
apy planning) is based on the application of oncology treat-
ment protocols: a set of operating procedures and policies to
be followed in both stages, treatment and monitoring of a pa-
tient. The main goal of an oncologist when planning a treat-
ment is to schedule chemotherapy, radiotherapy and patient
evaluation sessions. These sessions should be planned fol-
lowing different workflow patterns (Mulyar, van der Aalst,
and Peleg 2007), included in the protocol, that specify tasks
at different levels of abstraction, including sequential, con-
ditional and iterative control flow logic constructs. Fur-
thermore, sessions are organized as cycles of several days
of duration where every cycle includes the administration
of several oncology drugs. Additionally, drugs are admin-
istrated following different administration rules regarding
their dosage and duration. Monitoring sessions must also be
scheduled. Therefore, in most therapies, actions concerning
drugs administration and patient evaluation have to be per-
formed according to a set of temporal constraints describ-
ing their relative order, and the delays between them. Addi-
tionally, in many cases, actions must be repeated at regular
(i.e. periodic or following a repetition pattern) times. Fur-
thermore, it is also necessary to carefully take into account
the (implicit) temporal constraints derived from both, the hi-
erarchical decomposition of actions into their components,
and from the control-flow of actions in the clinical protocol
(Terenziani et al. 2006).

In addition, treatment sessions established by any proto-
col must be arranged considering the availability and capac-
ity of human and material resources (this is not a matter of
an oncology protocol but it is necessary to put it in practice).
Working shifts of oncologists must be taken into account
when planning evaluation and follow-up sessions as well
as capacity and availability dates for administration beds or
hospital test facilities needed to obtain clinical tests to study
the evolution of the patient state. All these rules, tasks and

decisions vary depending on a given patient profile and may
change as the treatment is going on.

At present, planning a therapy in the hospital services that
concern to this work (pediatrics oncology services in the
public health system of Andalusia) is done by hand, that is,
thought it is possible to access patient’s medical information
in Electronic Health Records, there is no tool to support de-
cisions made while planning the treatment and monitoring
sessions of patients. The deployment of a decision support
system to assist oncologists in therapy planning tasks is a
real need that results in several benefits: workload of oncol-
ogists will be reduced and more time might be dedicated to
personal assistance to patients (improving quality of health
delivery), patient safety is augmented by automating admin-
istration rules, and efficiency of health delivery is increased
since resource coordination and usage will be supported by
an automated planning process that incorporates representa-
tion and reasoning about time and resources.

The following sections are devoted to describe how tasks
concerning the stages of treatment and monitoring per-
formed by oncologists, their internal process logic, and the
temporal and resource constraints to be observed during a
treatment, can be represented by a temporally extended,
HTN-based knowledge representation scheme. First, the
main features of the HTN P&S system (Castillo et al. 2006;
Fdez-Olivares et al. 2006), capable of managing such repre-
sentation and used as the core technology to support oncol-
ogists’ decisions on therapy planning will be summarized,
then knowledge representation as well as planning and tem-
poral reasoning aspects will be detailed.

MAIN FEATURES OF THE PLANNER
The AI Planning and Scheduling system used has been de-
veloped by our research group and, furthermore, has already
been applied to other practical problems (Fdez-Olivares et
al. 2006). It uses as its planning domain and problem de-
scription language an HTN extension of PDDL, a language
used by most of well known primitive action-based plan-
ners that allows to represent non-hierarchical planning do-
mains as a set of actions with typed parameters, precondi-
tions and effects. Actions’ effects are intended to represent
changes in the world by defining which facts are asserted
and retracted by the execution of actions. Numerical func-
tion are also allowed (what provides support to compute, for
example, the duration of a drug-administration action de-
pending on patient conditions) and, therefore, it is also pos-
sible to represent discrete numerical resources (for example,
the total drug dosage received by a patient, see :durative-
action in Figure 1.(b)). Concretely, primitive tasks of our
HTN−PDDL extension, are encoded as PDDL 2.2 level 3
durative actions (allowing to represent temporal information
like duration and start/end temporal constraints, see (Castillo
et al. 2006) for details). In addition, HTN methods used
to decompose compound tasks into sub-tasks include a pre-
condition that must be satisfied by the current world state
in order for the decomposition method to be applicable by
the planner (see (:task Protocol in Figure 1.(a) that
describes two alternative courses of action depending on the
group a patient belongs to). The basic planning process is



