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Abstract 

This paper presents SELFPLANNER, a web-based intelligent 

calendar application that helps a user plan her time. 

Contrary to other calendar assistants that concentrate on 

automating meeting scheduling, SELFPLANNER emphasizes 

on scheduling the personal tasks of a user, leaving meeting 

arrangement for external handling. The two key features of 

SELFPLANNER, also critical factors for its potential broader 

adoption, are problem modeling and user interface. 

SELFPLANNER supports simple, interruptible and flexible 

periodic tasks, arbitrary domains, constraints over the parts 

of an interruptible task, binary constraints and unary and 

binary preferences over tasks, location references and 

classes of locations. As for user interface, SELFPLANNER 

integrates with Google Calendar and a Google Maps based 

application, whereas it introduces an innovative way to 

define domains, based on manual selections and user-

defined reusable templates. The core of the system is based 

on the Squeaky Wheel Optimization algorithm, with 

efficient domain dependent heuristics. 

Introduction 

Modern electronic organizers, such as MS-Outlook, 

Google Calendar and Yahoo Calendar, do not provide for 

automated scheduling of a user's tasks. Users have to 

manually place their tasks into the calendar, as well as to 

arrange meetings with others. These applications provide 

various functionalities to assist the user to put her tasks 

into the calendar, detect conflicts, merge calendars, assign 

tasks to other users, arrange meetings, share and publish 

the calendar. The need for intelligent assistance to schedule 

a user's tasks has already been identified (Refanidis, 

McCluskey and Dimopoulos, 2004). It is a general 

impression that most of the effort in developing new 

editions of office applications is towards personal time 

management simplification. However, current status still 

remains behind automated scheduling abilities being 

incorporated into these programs. 

 There are several research efforts in the recent years to 

embed intelligence into calendar applications (Berry et. al., 

2006; Modi et. al., 2004; Singh, 2003), but all of them 

concern meeting scheduling, with personal tasks being 

considered as busy time in a user's plan.  However, most of 

a user's activity with calendar applications concerns 

personal tasks and, although many of them are inelastic 

(e.g. get the child to school, giving a lecture etc), there are 

many others, such as going shopping, writing a paper or 

breaking for lunch that, more ore less, admit of scheduling. 

Typically, users spend much time to organize their tasks, 

whereas the resulting plans are usually far from optimal. 

 We envision future calendar applications as really 

intelligent assistants that share a user's goals and elicit 

plans to achieve them. To realize this functionality, they 

need to solve a planning problem, where the initial state is 

the user's current status, including the status of her micro-

world (need to address a frame problem), actions are 

retrieved from a task ontology, and goals are set by the 

user. Intelligent calendar assistants can be seen as a core 

module of a more general architecture of intelligent agents 

that possess our profile, collect information from several 

sources, learn and organize us (Myers, 2006). 

 This paper presents SELFPLANNER, a necessary step 

towards this vision. SELFPLANNER is a web-based 

application built on top of a fast domain-specific scheduler, 

that integrates several web technologies and Google-based 

applications. SELFPLANNER automates the elaboration and 

optimization of personal plans in the presence of binary 

constraints and preferences; on the other hand, meetings 

are considered as busy time, leaving users use manual 

procedures of Google Calendar (or third party applications) 

to arrange them. Keeping these two procedures apart was a 

decision, since allowing a new meeting to invoke 

rescheduling of existing tasks (potentially involving other 

meetings) could lead to endless loops.  

 Apart from its scheduling engine, the two key features of 

SELFPLANNER are problem modeling and user interface. 

Both these features are critical in order for the system to be 

adopted by its potential target groups, i.e. people with very 

tight schedules (managers, academics etc). Concerning 

problem modeling, each task is characterized by a set of 

attributes such as duration, domain, class of locations, 

periodicity, interruptibility etc. In case of periodic and 

interruptible tasks, additional information must be 

specified, such as the period or the min/max duration of 

each part of an interruptible task. Binary constraints 

between tasks, such as ordering and proximity ones are 

allowed. Similarly, unary and binary preferences can be 

defined. 

