
SELFPLA��ER: Planning your Time!

Ioannis Refanidis and Anastasios Alexiadis

University of Macedonia, Dept. of Applied Informatics

Thessaloniki, Greece

yrefanid@uom.gr, talex@java.uom.gr

Abstract

This paper presents SELFPLANNER, a web-based intelligent

calendar application that helps a user plan her time.

Contrary to other calendar assistants that concentrate on

automating meeting scheduling, SELFPLANNER emphasizes

on scheduling the personal tasks of a user, leaving meeting

arrangement for external handling. The two key features of

SELFPLANNER, also critical factors for its potential broader

adoption, are problem modeling and user interface.

SELFPLANNER supports simple, interruptible and flexible

periodic tasks, arbitrary domains, constraints over the parts

of an interruptible task, binary constraints and unary and

binary preferences over tasks, location references and

classes of locations. As for user interface, SELFPLANNER

integrates with Google Calendar and a Google Maps based

application, whereas it introduces an innovative way to

define domains, based on manual selections and user-

defined reusable templates. The core of the system is based

on the Squeaky Wheel Optimization algorithm, with

efficient domain dependent heuristics.

Introduction

Modern electronic organizers, such as MS-Outlook,

Google Calendar and Yahoo Calendar, do not provide for

automated scheduling of a user's tasks. Users have to

manually place their tasks into the calendar, as well as to

arrange meetings with others. These applications provide

various functionalities to assist the user to put her tasks

into the calendar, detect conflicts, merge calendars, assign

tasks to other users, arrange meetings, share and publish

the calendar. The need for intelligent assistance to schedule

a user's tasks has already been identified (Refanidis,

McCluskey and Dimopoulos, 2004). It is a general

impression that most of the effort in developing new

editions of office applications is towards personal time

management simplification. However, current status still

remains behind automated scheduling abilities being

incorporated into these programs.

 There are several research efforts in the recent years to

embed intelligence into calendar applications (Berry et. al.,

2006; Modi et. al., 2004; Singh, 2003), but all of them

concern meeting scheduling, with personal tasks being

considered as busy time in a user's plan. However, most of

a user's activity with calendar applications concerns

personal tasks and, although many of them are inelastic

(e.g. get the child to school, giving a lecture etc), there are

many others, such as going shopping, writing a paper or

breaking for lunch that, more ore less, admit of scheduling.

Typically, users spend much time to organize their tasks,

whereas the resulting plans are usually far from optimal.

 We envision future calendar applications as really

intelligent assistants that share a user's goals and elicit

plans to achieve them. To realize this functionality, they

need to solve a planning problem, where the initial state is

the user's current status, including the status of her micro-

world (need to address a frame problem), actions are

retrieved from a task ontology, and goals are set by the

user. Intelligent calendar assistants can be seen as a core

module of a more general architecture of intelligent agents

that possess our profile, collect information from several

sources, learn and organize us (Myers, 2006).

 This paper presents SELFPLANNER, a necessary step

towards this vision. SELFPLANNER is a web-based

application built on top of a fast domain-specific scheduler,

that integrates several web technologies and Google-based

applications. SELFPLANNER automates the elaboration and

optimization of personal plans in the presence of binary

constraints and preferences; on the other hand, meetings

are considered as busy time, leaving users use manual

procedures of Google Calendar (or third party applications)

to arrange them. Keeping these two procedures apart was a

decision, since allowing a new meeting to invoke

rescheduling of existing tasks (potentially involving other

meetings) could lead to endless loops.

 Apart from its scheduling engine, the two key features of

SELFPLANNER are problem modeling and user interface.

Both these features are critical in order for the system to be

adopted by its potential target groups, i.e. people with very

tight schedules (managers, academics etc). Concerning

problem modeling, each task is characterized by a set of

attributes such as duration, domain, class of locations,

periodicity, interruptibility etc. In case of periodic and

interruptible tasks, additional information must be

specified, such as the period or the min/max duration of

each part of an interruptible task. Binary constraints

between tasks, such as ordering and proximity ones are

allowed. Similarly, unary and binary preferences can be

defined.

 Concerning user interface, SELFPLANNER uses

innovative techniques to facilitate data entry. Perhaps the

most tedious part of a task's definition concerns its domain.