(a) (b)

(:task Protocol

:parameters (?p - Patient ?date - Date)

(:method Group1

:precondition (= (group ?p) Group1)

:tasks (

(eval_patient ?p)

[((and (= ?duration 360)(>= ?start ?date))

(ChemoTherapy ?p))

(RadioTherapy ?p)]

(eval_patient ?p)))

(:method Group2

:precondition (= (group ?p) Group2)

:tasks (

(eval_patient ?p)

[((and (= ?duration 360)(>= ?start ?date))

(ChemoTherapy ?p))

(RadioTherapy ?p)]

(eval_patient ?p)

[((= ?duration 360)(ChemoTherapy ?p))

(RadioTherapy ?p)]

(eval_patient ?p))

(:derived (patient_ok ?p)

(and (> (leucocites ?p) 2000)

(> (neutrophils ?p) 500) ))

(:durative-action AdminDrug

:parameters (?p - Patient ?ph - Drug ?ds ?dur - number)

:duration (= ?duration ?dur))

:condition (patient_ok ?p)

:effect (increase (total_dosage ?p ?ph) ?ds))

(:task ChemoTherapy

:parameters (?p - Patient)

(:method repeat

:precondition (> (NRep ?p VCR) 0)

:tasks (

(:inline () (decrease (NRep ?p VCR)))

(:inline () (assign ?dosage (* (surface ?p) (intensity ?p))))

(:inline () (assign ?dur (* (surface ?p) (time_rate ?p))))

(AdminDrug ?p VCR ?dosage ?dur)

(ChemoTherapy ?p)))

(:method base_case

:precondition (= (NRep ?p VCR) 0)

:tasks ()))

Figure 1: HTN-PDDL concepts: (a) A compound task with two decomposition methods. (b) A derived literal, a primitive task and a task with a recursive decomposition scheme,
including inline tasks.

a state-based forward HTN planning algorithm that, starting
from the initial state and a goal expressed as a high-level
task, iteratively decomposes that top-level task and its sub-
tasks by selecting their decomposition methods according to
the current state and following the order constraints posed in
tasks decomposition schemes as a search-control strategy.

This is a forward search process that makes the plan-
ner to know the current state of the world (internally rep-
resented as a set of facts that describe the context of the
health-care treatment, including patient’s current sate) at ev-
ery step in the planning process. Concretely, this context-
awareness is specially important when preconditions of both
methods and primitive actions are evaluated, what allows
to incorporate significant inferencing and reasoning power
as well as the ability to infer new knowledge by request-
ing information to external hospital information services.
In this sense, the planner uses two mechanisms addressed
to represent as well as support oncologists decision-rules
concerning issues like conserving patient safety on the ad-
ministration of drugs. On the one hand, deductive infer-
ence tasks of the form (:inline <p> <c>) may be
fired in the context of a decomposition scheme, when the
logical expression <p> is satisfied by the current treatment
state, providing additional bindings for variables or assert-
ing/retracting literals into the planner’s knowledge base, de-
pending on the logical expression described in <c>.These
tasks can be used (as shown for example in Figure 1.(b))
to dynamically compute, depending on the current health-
care context, the dosage an duration of drugs administration
(from functions that define either the intensity of dosage
or the time-rate, depending on the body surface of a pa-

tient). On the other hand, abductive inference rules of the
form (:derived <lit> <expr>) allow to infer a fact
<lit> by evaluating <expr>, that may be either a more
complex logical expression or a Python script that both,
binds its inputs with variables of <lit>,and returns in-
formation that might be bound to some of the variables of
<lit>.For example, a derived literal might be used to in-
fer whether a patient is in an correct state, from a complex
expression including all the necessary conditions that enable
the administration of a given drug (see derived literal on Fig-
ure 1.(b)). This literal might then be used as a precondition
of an action that represents the task of administrating a drug.