 Concerning user interface, SELFPLANNER uses 

innovative techniques to facilitate data entry. Perhaps the 

most tedious part of a task's definition concerns its domain. 

A domain may consist of several time intervals, distributed 



among long periods, e.g. shop's working hours. The user 

defines domains through a combination of manual 

selections and template applications. Templates are 

patterns that can be applied to long time periods. The user 

can create and reuse templates, as well as save her 

operations in order to reapply them to other tasks. Other 

user interface innovations concern a Google Maps based 

application that helps the user define locations and 

compute spatial and temporal distances between them; 

classes of locations that provide alternative places where a 

task can be performed; periodicity, where the occurrences 

of a task are not scheduled in exactly the same day/time; 

suggestions to relax constraints in case of failure to 

schedule all of them etc. 

 The rest of the paper is structured as follows: First we 

define the problem of personal tasks scheduling and then 

we sketch the adopted algorithmic solution. Next we 

present the system's architecture followed by a description 

of the key features of the system and some indicative use 

cases. Finally we present related work and conclude the 

paper while posing future directions. 

Underlying Model 

We adopt the following problem formulation (Refanidis, 

2007), which forms an abstraction of the actual 

SELFPLANNER problem. Time is considered a non-negative 

integer, with zero denoting the current time. There is a set 

T of � tasks, T={T1, T2, …, T�}. Each task Ti∈T is 
characterized by its duration duri 

1
. All tasks are considered 

interruptible, i.e. they can split into parts to be scheduled 

separately. The decision variable pi denotes the number of 

parts in which the i-th task has been split, with pi≥1. Tij 

denotes the j-th part of the i-th task, 1≤j≤pi. For each Tij, 

the decision variables tij and durij denote its start time and 

duration. The sum of the durations of all parts of a task 

must equal its total duration (C1). 

For each task Ti, the maximum and minimum allowed 

duration for its parts, smaxi and smini (C2), as well as the 

minimum allowed temporal distance between every pair of 

its parts, dmini (C3), are given. Depending on the values of 

smaxi and smini and the overall duration of the task duri, 

implicit constraints are imposed on pi. For example, if 

smini>duri/2, then pi=1, so task Ti is non-interruptible. 

Each task i has its given domain Di, consisting of a set of 

intervals within which all of its parts have to be scheduled 

(tasks with infinite horizon of execution are not 

considered): Di=[ai1,bi1]∪[ai2,bi2]∪…∪[ai,Fi,bi,Fi], where Fi 
is the number of intervals of Di (C4). Obviously, 

aij+smini≤bij as well as bij<ai,j+1 must hold for each 1≤i≤Ν, 

1≤j≤Fi. 

                                                           
1
 In the following we use the notation xi to abbreviate Ti.x, where x is any 
attribute of the task structure. In case of multiple subscripts, e.g. xij, the 

first one, i.e. i, indicates the task. 

A set of M locations, Loc={L1, L2, …, LM} and a two 

dimensional matrix Dist (not necessarily symmetric) with 

their temporal distances (non-negative integers) are given. 

Each task Ti has its own spatial references Loci⊆Loc, 
denoting alternative places where the user should be in 

order to execute each part of the task (the user has not to 

execute all the parts of a task in the same location). The 

decision variable lij∈Loci denotes the particular position 
where Tij will be executed (C5, C6). 

For any subset of tasks S⊆T, a constraint c over these 
tasks may be defined, thus determining the valid ways to 

schedule the tasks of the set. Constraints refer only to time, 

not to location references; however the role of the locations 

in deciding when to schedule a task is important, since the 

decision to schedule a task at a specific location may affect 

the domain of other tasks. Each constraint c is defined by a 

function propagatec(S), which, given a set of partially 

instantiated tasks S, propagates the constraint c(S) over the 

domains of these tasks and returns returns ⊥ if any domain 

remains empty, otherwise it returns ¨ (C7).  