A domain may consist of several time intervals, distributed

among long periods, e.g. shop's working hours. The user

defines domains through a combination of manual

selections and template applications. Templates are

patterns that can be applied to long time periods. The user

can create and reuse templates, as well as save her

operations in order to reapply them to other tasks. Other

user interface innovations concern a Google Maps based

application that helps the user define locations and

compute spatial and temporal distances between them;

classes of locations that provide alternative places where a

task can be performed; periodicity, where the occurrences

of a task are not scheduled in exactly the same day/time;

suggestions to relax constraints in case of failure to

schedule all of them etc.

 The rest of the paper is structured as follows: First we

define the problem of personal tasks scheduling and then

we sketch the adopted algorithmic solution. Next we

present the system's architecture followed by a description

of the key features of the system and some indicative use

cases. Finally we present related work and conclude the

paper while posing future directions.

Underlying Model

We adopt the following problem formulation (Refanidis,

2007), which forms an abstraction of the actual

SELFPLANNER problem. Time is considered a non-negative

integer, with zero denoting the current time. There is a set

T of � tasks, T={T1, T2, …, T�}. Each task Ti∈T is
characterized by its duration duri

1
. All tasks are considered

interruptible, i.e. they can split into parts to be scheduled

separately. The decision variable pi denotes the number of

parts in which the i-th task has been split, with pi≥1. Tij

denotes the j-th part of the i-th task, 1≤j≤pi. For each Tij,

the decision variables tij and durij denote its start time and

duration. The sum of the durations of all parts of a task

must equal its total duration (C1).

For each task Ti, the maximum and minimum allowed

duration for its parts, smaxi and smini (C2), as well as the

minimum allowed temporal distance between every pair of

its parts, dmini (C3), are given. Depending on the values of

smaxi and smini and the overall duration of the task duri,

implicit constraints are imposed on pi. For example, if

smini>duri/2, then pi=1, so task Ti is non-interruptible.

Each task i has its given domain Di, consisting of a set of

intervals within which all of its parts have to be scheduled

(tasks with infinite horizon of execution are not

considered): Di=[ai1,bi1]∪[ai2,bi2]∪…∪[ai,Fi,bi,Fi], where Fi
is the number of intervals of Di (C4). Obviously,

aij+smini≤bij as well as bij<ai,j+1 must hold for each 1≤i≤Ν,

1≤j≤Fi.

1
 In the following we use the notation xi to abbreviate Ti.x, where x is any
attribute of the task structure. In case of multiple subscripts, e.g. xij, the

first one, i.e. i, indicates the task.

A set of M locations, Loc={L1, L2, …, LM} and a two

dimensional matrix Dist (not necessarily symmetric) with

their temporal distances (non-negative integers) are given.

Each task Ti has its own spatial references Loci⊆Loc,
denoting alternative places where the user should be in

order to execute each part of the task (the user has not to

execute all the parts of a task in the same location). The

decision variable lij∈Loci denotes the particular position
where Tij will be executed (C5, C6).

For any subset of tasks S⊆T, a constraint c over these
tasks may be defined, thus determining the valid ways to

schedule the tasks of the set. Constraints refer only to time,

not to location references; however the role of the locations

in deciding when to schedule a task is important, since the

decision to schedule a task at a specific location may affect

the domain of other tasks. Each constraint c is defined by a

function propagatec(S), which, given a set of partially

instantiated tasks S, propagates the constraint c(S) over the

domains of these tasks and returns returns ⊥ if any domain

remains empty, otherwise it returns ¨ (C7).

As a simple example consider the ordering constraint

over non-periodic tasks, denoted with �(Ti,Tj), meaning

that no part of the j-th task can start its execution until all

parts of the i-th task have finished their execution. In this

case, propagate�(Ti,Tj) applies bounds consistency (Van

Hentenryck, Saraswat and Deville, 1998) to the domains of

Ti and Tj. Other constraints, including higher order ones,

can be defined as well.

Finally, a set V of time preferences over sets of tasks are

also allowed. A preference v∈V over a set of tasks S is
defined as a function v:∏Ti∈SDi→√, i.e. function v maps

each combination of the domains of the tasks of S to a real

number. Preference functions are usually max-type

functions that greedily try to estimate a best-case

scheduling scenario based on the current domains of the

involved tasks. For example, a unary preference could

return the utility of the best time-window when the task

could be scheduled, whereas a binary preference of an

away type could return the utility of the maximum possible

temporal distance where the two involved tasks could be

scheduled. However, other types of functions, such as

average, can be adopted as well.