Representing workflow patterns
Compound tasks, decomposition methods and primitive ac-
tions represented in a planning domain mainly encode the
procedures, decisions and actions that oncologists must fol-
low, according to a given oncology protocol, when they
deal with a treatment on a given patient. More concretely,
the knowledge representation language as well as the plan-
ner are also capable of representing and managing differ-
ent workflow patterns present in any of such protocols (also
present, on the other hand, in most CIGs formalisms (Leong,
Kaiser, and Miksch 2007; Peleg et al. 2003)). A knowledge
engineer might then represent control structures that define
both, the execution order (sequence, parallel, split or join),
and the control flow logic of processes (conditional and iter-
ative ones). For this purpose the planning language allows
sub-tasks in a method to be either sequenced, and then they
appear between parentheses (T1,T2) , or splitted, appearing
between braces [T1,T2]. Furthermore, an appropriate com-



bination of these syntactic forms may result in split, join or
split-join control structs. For example, decomposition meth-
ods of the main task Protocol (Figure 1.(a)) describe that
chemotherapy and radiotherapy sessions must be executed
in parallel, but they must be synchronized with both a pre-
vious (split node) and a later (join node) evaluation of the
general state of a patient (issues about temporal informa-
tion included in the decomposition scheme shown will be
detailed later).

Conditional and iterative control constructs can also be
represented as task decomposition schemes that exploit the
main search control techniques implemented by the planner.
Briefly, a general process p that contains a conditional struct
if c then p1 else p2 can be represented as a task decom-
position scheme as the one shown in the task Protocol
(Figure 1.(a)), that encodes a conditional structure based on
the stratification group1 of a patient. This decomposition
scheme describes that if a condition c (a patient belongs to
Group1) holds in the current health-care context, then apply
(:method Group1) else apply (:method Group2).

On the other hand, a general process p that contains
an iterative struct while c p1 may be represented as
a task decomposition scheme as the one shown in the
task Chemotherapy (Figure 1.(b)). This decomposi-
tion scheme describes that the primitive task AdminDrug
should be repeatedly performed while the number of repe-
titions prescribed for the drug VCR (Vincristine) is greater
than 0.

Representing and reasoning about temporal
constraints
Furthermore, our HTN domain description language as well
as the planning algorithm support to explicitly represent and
manage time and concurrency at every level of the task hi-
erarchy in both compound and primitive tasks, by allowing
to express temporal constraints on the start or the end of an
activity. Any sub-activity (either task or action) has two spe-
cial variables associated to it, ?start and ?end, that rep-
resent its start and end time points, and some constraints
(basically <=, =, >=) may be posted on them (it is also
possible to post constraints on the duration with the special
variable ?duration). In order to do that, any activity may
be preceded by a logical expression that defines a tempo-
ral constraint as it is shown in (:task Protocol (Fig-
ure 1.(a)), where the duration of any chemotherapy session
(an sub-tasks included in its decomposition) is constrained
to 360 hours (15 days). The beginning of chemotherapy (in
any of the two alternative courses of action) is constrained
to start not earlier than a given date.

This temporal knowledge can be managed by the plan-
ning process thanks to the handling of metric time over a
Simple Temporal Network (STN), a structure (X, D, C)
such that X is the set of temporal points, D is the domain
of every variable and C is the set of all the temporal con-
straints posted (See (Castillo et al. 2006) for more details).
In our case, a plan is deployed over a STN following a

1Patients that receive a given protocol are initially stratified in a
group depending on several criteria like the size of their tumour

simple schema: every primitive action ai included in a
plan owns two time points start(ai) and end(ai), and
every compound task ti decomposed during the planning
process generates two time points start(ti) and end(ti)
which bound the time points of its sub-tasks. These tem-
poral constraints are encoded as absolute constraints with
respect to the absolute start point of a STN. All the time
points share the same domain [0,∞), but it is important
to note that the constraints in C (described in the planning
domain) provide support to describe flexible temporal
constraints, by defining earliest and latest execution times
for start/end points associated to every task or action. For
example, it is possible to encode constraints of the form
((and (>= ?start date1)(<= ?start date2)) (t))
what provides flexibility for the start time of t’s execution,
indicating that t should start neither earlier than date1 nor
later than date2.