As a simple example consider the ordering constraint 

over non-periodic tasks, denoted with �(Ti,Tj), meaning 

that no part of the j-th task can start its execution until all 

parts of the i-th task have finished their execution. In this 

case, propagate�(Ti,Tj) applies bounds consistency (Van 

Hentenryck, Saraswat and Deville, 1998) to the domains of 

Ti and Tj. Other constraints, including higher order ones, 

can be defined as well. 

Finally, a set V of time preferences over sets of tasks are 

also allowed. A preference v∈V over a set of tasks S is 
defined as a function v:∏Ti∈SDi→√, i.e. function v maps 

each combination of the domains of the tasks of S to a real 

number. Preference functions are usually max-type 

functions that greedily try to estimate a best-case 

scheduling scenario based on the current domains of the 

involved tasks. For example, a unary preference could 

return the utility of the best time-window when the task 

could be scheduled, whereas a binary preference of an 

away type could return the utility of the maximum possible 

temporal distance where the two involved tasks could be 

scheduled. However, other types of functions, such as 

average, can be adopted as well. 

So, after these definitions, the problem of managing 

personal tasks can be formulated as follows: 

 

Problem definition: Given a set of tasks T with their 

attributes, a set of constraints C and a set of preferences V, 

find appropriate values for the decision variables pi, tij, 

durij, lij, where 1≤i≤�, 1≤j≤pi such as to maximize the 

expression: 
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subject to the following constraints: 
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C2: ∀i,j, 1≤i≤�, 1≤j≤pi : smini≤durij≤smaxi 
 

C3: ∀i,j,k, 1≤i≤�, 1≤j≤pi, 1≤k≤pi : j≠k ⇒ 

tij≥tik+durik+dmini ∨ tik≥tij+durij+dmini 
 

C4: ∀i,j, 1≤i≤�, 1≤j≤pi ∃k, 1≤k≤Fi : aik≤tij≤bik-durij 
 

C5: ∀i,j, 1≤i≤�, 1≤j≤pi : lij∈Loci 
 

C6: ∀i,j,m,n, 1≤i≤�, 1≤j≤pi, 1≤m≤�, 1≤n≤pm : i≠m ∨ j≠n 
⇒ tij+durij+Dist(lij,lmn)≤tmn ∨ tmn+durmn+Dist(lmn,lij)≤tij 
 

C7: ∀c(S)∈C, propagatec(S) = ¨ 

Squeaky Wheel Optimization 

Squeaky Wheel Optimization (SWO) is a general 

optimization framework that can be adapted to several 

constraint satisfaction problems (Joslin and Clements, 

1999). The core of SWO is a Construct/Analyze/Prioritize 

cycle, as shown in Figure 1(a). Constraint variables are 

placed in a priority queue in decreasing order of an initial 

estimate of the difficulty to assign a value to each one of 

them. A solution is constructed by a greedy algorithm, 

taking decisions in the order determined by the priority 

queue. This solution is then analyzed to find those 

constraint variables that were the “trouble makers”. The 

priorities of the “trouble makers” are increased, causing the 

greedy constructor to deal with them sooner in the next 

iteration. This cycle repeats until a termination condition 

occurs.   

 

                

(a)            (b) 
 

Figure 1.  (a) The SWO cycle. (b) Coupled search spaces. 

 

SWO is a fast but incomplete search procedure. As 

shown in Figure 1(b), SWO searches in two coupled 

spaces: The priority space and the solution space. The 

greedy construction algorithm defines a function g from 

the priority queues to the solutions, i.e. for each ordering p 

of the tasks a schedule g(p) is defined. However, function g 

may be neither surjective nor injective; so, many feasible 

solutions may not correspond to any ordering of the tasks 

in the queue. 