So, after these definitions, the problem of managing

personal tasks can be formulated as follows:

Problem definition: Given a set of tasks T with their

attributes, a set of constraints C and a set of preferences V,

find appropriate values for the decision variables pi, tij,

durij, lij, where 1≤i≤�, 1≤j≤pi such as to maximize the

expression:

)(k

Vv

k Sv
k

∑
∈

 (1)

subject to the following constraints:

C1: ∀i, 1≤i≤� : ∑
=

=
ip

j

iij durdur
1

C2: ∀i,j, 1≤i≤�, 1≤j≤pi : smini≤durij≤smaxi

C3: ∀i,j,k, 1≤i≤�, 1≤j≤pi, 1≤k≤pi : j≠k ⇒

tij≥tik+durik+dmini ∨ tik≥tij+durij+dmini

C4: ∀i,j, 1≤i≤�, 1≤j≤pi ∃k, 1≤k≤Fi : aik≤tij≤bik-durij

C5: ∀i,j, 1≤i≤�, 1≤j≤pi : lij∈Loci

C6: ∀i,j,m,n, 1≤i≤�, 1≤j≤pi, 1≤m≤�, 1≤n≤pm : i≠m ∨ j≠n
⇒ tij+durij+Dist(lij,lmn)≤tmn ∨ tmn+durmn+Dist(lmn,lij)≤tij

C7: ∀c(S)∈C, propagatec(S) = ¨

Squeaky Wheel Optimization

Squeaky Wheel Optimization (SWO) is a general

optimization framework that can be adapted to several

constraint satisfaction problems (Joslin and Clements,

1999). The core of SWO is a Construct/Analyze/Prioritize

cycle, as shown in Figure 1(a). Constraint variables are

placed in a priority queue in decreasing order of an initial

estimate of the difficulty to assign a value to each one of

them. A solution is constructed by a greedy algorithm,

taking decisions in the order determined by the priority

queue. This solution is then analyzed to find those

constraint variables that were the “trouble makers”. The

priorities of the “trouble makers” are increased, causing the

greedy constructor to deal with them sooner in the next

iteration. This cycle repeats until a termination condition

occurs.

(a) (b)

Figure 1. (a) The SWO cycle. (b) Coupled search spaces.

SWO is a fast but incomplete search procedure. As

shown in Figure 1(b), SWO searches in two coupled

spaces: The priority space and the solution space. The

greedy construction algorithm defines a function g from

the priority queues to the solutions, i.e. for each ordering p

of the tasks a schedule g(p) is defined. However, function g

may be neither surjective nor injective; so, many feasible

solutions may not correspond to any ordering of the tasks

in the queue.

We adapted SWO to SELFPLANNER using several

domain dependent heuristics that measure the impact of the

various ways of scheduling a specific task (including both

time and location) to the remaining ones. In particular, the

difficulty diff(Ti) to schedule a task Ti is defined as the

maximum between two metrics, m1 and m2, which in turn

are defined as follows:

Metric m1 of a task Ti is defined as the ratio between the

total duration of the task and the net size of its domain, i.e.:

m1(Ti)=duri/net(Di)

where the net size net(D) of a domain D consisting of a set

of intervals is defined as the sum of the widths of these

intervals.

 Metric m2 of a task Ti is defined as the ratio between

the minimum possible makespan of the task and the width

of its domain, i.e.:

m2(Ti)=min(makespan(Ti))/width(Di)

The overall difficulty to schedule a set of tasks S is
defined as the product of their individual difficulties:

overall(S)=∏Ti∈Sdiff(Ti)

So, tasks are initially placed at the queue in decreasing

order of their individual difficulties, whereas each task is

scheduled at the time slot where the overall difficulty to

schedule the remaining tasks is minimized. For each

possible time window to schedule the current task,

constraint propagation is employed to compute the

domains of the remaining tasks before computing the

difficulty to schedule them.

In case of preferences, the ratio between overall

difficulty and approximated overall utility is minimized:

()
b

Vv

k

a

k

v

Soverall











∑
∈

)(

Experimental results have shown that SWO is

significantly more efficient and effective (under time limit)

than other complete search algorithms. The details of the

specific adaptation of SWO to SELFPLANNER have been

presented in (Refanidis, 2007).