Every time that a compound or primitive task is added to
the plan, all the time points and constraints of the STN are
posted, propagated and validated automatically, observing
both the implicit (derived from qualitative order constraints)
and explicit (derived from quantitative constraints described
in the domain) temporal constraints defined in any decom-
position scheme. This temporal representation, on the one
hand, provides enough expressivity power to truly represent
workflow schemes such as sequence, parallel, split and join,
since during the planning process our planner is capable of
inferring quantitative temporal constrains from the qualita-
tive ordering constraints expressed in decomposition meth-
ods. On the other hand, time points of subtasks of any task t
with temporal constraints are embraced by the time points of
t, what means that subtasks inherit the constraints of their
higher-level task. This allows to represent and reason about
temporal constraints derived from hierarchical decomposi-
tions, a strong requirement of any system devoted to support
therapy planning (as stated in (Terenziani et al. 2006)).

The process and representation so far described present
some advantages with respect to current state of the art
techniques devoted to therapy planning that are worth to
note. Firstly, the representation and reasoning about tem-
poral constraints of our approach allows to simultaneously
validate temporal constraints while generating therapy plans
(plan generation and temporal constraint management are
interleaved). Most approaches (Augusto 2005) are only
focused in one side of the problem of therapy planning,
since they only consider how to manage temporal con-
straints of actions, and neglect aspects related to how auto-
matically generate sequences of actions with temporal con-
straints. Very few (Duftschmid, Miksch, and Gall 2002;
Votruba et al. 2006) face the problem of plan generation,
but it is carried out following a static, non-deliberative pro-
cess (close to case-based planning), that is not interleaved
with temporal constraints reasoning. Instead of this, it is
based on a batch process that firstly generates a complete
plan and then analyzes its temporal constraints, what affects
negatively to the efficiency of the overall process, as well
as to important reasoning aspects like the loss of backtrack-
ing points (which are lost when a plan is completely gen-
erated) or the impossibility of using the causal rationale of



(:durative-action AdminDrug

:parameters (?p - Patient ?ph - Drug ?ds ?dur - number)

:duration (= ?duration ?dur)

:condition (patient_ok ?p)

:effect (and (increase (total_dosis ?p ?ph) ?ds))

(assign (last-admin ?p ?ph) ?end))

(:task A3

:parameters (?p - Patient ?ph - Drug)

(:method A3

:precondition (...)

:tasks (((= ?start (last-admin ?p ?ph)) (b)))))

Figure 2: Generating and recovering a temporal landmark.

the plan as a guide to propagate constraints (as is the case of
our planner (Castillo et al. 2006)). These features are spe-
cially important when plans have to be readapted due to new
circumstances arisen during the treatment stage.

Representing periodic tasks and temporal
constraints
The HTN planner is also able to record the start and end of
any activity and to recover these records in order to define
complex synchronization schemes between either tasks or
actions as relative constraints with respect to other activities.
This mechanism is used to encode synchronization of tasks
that correspond to repetitive periodic patterns. The first step
is the definition, by assertion, of temporal landmarks that
signal the start and the end of either a task or an action (Fig-
ure 2). These landmarks are treated as PDDL fluents (predi-
cates that represent functions which when evaluated return a
value or an object, in this case, a timepoint of the STN) that
are associated to the time points of the temporal constraints
network.

These landmarks are asserted in the planner’s current
state, and later on, they may be recovered and posted as con-
straints of other tasks in order to synchronize two or more
activities. For example, Figure 2 shows how to recover a
temporal landmark that restricts action b to start exactly at
the same time than action AdminDrug ends.