We adapted SWO to SELFPLANNER using several 

domain dependent heuristics that measure the impact of the 

various ways of scheduling a specific task (including both 

time and location) to the remaining ones. In particular, the 

difficulty diff(Ti) to schedule a task Ti is defined as the 

maximum between two metrics, m1 and m2, which in turn 

are defined as follows: 

Metric m1 of a task Ti is defined as the ratio between the 

total duration of the task and the net size of its domain, i.e.: 

m1(Ti)=duri/net(Di) 

where the net size net(D) of a domain D consisting of a set 

of intervals is defined as the sum of the widths of these 

intervals. 

 Metric m2 of a task Ti is defined as the ratio between 

the minimum possible makespan of the task and the width 

of its domain, i.e.: 

m2(Ti)=min(makespan(Ti))/width(Di) 

The overall difficulty to schedule a set of tasks S is 
defined as the product of their individual difficulties: 

overall(S)=∏Ti∈Sdiff(Ti) 

So, tasks are initially placed at the queue in decreasing 

order of their individual difficulties, whereas each task is 

scheduled at the time slot where the overall difficulty to 

schedule the remaining tasks is minimized. For each 

possible time window to schedule the current task, 

constraint propagation is employed to compute the 

domains of the remaining tasks before computing the 

difficulty to schedule them. 

In case of preferences, the ratio between overall 

difficulty and approximated overall utility is minimized:  
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Experimental results have shown that SWO is 

significantly more efficient and effective (under time limit) 

than other complete search algorithms. The details of the 

specific adaptation of SWO to SELFPLANNER have been 

presented in (Refanidis, 2007). 

System Architecture 

SELFPLANNER is a web based application running over a 

planning server (Figure 2), which implements the SWO 

algorithm. All data are stored centrally, so the user can 

access the application from any networked computer. The 

user edits task data using user-friendly dialog boxes. The 
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planning server solves the scheduling problem and inserts 

suitable entries in the user's Google Calendar account. 

Finally, the user watches her calendar directly into Google 

Calendar. The user can also add tasks directly into her 

Google Calendar account; during scheduling, these tasks 

are considered as busy time by the system. SELFPLANNER 

also integrates a Google Maps based application, in order 

to obtain the user's list of locations, as well as to compute 

temporal distances between them. The Google Maps 

application "communicates" with the core SELFPLANNER 

system through shared files. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: SELFPLANNER overall architecture 

 

SELFPLANNER encompasses several technologies and 

platforms. The main system consists of a Java application, 

with the user interface being a Java applet. All connections 

between the user and the system are secure. The Google 

Maps application uses PHP and Javascript. The planning 

engine that implements the SWO algorithm has been 

implemented in C++. Finally, user data such as task details 

and the current plan are retained as serializable Java 

objects (binary files).  

SELFPLA��ER Features 

This section highlights the key features of SELFPLANNER 

from a user point of view. An overall view of the system, 

with the main windows open, is given in Figure 3. 

The main entity in the "planning your time" concept is 

the task. Using suitable user interface modules, the user 

can define all the parameters of a task, as they have been 

described in Section 2, i.e. duration, domain, 

interruptibility, periodicity, alternative locations, 

constraints and preferences.  

 Perhaps the most tedious job when defining a task is 

the definition of its domain. SELFPLANNER uses an 

innovative way for defining domains, based on combining 

manual interval selections and template applications. 

Manual selections allow the user to include or exclude (by 

clicking or dragging) specific intervals from a domain (a 

minimum time slot of 30 minutes is assumed). On the other 

hand, templates allow the user to apply the same pattern of 

inclusions/exclusions over long periods. A template 

comprises a set of green and red values characterizing time 

slots over a relative interval. Three types of templates are 

supported: daily, weekly and monthly. The user can define 

and store as many templates as she needs. A template can 

be applied over the whole domain or over part of it, in four 

different ways: adding/removing the green slots, and 

adding/removing the red slots. The user can apply several 

templates; however the order in which they are applied 

matters. 