System Architecture

SELFPLANNER is a web based application running over a

planning server (Figure 2), which implements the SWO

algorithm. All data are stored centrally, so the user can

access the application from any networked computer. The

user edits task data using user-friendly dialog boxes. The

Analyzer

Constructor Prioritizer

Priorities

Blame Solution

p

q g(q)

g(p)

Priority space Solution space

construct

analyze/

prioritize

construct

planning server solves the scheduling problem and inserts

suitable entries in the user's Google Calendar account.

Finally, the user watches her calendar directly into Google

Calendar. The user can also add tasks directly into her

Google Calendar account; during scheduling, these tasks

are considered as busy time by the system. SELFPLANNER

also integrates a Google Maps based application, in order

to obtain the user's list of locations, as well as to compute

temporal distances between them. The Google Maps

application "communicates" with the core SELFPLANNER

system through shared files.

Figure 2: SELFPLANNER overall architecture

SELFPLANNER encompasses several technologies and

platforms. The main system consists of a Java application,

with the user interface being a Java applet. All connections

between the user and the system are secure. The Google

Maps application uses PHP and Javascript. The planning

engine that implements the SWO algorithm has been

implemented in C++. Finally, user data such as task details

and the current plan are retained as serializable Java

objects (binary files).

SELFPLA��ER Features

This section highlights the key features of SELFPLANNER

from a user point of view. An overall view of the system,

with the main windows open, is given in Figure 3.

The main entity in the "planning your time" concept is

the task. Using suitable user interface modules, the user

can define all the parameters of a task, as they have been

described in Section 2, i.e. duration, domain,

interruptibility, periodicity, alternative locations,

constraints and preferences.

 Perhaps the most tedious job when defining a task is

the definition of its domain. SELFPLANNER uses an

innovative way for defining domains, based on combining

manual interval selections and template applications.

Manual selections allow the user to include or exclude (by

clicking or dragging) specific intervals from a domain (a

minimum time slot of 30 minutes is assumed). On the other

hand, templates allow the user to apply the same pattern of

inclusions/exclusions over long periods. A template

comprises a set of green and red values characterizing time

slots over a relative interval. Three types of templates are

supported: daily, weekly and monthly. The user can define

and store as many templates as she needs. A template can

be applied over the whole domain or over part of it, in four

different ways: adding/removing the green slots, and

adding/removing the red slots. The user can apply several

templates; however the order in which they are applied

matters.

 Another innovation concerns the way domains are

retained in memory: they are not retained as lists of

intervals (which can be difficult to handle in case of large

domains) but as lists of user actions. A user action can be

either a manual addition/removal of a time slot in/from the

domain, or the application of a template. The list of user

actions is accessible to the user, who can modify it by

changing the order of the actions or delete some of them.

Efficient algorithms have been developed to answer

questions such as whether a particular time slot is included

or not in the domain.

SELFPLANNER treats all tasks as interruptible, with non-

interruptible tasks being characterized by smin=smax=dur.

The decision in how many parts to split an interruptible

task is taken by the greedy scheduling algorithm. In

addition, a task may be periodic. Periodic tasks are

considered as collections of simple tasks. Similarly to

interruptible tasks, SELFPLANNER treats all tasks as

periodic, with non-periodic tasks being characterized by a

single iteration. Each periodic task has a predetermined

finite number of periods. The period may be either a day,

or a week, or finally a month. The end-points of each

period are fixed in advance: for example, weekly periodic

tasks start on Sunday and end on Saturday. However,

specific intervals within a period may be out of the

domain. The various instances of a periodic task are

scheduled separately, so, depending on the domain of the

task, they may be scheduled in different offsets within their

periods. For example, the first iteration of a weekly

periodic task might be scheduled on Monday, whereas the

second iteration might be scheduled on Thursday. In

addition, the user may ask not to schedule an instance of

the task for specific periods (e.g. holiday breaks). Note that

periodicity does not exclude interruptibility, i.e. a periodic

task may be interruptible as well.

A task is characterized by one or more locations. In order

to execute the task (or a part of it), the user must be in one

of its locations. In case of interruptible and periodic tasks,

different parts of the same task may be scheduled in

different locations. In order to facilitate location entry,

SELFPLANNER supports classes of locations: A class is a set

of distinct locations and can be assigned to a task instead

of a simple location. Travelling times between different

locations are taken into account when scheduling tasks that

are located in different places. SELFPLANNER integrates a

Google Maps based application in order to obtain the user's

list of locations and to compute distances between them.