In particular, thanks to the expressive power of tempo-
ral constraints networks and to the mechanism explained so
far, a planning domain designer may explicitly encode in
a problem’s domain all of the different orderings included
in Allen’s algebra (see (Castillo et al. 2006) for details) be-
tween two or more tasks, between two or more actions or be-
tween tasks and actions. Furthermore, temporal landmarks
are an excellent resource in order to express different kinds
of periodic patterns to be followed by temporal constraints,
a strong requirement of clinical protocols, particularly on-
cology clinical protocols. For example, Figure 3 shows a
refined description of the Chemotherapy task that com-
bines temporal landmarks management and recursive de-
compositions in order to specify that the administration of
VCR must be always preceded by a delay of 24 hours, and
must be repeated a number of times defined by a function
((NRep ?p VCR)). Additionally, note that all the actions
of this chemotherapy cycle must be executed in an interval

(:task ChemoTherapy

:parameters (?p - Patient)

(:method repeat

:precondition (> (NRep ?p VCR) 0)

:tasks (

(:inline () (decrease (NRep ?p VCR)))

(:inline () (assign ?dosage (* (surface ?p) (intensity ?p))))

(:inline () (assign ?dur (* (surface ?p) (time_rate ?p))))

((and (>= ?start (last-admin ?p VCR)) (= ?duration 24))

(Delay ?p VCR))

((and (= ?duration ?dur))

(AdminPharmac ?p VCR ?dosage ?dur))))

(:method base_case

:precondition (= (NRep ?p VCR) 0)

:tasks ()))

Figure 3: A chemotherapy cycle

of 15 day (360 hours), since the task Chemotherapy has
been constrained to a duration of 360 hours (15 days), as
shown in Figure 1.(b), and the planning process allows sub-
tasks to inherit constraints of higher-level tasks.

Representing and managing resources
The workflow specified in an oncology treatment protocol
does not include issues related to which human and material
resources are involved in the therapy planning process, but it
is necessary to represent and manage them in order to truly
support clinical processes and decisions. Therefore, capac-
ity and availability dates of consumable, discrete resources
may be represented in the planning domain description lan-
guage. A generalization of timed initial literals (Castillo et
al. 2006), that allows to represent temporal patterns for ex-
ogenous events, is used to this end.

For example, as shown in Figure 5, the
(between ...) clause (specified in the planning
problem) represents periods of 24 hours of availability of an
oncologist, repeated every week. Thus, evaluation sessions
that require the presence of a specialist, must be scheduled
only when the oncologist is available. This is modeled as
a (at start...) precondition in the proper primitive
action eval-patient. The dates in which the literal is
true are represented as time points and, since this literal
may appear several times with different associated time
points, it also represents a choice point and, therefore, a
backtracking point for the satisfaction of the precondition
of action eval-patient.

It is necessary to note that the search and reasoning pro-
cess that supports the planning algorithm of the planner is
not intended to obtain an optimal assignment of resource
constraints, instead of this, the planning and scheduling pro-
cess obtains the first feasible plan with a correct arrangement
of actions and temporal and resource constraints.

PROOF OF CONCEPT
Considering the previous description, a proof of concept of
this technology has been carried out in collaboration with



Figure 4: A general schema of Hodgkin’s Disease Clinical Protocol. The representation followed to show the periodical
temporal patterns for chemotherapy cycles (OPPA, OEPA and COPP) is literally copied from the protocol specification.

(between "07/08/2007 00:00:00" and "08/08/2007 00:00:00"

and every 144hrs (available John))

....

(:durative-action eval-patient

:parameters (?p - Patient ?s - specialist)

:duration (= ?duration 24hrs)

:condition (and (at start (available ?s)) ...)

.....

Figure 5: Oncologists’ working shifts and how this informa-
tion is used as preconditions in evaluation sessions

expert oncologists in the Hospital Complex of Jaén (Spain).
During this proof, a model of a concrete oncology clinical
trial protocol (the one followed at present for planning the
treatment of Hodgkin’s disease (Group 2003) and elaborated
by the Spanish Society on Pediatrics Oncology) has been en-
coded in the planning language above described, in a knowl-
edge elicitation process based on interviews with experts.