 Another innovation concerns the way domains are 

retained in memory: they are not retained as lists of 

intervals (which can be difficult to handle in case of large 

domains) but as lists of user actions. A user action can be 

either a manual addition/removal of a time slot in/from the 

domain, or the application of a template. The list of user 

actions is accessible to the user, who can modify it by 

changing the order of the actions or delete some of them. 

Efficient algorithms have been developed to answer 

questions such as whether a particular time slot is included 

or not in the domain.  

SELFPLANNER treats all tasks as interruptible, with non-

interruptible tasks being characterized by smin=smax=dur. 

The decision in how many parts to split an interruptible 

task is taken by the greedy scheduling algorithm. In 

addition, a task may be periodic. Periodic tasks are 

considered as collections of simple tasks. Similarly to 

interruptible tasks, SELFPLANNER treats all tasks as 

periodic, with non-periodic tasks being characterized by a 

single iteration. Each periodic task has a predetermined 

finite number of periods. The period may be either a day, 

or a week, or finally a month. The end-points of each 

period are fixed in advance: for example, weekly periodic 

tasks start on Sunday and end on Saturday. However, 

specific intervals within a period may be out of the 

domain. The various instances of a periodic task are 

scheduled separately, so, depending on the domain of the 

task, they may be scheduled in different offsets within their 

periods. For example, the first iteration of a weekly 

periodic task might be scheduled on Monday, whereas the 

second iteration might be scheduled on Thursday. In 

addition, the user may ask not to schedule an instance of 

the task for specific periods (e.g. holiday breaks). Note that 

periodicity does not exclude interruptibility, i.e. a periodic 

task may be interruptible as well. 

A task is characterized by one or more locations. In order 

to execute the task (or a part of it), the user must be in one 

of its locations. In case of interruptible and periodic tasks, 

different parts of the same task may be scheduled in 

different locations. In order to facilitate location entry, 

SELFPLANNER supports classes of locations: A class is a set 

of distinct locations and can be assigned to a task instead 

of a simple location. Travelling times between different 

locations are taken into account when scheduling tasks that 

are located in different places. SELFPLANNER integrates a 

Google Maps based application in order to obtain the user's 

list of locations and to compute distances between them. 

User 
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SELFPLANNER supports binary constraints, in particular 

ordering and proximity ones, with the latter concerning 

minimum or maximum temporal distance between tasks. 

There is special treatment of these constraints when 

interruptible or periodic tasks are involved. As for 

interruptible tasks, ordering constraints between 

interruptible tasks apply to all pairs of their parts. A min-

distance (max-distance) constraint over interruptible tasks 

A and B imposes that any part of A must be at least min-

distance (at most max-distance) away from every (some) 

part of B. Higher order constraints are not supported yet. 

Periodic tasks are treated similarly to interruptible tasks 

with one exception: If there is a binary constraint over two 

periodic tasks with the same period, the user has the option 

to consider the various iterations of the periodic tasks as 

individual tasks and apply the constraint repeatedly to 

those pairs of tasks whose periods coincide. For example, 

suppose an ordering constraint A<B between two weekly 

periodic tasks. Considering these tasks as whole means that 

the first iteration of B must start after the last iteration of A 

has been completed. On the contrary, considering each 

iteration of these tasks individually applies the constraint to 

those pairs of instances of A and B that have to be 

scheduled in the same week. With this interpretation, if the 

iterations of the two tasks are not synchronized, there 

might be instances of the tasks where the constraint does 

not apply.  

Unary and binary preferences over tasks are also 

supported. Unary preferences concern the exact time 

within a task's domain when it will be scheduled. Five 

options are supported: none, linear-ascending, linear-

descending, step-ascending and step-descending. Linear 

ascending/descending preferences mean that the 

latest/earlier a task is scheduled the better. Step 

ascending/descending preferences favor a task to be 

scheduled after/before some user-defined time point. 