User

data

Planning server

Google Maps application

Web server

User

Google Calendar

Google Maps server

SELFPLANNER supports binary constraints, in particular

ordering and proximity ones, with the latter concerning

minimum or maximum temporal distance between tasks.

There is special treatment of these constraints when

interruptible or periodic tasks are involved. As for

interruptible tasks, ordering constraints between

interruptible tasks apply to all pairs of their parts. A min-

distance (max-distance) constraint over interruptible tasks

A and B imposes that any part of A must be at least min-

distance (at most max-distance) away from every (some)

part of B. Higher order constraints are not supported yet.

Periodic tasks are treated similarly to interruptible tasks

with one exception: If there is a binary constraint over two

periodic tasks with the same period, the user has the option

to consider the various iterations of the periodic tasks as

individual tasks and apply the constraint repeatedly to

those pairs of tasks whose periods coincide. For example,

suppose an ordering constraint A<B between two weekly

periodic tasks. Considering these tasks as whole means that

the first iteration of B must start after the last iteration of A

has been completed. On the contrary, considering each

iteration of these tasks individually applies the constraint to

those pairs of instances of A and B that have to be

scheduled in the same week. With this interpretation, if the

iterations of the two tasks are not synchronized, there

might be instances of the tasks where the constraint does

not apply.

Unary and binary preferences over tasks are also

supported. Unary preferences concern the exact time

within a task's domain when it will be scheduled. Five

options are supported: none, linear-ascending, linear-

descending, step-ascending and step-descending. Linear

ascending/descending preferences mean that the

latest/earlier a task is scheduled the better. Step

ascending/descending preferences favor a task to be

scheduled after/before some user-defined time point.

Binary preferences involve close and away relations,

meaning that two tasks are preferred to be as close to/away

from each other as possible. Binary preferences over

interruptible and periodic tasks are treated similarly to

binary constraints.

SELFPLANNER supports incremental scheduling. Each

time a new set of tasks arrives, the user may select to lock

some of the old tasks at their current schedules, thus trying

to schedule the new tasks at the remaining open time

windows. This is a very useful feature, since it might be

very annoying for the user to reschedule short-term tasks

due to the arrival of new ones. However, locking the

current schedule may lead to inability to schedule the new

tasks or to poor schedules; in such cases the system asks

the user to unlock specific tasks progressively.

Figure 3. An overall view of SELFPLANNER system. The main application window is shown at the lower left corner, now listing the active

tasks. The dialog box in the bottom right is the "Edit task" window, currently shown part of the domain of the task "Prepare Slides". In the

upper left corner is shown the Google Maps based application for obtaining locations. Finally, in the upper right area, Google Calendar

displays the user's current plan.

SELFPLANNER also keeps track of the progress to

complete each task. Current technology does not allow to

monitor the user's activities accurately. On the other hand,

it is very common that the user fails to accomplish

scheduled tasks or parts of them. To cope with this

problem, each time the user logs onto the system, she is

asked about the execution status of the tasks whose

scheduling time has passed. Tasks reported as not started

yet are rescheduled.

Finally, in case of inability to schedule all tasks, the

system gives feedback to the user about which constraints

should be relaxed. Feedback is based on the best partial

schedule found by the SWO search algorithm, wrt the

preferences, and identifies the tasks that failed to fit into

this schedule.

Use Cases

The following are some indicative examples of tasks a user

might want to insert in her calendar:

Case 1: Attend a performance in the theater. The

performance will take place at the local theater, on

Saturday evening, 21:00-23:00. This is the simplest type of

task, since it is non-periodic, non-interruptible and is has a

very precise time schedule and location reference. For such

simple tasks, SELFPLANNER offers a Quick Insert

functionality, in order to facilitate data entry. Furthermore,

such tasks are given priority while scheduling, i.e. they are

scheduled at their single possible time window before other

more flexible tasks are handled.

Of course, the user has to determine the location

reference of the task. This is done by defining a set of

interesting locations using the accompanying Google Maps

application. The user can assign any of these locations to

any task; SELFPLANNER uses Google Maps to compute the

time needed to travel between any pair of defined

locations.