A general schema of the treatment workflow process in-
dicated in such clinical protocol is outlined in the flow-
chart diagram of Figure 4. First a child must receive two
chemotherapy cycles (of type OPPA or OEPA, depending on
the genre) and another two cycles of type COPP. If a com-
plete remission of the tumour is not achieved by patients of
Group1 then radiotherapy sessions must start. If the strati-
fication group (decided by the oncologist) is either Group2
or Group3 two more COPP cycles must be administrated.
In case of a patient of Group3, additional radiotherapy ses-
sions must be administrated when a complete remission of
the tumour is not detected.

Temporal patterns to administrate every type of
chemotherapy cycle are shown below the flow-chart of
Figure 4. For example, a cycle of type OPPA takes 15 days,
the rules to administrate a cycle of type OPPA state that
the drugs PRD and PROC must be administrated every day

(dosage is also specified), VCR has to be administrated the
first, eighth and last day, and ADR the first and last day
(OEPA and COPP patterns should be interpreted in a similar
way). In addition, start times for every chemotherapy cycle
must be separated at least 28 days, and an evaluation session
has to be scheduled previously to the start of every cycle.

Workflow patterns included in the treatment protocol,
temporal constraints to be observed between chemotherapy
cycles, periodic patterns to administrate drugs as well as the
representation of oncologists’ working shifts have been en-
coded in a domain file. The domain includes six compound
tasks, 13 methods, 6 primitive tasks and the file contains
more than 400 lines of code 2.

In the experiments performed, the planner received the
following inputs: a planning domain, representing this pro-
tocol; an initial state representing some basic information to
describe a patient profile (stratification group, age, sex, body
surface, etc.) as well as other information needed to apply
administration rules about drugs (dosage, frequency, etc.);
and a high-level task representing the goal (apply the proto-
col to the patient) with temporal constraints representing the
start date of the treatment plan. The output of the planner
are plans with actions temporally annotated with start/end
constraints. These plans are represented in a standard XML
representation and may be visualized as Gantt charts in stan-
dard tools devoted to project management (like MS Project,
see Figure 6). Several experiments were realized on differ-
ent patient profiles, and all the plans were obtained in less
than one second. Plans generated represent therapy plans
tailored to a given patient profile, and they allow to repre-
sent therapies of more than one year of duration, including
more than 50 actions.

The plan shown in Figure 6 has been obtained after a post-
processing of the output of the planner, in order to friendly

2Available on http:://decsai.ugr.es/˜faro/Hodgkin/index.

html



Figure 6: A temporally annotated and automatically generated therapy plan represented as a gantt chart. The plan represents
the treatment for a patient of Group1 (male) following the Hodgkin’s Disease Protocol. Start and end dates of every action are
shown in the left-hand side. Drugs and their dosage are shown in the bars of the chart.

show the tasks of the plan (left hand side of the figure) as
well as their temporal dimension as a Gantt chart (right hand
side). The visualization of the tasks in a MS Project display
allows to show tasks in a Work Breakdown Structure includ-
ing different outline levels (either summary tasks as OPPA
CYCLE or standard taks as AdminDrug), that may be col-
lapsed or deployed as shown in the figure. It is worth to
note that this structure is managed from the planner and the
domain, taking advantage of the possibility of encode addi-
tional special features in a procedural knowledge represen-
tation as the one supported by our planning language. On
the other hand the Gant chart visualization offers an outline
of how these tasks are correctly arranged following the pe-
riodic rules of every type of chemotherapy administration.
Contrasted with oncologists, only the generation and visu-
alization in few seconds of a therapy plan (in this case only
chemotherapy sessions are visualized) is considered of great
help, since it saves a lot of time in their current decision
making process, because oncologist have to take into ac-
count too many detailed constraints and tasks that, by the
other way, we have shown to be accurately represented in a
temporally extended HTN representation.