Binary preferences involve close and away relations, 

meaning that two tasks are preferred to be as close to/away 

from each other as possible. Binary preferences over 

interruptible and periodic tasks are treated similarly to 

binary constraints. 

SELFPLANNER supports incremental scheduling. Each 

time a new set of tasks arrives, the user may select to lock 

some of the old tasks at their current schedules, thus trying 

to schedule the new tasks at the remaining open time 

windows. This is a very useful feature, since it might be 

very annoying for the user to reschedule short-term tasks 

due to the arrival of new ones. However, locking the 

current schedule may lead to inability to schedule the new 

tasks or to poor schedules; in such cases the system asks 

the user to unlock specific tasks progressively.  

 

Figure 3. An overall view of SELFPLANNER system. The main application window is shown at the lower left corner, now listing the active 

tasks. The dialog box in the bottom right is the "Edit task" window, currently shown part of the domain of the task "Prepare Slides". In the 

upper left corner is shown the Google Maps based application for obtaining locations. Finally, in the upper right area, Google Calendar 

displays the user's current plan. 



SELFPLANNER also keeps track of the progress to 

complete each task. Current technology does not allow to 

monitor the user's activities accurately. On the other hand, 

it is very common that the user fails to accomplish 

scheduled tasks or parts of them. To cope with this 

problem, each time the user logs onto the system, she is 

asked about the execution status of the tasks whose 

scheduling time has passed. Tasks reported as not started 

yet are rescheduled.  

Finally, in case of inability to schedule all tasks, the 

system gives feedback to the user about which constraints 

should be relaxed. Feedback is based on the best partial 

schedule found by the SWO search algorithm, wrt the 

preferences, and identifies the tasks that failed to fit into 

this schedule.  

Use Cases 

The following are some indicative examples of tasks a user 

might want to insert in her calendar: 

Case 1: Attend a performance in the theater. The 

performance will take place at the local theater, on 

Saturday evening, 21:00-23:00. This is the simplest type of 

task, since it is non-periodic, non-interruptible and is has a 

very precise time schedule and location reference. For such 

simple tasks, SELFPLANNER offers a Quick Insert 

functionality, in order to facilitate data entry. Furthermore, 

such tasks are given priority while scheduling, i.e. they are 

scheduled at their single possible time window before other 

more flexible tasks are handled. 

Of course, the user has to determine the location 

reference of the task. This is done by defining a set of 

interesting locations using the accompanying Google Maps 

application. The user can assign any of these locations to 

any task; SELFPLANNER uses Google Maps to compute the 

time needed to travel between any pair of defined 

locations. 

One might suggest that such simple tasks could be 

added directly into Google Calendar, thus bypassing 

SELFPLANNER. The only problem with this possibility 

(which is supported by SELFPLANNER) is that it is difficult 

to define the location reference precisely. For each task, 

Google Calendar provides a "Where" text field, with the 

possibility to view this location on Google Maps 

automatically. However, the mapping many times is 

approximately, without any possibility (at least currently) 

for editing. So, without having a precise location reference, 

SELFPLANNER does not know what temporal gap to leave 

between them and other adjacently scheduled tasks. 

Case 2: Buying gifts for the children. This task uses two 

additional system's features: The task has neither a specific 

time window to schedule, nor a specific location reference. 

Concerning time, the user should define the duration of the 

task, e.g. 3 hours, a deadline, e.g. before Christmas, and the 

possible time slots when the task can be scheduled. In this 

case the time slots are the hours when the shops are open. 

The user can easily select these hours by applying a weekly 

template defining the shopping working hours to the task's 

domain. Note that SELFPLANNER supports applying 

combinations of templates, such as shops working hours 

but not office hours, create new templates by manually 

editing existing ones, as well as manually editing the 

domains.  