One might suggest that such simple tasks could be

added directly into Google Calendar, thus bypassing

SELFPLANNER. The only problem with this possibility

(which is supported by SELFPLANNER) is that it is difficult

to define the location reference precisely. For each task,

Google Calendar provides a "Where" text field, with the

possibility to view this location on Google Maps

automatically. However, the mapping many times is

approximately, without any possibility (at least currently)

for editing. So, without having a precise location reference,

SELFPLANNER does not know what temporal gap to leave

between them and other adjacently scheduled tasks.

Case 2: Buying gifts for the children. This task uses two

additional system's features: The task has neither a specific

time window to schedule, nor a specific location reference.

Concerning time, the user should define the duration of the

task, e.g. 3 hours, a deadline, e.g. before Christmas, and the

possible time slots when the task can be scheduled. In this

case the time slots are the hours when the shops are open.

The user can easily select these hours by applying a weekly

template defining the shopping working hours to the task's

domain. Note that SELFPLANNER supports applying

combinations of templates, such as shops working hours

but not office hours, create new templates by manually

editing existing ones, as well as manually editing the

domains.

 Concerning the location reference, the user might be

indifferent on where to buy gifts from. That is, there might

be several malls in the city and the user might want to shop

from the nearest one wrt to other adjacently scheduled

tasks. This is achieved by defining a class of locations. A

class of locations is a set of specific locations defined

through the Google Maps application. For example, the

user might define three different malls on Google Maps

and, subsequently, define a class of locations, called Malls,

that comprises the three distinct malls. Then, while

defining a task, a class of locations can be used as its

location reference instead of a specific location, whereas

while scheduling, SELFPLANNER selects a specific location

to schedule the task while trying to minimize travel times

wrt adjacently scheduled tasks.

Case 3: Writing a paper for a conference. A well know

task with specific deadline. The novelty of this task is that

it is interruptible. Apart from the deadline, the user has to

define its duration, e.g. 30 hours, as well as the lower and

upper bounds of its parts, e.g. 2 hours and 8 hours

respectively. Furthermore, the user might want not to have

two 8-hours parts scheduled within the same day, so a

minimum temporal distance of 12 hours between this task's

parts is defined.

Again a class of locations could be used to define

plausible locations to write a paper, comprising e.g. home

and office. Concerning the task's domain, the user could

define it by removing lunch times and sleep times from a

day's hours, i.e. any hour of any day, except those devoted

to sleep and eat, could be used. This is an example of a

combination of two daily templates, which were retracted

from the task's domain. Perhaps the user might want to

remove also weekends, which could be achieved by

defining a weekly template concerning weekends and

removing it from the task's domain too.

Finally, suppose that the user wants to write the paper

as early as possible, in order not to risk to miss the

deadline. This can be achieved by assigning a linear

descending preference model to this task, i.e. experienced

utility decreases as time passes. Furthermore, the user

might prefer not to work on the paper close to distractive

tasks such as teaching classes. So, he can define a binary

preference over the two tasks ('writing a paper' and

'teaching a class') stating that these two tasks should be

scheduled as away to each other as possible.

Case 4: Teaching a class. This is a simple task like in Case

1, with the only difference that the task is weekly periodic.

However, everything is well specified, i.e. the time-

window is very precise within each week (e.g. every

Thursday, 14:00-17:00), whereas the same happens with

the location reference (some University hall).

The procedure is similar to that described in Case 1,

except that the user has to define the period (weekly) and

the number of repetitions (e.g. 13 weeks). In order to

define the task's domain, the user can use a weekly

template, having as its only available time slots those of

the class.

Case 5: Week's shopping. This is a combination of Case 2

and Case 4. The task is non-interruptible, admits of

scheduling, and is weekly periodic. To define its domain

the user has to employ a weekly template with the

shopping hours. Furthermore, the user might prefer to

make week's shopping as close to weekend as possible, so

he can assign a linear ascending preference model to the

task. Note that preference models for periodic tasks are

applied separately to each instance of the task.

Case 6: Preparing for the class. Before each class (Case

4), the instructor wants to devote 4 hours to recap the

material and possibly revise it. This task can be performed

in parts, with minimum duration for each part equal to 2

hours. Furthermore, revision should be completed before

the class. To capture these interrelations, the user has to

define this task as a weekly periodic one, with an ordering

constraint between this and the 'Teaching a class' one.