Plans contain actions that represent activities as well as
decisions an oncologist should follow, and they are deployed
over a STN used to represent time intervals that constraint
both start and end execution times of actions (shown in the
left hand side of the Figure 6. Therefore, at the beginning of
the execution of a therapy plan, actions, temporal constraints
and facts that represent preconditions and effects of actions
are consistent with respect to the initial conditions expressed
in the planning problem. Additionally, regarding plan exe-
cution, a monitoring process has been developed (applied

to a different domain application (Fdez-Olivares et al. 2006)
that, nevertheless, shares this same plans representation) that
guarantees the correct execution of actions, thus avoiding
for example the activation of actions once they have been
finished. However, as the plan execution is progressing, in-
consistencies may arise that could affect either the tempo-
ral dimension of the plan or actions’ preconditions. In such
cases a rescheduling process might be carried out devoted to
rearrange temporal constraints, by checking the consistency
of the underlying plan’s temporal network. In the case that
a consistent temporal network couldn’t be found, an auto-
mated replanning process (based on the same planning pro-
cess here described) might be triggered in order to readapt
the therapy plan to new circumstances.

CONCLUSIONS
In this work we have presented an AI P&S system based
on temporal Hierarchical Task Networks (HTN) that pro-
vides support for both representing clinical processes and
making clinical decisions. The HTN planning language (a
hierarchical extension of PDDL) and the hierarchical plan-
ning and scheduling process are able to automatically and
dynamically generate personalized therapy plans for oncol-
ogy patients, following a deliberative hierarchical planning
process driven by the procedural knowledge described in on-
cology protocols. Our planning language should be seen as
a knowledge representation mechanism to represent human
expertise and to use it as a guide to the planning process. Al-
though McDermott’s HTN extension of PDDL (McDermott
2003) incorporates expansion methods (that could be used
to represent operating procedures), it does not incorporate



mechanisms to describe domain heuristics (like, for exam-
ple, :inline tasks) that are followed by oncologists in order
to perform tasks and make decisions. Furthermore, our time
representation allows to easily encode time constraints on
both compound and primitive tasks, as well as to describe
synchronization mechanisms between them. The time rep-
resentation used in (McDermott 2003) relies on a semantics
of processes and it is based on a sophisticated syntax that is
much more complex to encode and manage than the one of
our ”light” time representation based on Simple Temporal
Networks.

This approach should not be considered only as a new
way to represent therapies. Regarding other approaches de-
voted to therapy plan management (like Asbru (Duftschmid,
Miksch, and Gall 2002) or Glare (Terenziani et al. 2006)),
authors argue that therapy planning is not supported in these
systems by an automated, deliberative process as the one
presented in this work. Instead, the plan management life-
cycle of these approaches requires specialized human in-
tervention (either knowledge engineers or trained medical
staff) when tailoring a therapy plan from an initial proto-
col scheme to a given patient profile. These approaches
are mainly focused on the verification of therapy plans with
temporal constraints (apart from providing very expressive
CIGs representation formalisms) and we have shown that
our temporal representation and reasoning is as expressive
as the one used in Asbru or Glare. Furthermore, the process
performed by these approaches to temporal constraints ver-
ification could be used at execution time in order to revise
possible temporal inconsistencies (like a delay in the admin-
istration of a drug), but there are circumstances in which the
actions included in a therapy plan (and not only temporal
constraints) must be partial or completely readapted (for ex-
ample, when a patient’s stratification group changes since
his/her tumour size does not progress as expected). In such
cases our approach might use the same planning process to
automatically readapt the therapy plan, leveraging the whole
life cycle of the treatment, by shifting more detailed deci-
sions to the planner and reducing the workload of oncolo-
gists, as opposite to current approaches that always need to
readapt from the scratch.

Results shown in this work should be considered as the
first step in the process of the full development and de-
ployment of a Clinical Decision Support System for therapy
planing based on oncology treatment protocols. We cannot
neglect the use of knowledge engineering techniques in or-
der to support the process of representing oncology proto-
cols in our planning language. It is well known the prolif-
eration of standard languages and frameworks for modeling
and editing CIGs (Peleg et al. 2003). As explained in the in-
troduction and shown thorough this paper our planning lan-
guage embodies most of the features of such languages. In-
deed, our next planned step is to represent oncology clinical
protocols into one of these standard schemes and to develop
a fully automated translation process from such representa-
tion to our planning language, thus allowing to automatically
generate, execute and monitor treatment plans from a stan-
dard representation.
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