 Concerning the location reference, the user might be 

indifferent on where to buy gifts from. That is, there might 

be several malls in the city and the user might want to shop 

from the nearest one wrt to other adjacently scheduled 

tasks. This is achieved by defining a class of locations. A 

class of locations is a set of specific locations defined 

through the Google Maps application. For example, the 

user might define three different malls on Google Maps 

and, subsequently, define a class of locations, called Malls, 

that comprises the three distinct malls. Then, while 

defining a task, a class of locations can be used as its 

location reference instead of a specific location, whereas 

while scheduling, SELFPLANNER selects a specific location 

to schedule the task while trying to minimize travel times 

wrt adjacently scheduled tasks.  

Case 3: Writing a paper for a conference. A well know 

task with specific deadline. The novelty of this task is that 

it is interruptible. Apart from the deadline, the user has to 

define its duration, e.g. 30 hours, as well as the lower and 

upper bounds of its parts, e.g. 2 hours and 8 hours 

respectively. Furthermore, the user might want not to have 

two 8-hours parts scheduled within the same day, so a 

minimum temporal distance of 12 hours between this task's 

parts is defined.  

Again a class of locations could be used to define 

plausible locations to write a paper, comprising e.g. home 

and office. Concerning the task's domain, the user could  

define it by removing lunch times and sleep times from a 

day's hours, i.e. any hour of any day, except those devoted 

to sleep and eat, could be used. This is an example of a 

combination of two daily templates, which were retracted 

from the task's domain. Perhaps the user might want to 

remove also weekends, which could be achieved by 

defining a weekly template concerning weekends and 

removing it from the task's domain too. 

Finally, suppose that the user wants to write the paper 

as early as possible, in order not to risk to miss the 

deadline. This can be achieved by assigning a linear 

descending preference model to this task, i.e. experienced 

utility decreases as time passes. Furthermore, the user 

might prefer not to work on the paper close to distractive 

tasks such as teaching classes. So, he can define a binary 

preference over the two tasks ('writing a paper' and 

'teaching a class') stating that these two tasks should be 

scheduled as away to each other as possible.  

Case 4: Teaching a class. This is a simple task like in Case 

1, with the only difference that the task is weekly periodic. 



However, everything is well specified, i.e. the time-

window is very precise within each week (e.g. every 

Thursday, 14:00-17:00), whereas the same happens with 

the location reference (some University hall).  

The procedure is similar to that described in Case 1, 

except that the user has to define the period (weekly) and 

the number of repetitions (e.g. 13 weeks). In order to 

define the task's domain, the user can use a weekly 

template, having as its only available time slots those of 

the class.  

Case 5: Week's shopping. This is a combination of Case 2 

and Case 4. The task is non-interruptible, admits of 

scheduling, and is weekly periodic. To define its domain 

the user has to employ a weekly template with the 

shopping hours. Furthermore, the user might prefer to 

make week's shopping as close to weekend as possible, so 

he can assign a linear ascending preference model to the 

task. Note that preference models for periodic tasks are 

applied separately to each instance of the task. 

Case 6: Preparing for the class. Before each class (Case 

4), the instructor wants to devote 4 hours to recap the 

material and possibly revise it. This task can be performed 

in parts, with minimum duration for each part equal to 2 

hours. Furthermore, revision should be completed before 

the class. To capture these interrelations, the user has to 

define this task as a weekly periodic one, with an ordering 

constraint between this and the 'Teaching a class' one. 

Ordering constraints between periodic tasks of the same 

period size are applied to each pair of instances that are 

scheduled within the same period. So, within each week, 

all parts of the 'preparing a class' task should be scheduled 

before the 'Teaching a class' task. Note however that in this 

case the same effect could be achieved just by reducing the 

domain of the current task, since 'Teaching a class' is 

always scheduled in specific time-window within a week. 