Ordering constraints between periodic tasks of the same

period size are applied to each pair of instances that are

scheduled within the same period. So, within each week,

all parts of the 'preparing a class' task should be scheduled

before the 'Teaching a class' task. Note however that in this

case the same effect could be achieved just by reducing the

domain of the current task, since 'Teaching a class' is

always scheduled in specific time-window within a week.

This section covered some of the most typical use cases

one might encounter while using SELFPLANNER. What we

wanted to emphasize is that, apart from solving the

scheduling problem (which most of the times can be solved

easily), SELFPLANNER aims at producing qualitative plans

according to the user's constraints and preferences.

Related Work

SELFPLANNER is the first system that attempts to schedule

the personal tasks of a user's calendar in an automated way

using constraint optimization algorithms. Furthermore, it

introduces a new view of modeling this problem, including

interruptible tasks, flexible periodic tasks, classes of

locations, proximity constraints and preferences; such

constructs do not appear in traditional calendar

applications.

 There are plenty of systems developed over the last

fifteen years that cope with the problem of automated

meeting scheduling. Some of them concentrate on specific

aspects of this problem (Garrido and Sycara, 1995;

Jennings and Jackson, 1995; Sen and Durfee, 1994; Sen

and Durfee, 1998). More recent efforts tend to incorporate

learning components or to integrate with the Semantic

Web. For example, RCal (Singh, 2003) is an intelligent

meeting scheduling agent that assists humans in office

environments to arrange meetings. RCal agents negotiate

with each other on the behalf of their users and agree on a

common meeting time that is acceptable to all the users

and abides by all the constraints set by all the attendees.

RCal supports parsing and reasoning about semantically

annotated schedules over the web, such as conference

programs or recurring appointments (Payne, Singh and

Sycara, 2002).

CMRadar (Modi et. al, 2004) is an end-to-end agent for

automated calendar management that automates meeting

scheduling by providing a spectrum of capabilities ranging

from natural language processing of incoming scheduling-

related e-mails, to negotiate with other users or making

autonomous scheduling decisions.

PTIME (Berry et. al., 2006) is an ongoing effort being

developed under the CALO project (Myers, 2006), that

aims at facilitating meeting scheduling. The innovation of

PTIME lies at its capability to learn the user's preferences

thus adapting its future behavior, whereas it emphasizes in

adopting natural language for interfacing with the user. A

more recent effort within the same project concerns Towel

(Conley and Carpenter, 2007), an initial attempt towards an

intelligent to-do list. Towel allows the user to organize to-

dos (group, tag, check etc) as well as delegate them to

other users or agents. Although to-dos can be seen as tasks,

Towel emphasizes on to-dos manipulation rather than in

solving the scheduling problem associated with actually

performing these to-dos. Furthermore, it does not support

all the advanced modeling features of SELFPLANNER.

Conclusions and Future Work

SELFPLANNER is currently a research prototype. Its

evolvement is based on users' suggestions from actual use.

The system is publicly available through a moderated web-

based registration procedure
2
. Currently, its users sum to a

few decades, most of them from our home institute.

However, those who use it systematically for their calendar

needs are less than 10, including the authors.

 As it is clear from the previous section, most of the

effort to add intelligence to calendar applications

concentrates on automating meeting scheduling. We could

imagine two explanations for this: First, people think that

meeting scheduling is the most difficult and time

consuming part of organizing a user's time. Although this

might be true, meetings constitute a small part of our daily

2
 http://selfplanner.uom.gr. An earlier version of the system has been

presented at the demo session of ICAPS-07.

activities, whereas poor organization of the remaining tasks

may result in significant waste of time. Indeed, even

scheduling together tasks with the same location reference,

in order to avoid pointless moves, would be of great value

for many users.

 On the other hand, we believe that the main reason why

intelligent calendar systems do not focus yet on automated

scheduling of personal tasks is due to an underlying

consensus that it would be very difficult for a user to

accept a machine-generated daily plan of activities, for

psychological reasons among others. Our experience from

using the system is that this is not absolutely true: First of

all, many of a user's tasks are very constrained, as for

example giving a lecture or getting the children to school,

so there is no need of scheduling for them. For the rest of

the tasks, SELFPLANNER gives the user so many options to

constrain the schedule and express her preferences, that it

is very unlikely to get an unacceptable plan. In any case,

our experience has shown that through the actual

interaction with the system people learn personal policies

of how to use it and get the most from it.

As for the psychological objections, we can witness our

evidence: SELFPLANNER has emerged as a way to fulfill

personal organization needs and continues to evolve based

on its users' feedback. The initial motivation was to

develop an intelligent calendar system able to schedule

together tasks with the same location reference. However,

through the actual use of the first prototype, several other

needs came up, with many of them being already

implemented as described in this paper. In any case, we

have to admit that the system's current user base does not

consist of average users but from computer specialists. So,

further investigation is required if we want this system to

be adopted by the general public.

 As for the future, there are several directions into which

SELFPLANNER can be extended. Our experience suggests

that the key to success and broader adoption is the easiness

of use. We receive constantly suggestions by the users for

new functions that facilitate data entry. Our immediate

plans include a mobile interface, as well as manually

editing of the current plan (currently the current plan is

read only over Google). Integration of meeting scheduling

capabilities is also under consideration.

However, the most challenging extension concerns its

transformation to a planning system. This next generation

system will possess semantic knowledge about its user's

status, a rich ontology with actions having preconditions

and effects and a set of goals to be achieved. The system

will help the user to insert tasks into her calendar in order

to achieve goals or subgoals. For example, the user might

set a goal for attending a conference, which could generate

a sequence of actions being inserted into her calendar,

including preparing the slides, bookings for the trip and

travelling. Classical planning algorithms for causal

reasoning can be used to solve the planning problem,

which can be done in a mixed-initiative manner.

References

Berry, P., Conley, K., Gervasio, M., Peintner, B., Uribe T.

and Yorke-Smith, N. Deploying a Personalized Time

Management Agent, 5
th
 International Joint Conference on

Autonomous Agents and Multi Agent Systems (AAMAS-
06) Industrial Track, Hakodate, Japan, pp. 1564-1571, May

2006.

Conley, K., and Carpenter. Towel: Towards an Intelligent

To-Do List, AAAI Spring Symposium on Interaction

Challenges for Artificial Assistants, Stanford, CA, March

2007.

Garrido, L. and Sycara, K. Multi-agent meeting

scheduling: Preliminary experimental results, 1
st

International Conference on Multi-Agent Systems

(ICMAS), 1995.

Jennings N.R. and Jackson, A.J. Agent based meeting

scheduling: A design and implementation, IEE Electronic

Letters, 31(5):350-352, 1995.

Joslin, D.E., and Clements, D.P. "Squeaky Wheel"

Optimization, Journal of Artificial Intelligence Research,

vol. 10 (1999), 375-397.

Modi, P.J., Veloso, M., Smith, S.F. and Oh, J. CMRadar: A

Personal Assisstant Agent for Calendar Management,

Workshop on Agent Oriented Information Systems

(AOIS), New York, 2004.

Myers, K. Building an Intelligent Personal Assistant,

AAAI Invited Talk, 2006.

Payne, T.R., Singh, R. and Sycara, K. Calendar Agents on

the Semantic Web, IEEE Intelligent Systems, vol. 17(3),

pp84-86, May/June 2002.

Refanidis, I. Managing Personal Tasks with Time

Constraints and Preferences, 17
th
 International Conference

on Automated Planning and Scheduling Systems (ICAPS-

2007), Providence, Rhode Island, 2007.

Refanidis, I., McCluskey, T.L. and Dimopoulos, Y.

Planning Services for Individuals: A New Challenge for

the Planning Community, Workshop on Connecting

Planning Theory with Practice, Whistler, British Columbia,

Canada, 2004.

Sen, S. and Durfee, E.H. A formal study of distributed

meeting scheduling, Group Decision and �egotiation,

vol.7, pp. 265-289, 1998.

Sen, S. and Durfee, E.H. On the design of an adaptive

meeting scheduler, 10
th
 International Conference on

Artificial Intelligence for Applications, pp. 40-46, 1994.

Singh, R. RCal: An Autonomous Agent for Intelligent

Distributed Meeting Scheduling, master's thesis, tech.

report CMU-RI-TR-03-46, Robotics Institute, Carnegie

Mellon University, December, 2003.

Van Hentenryck, P., Saraswat, V. and Deville, Y. Design,

implementation and evaluation of the constraint language

cc(fd), J.of Logic Programming, 37 (1998), pp. 139-164.