This section covered some of the most typical use cases 

one might encounter while using SELFPLANNER. What we 

wanted to emphasize is that, apart from solving the 

scheduling problem (which most of the times can be solved 

easily), SELFPLANNER aims at producing qualitative plans 

according to the user's constraints and preferences. 

Related Work 

SELFPLANNER is the first system that attempts to schedule 

the personal tasks of a user's calendar in an automated way 

using constraint optimization algorithms. Furthermore, it 

introduces a new view of modeling this problem, including 

interruptible tasks, flexible periodic tasks, classes of 

locations, proximity constraints and preferences; such 

constructs do not appear in traditional calendar 

applications.  

 There are plenty of systems developed over the last 

fifteen years that cope with the problem of automated 

meeting scheduling. Some of them concentrate on specific 

aspects of this problem (Garrido and Sycara, 1995; 

Jennings and Jackson, 1995; Sen and Durfee, 1994; Sen 

and Durfee, 1998). More recent efforts tend to incorporate 

learning components or to integrate with the Semantic 

Web. For example, RCal (Singh, 2003) is an intelligent 

meeting scheduling agent that assists humans in office 

environments to arrange meetings. RCal agents negotiate 

with each other on the behalf of their users and agree on a 

common meeting time that is acceptable to all the users 

and abides by all the constraints set by all the attendees. 

RCal supports parsing and reasoning about semantically 

annotated schedules over the web, such as conference 

programs or recurring appointments (Payne, Singh and 

Sycara, 2002). 

CMRadar (Modi et. al, 2004) is an end-to-end agent for 

automated calendar management that automates meeting 

scheduling by providing a spectrum of capabilities ranging 

from natural language processing of incoming scheduling-

related e-mails, to negotiate with other users or making 

autonomous scheduling decisions.  

PTIME (Berry et. al., 2006) is an ongoing effort being 

developed under the CALO project (Myers, 2006), that 

aims at facilitating meeting scheduling. The innovation of 

PTIME lies at its capability to learn the user's preferences 

thus adapting its future behavior, whereas it emphasizes in 

adopting natural language for interfacing with the user. A 

more recent effort within the same project concerns Towel 

(Conley and Carpenter, 2007), an initial attempt towards an 

intelligent to-do list. Towel allows the user to organize to-

dos (group, tag, check etc) as well as delegate them to 

other users or agents. Although to-dos can be seen as tasks, 

Towel emphasizes on to-dos manipulation rather than in 

solving the scheduling problem associated with actually 

performing these to-dos. Furthermore, it does not support 

all the advanced modeling features of SELFPLANNER. 

Conclusions and Future Work 

SELFPLANNER is currently a research prototype. Its 

evolvement is based on users' suggestions from actual use. 

The system is publicly available through a moderated web-

based registration procedure
2
. Currently, its users sum to a 

few decades, most of them from our home institute. 

However, those who use it systematically for their calendar 

needs are less than 10, including the authors.  

 As it is clear from the previous section, most of the 

effort to add intelligence to calendar applications 

concentrates on automating meeting scheduling. We could 

imagine two explanations for this: First, people think that 

meeting scheduling is the most difficult and time 

consuming part of organizing a user's time. Although this 

might be true, meetings constitute a small part of our daily 

                                                           
2
 http://selfplanner.uom.gr. An earlier version of the system has been 

presented at the demo session of ICAPS-07. 



activities, whereas poor organization of the remaining tasks 

may result in significant waste of time. Indeed, even 

scheduling together tasks with the same location reference, 

in order to avoid pointless moves, would be of great value 

for many users.  

 On the other hand, we believe that the main reason why 

intelligent calendar systems do not focus yet on automated 

scheduling of personal tasks is due to an underlying 

consensus that it would be very difficult for a user to 

accept a machine-generated daily plan of activities, for 

psychological reasons among others. Our experience from 

using the system is that this is not absolutely true: First of 

all, many of a user's tasks are very constrained, as for 

example giving a lecture or getting the children to school, 

so there is no need of scheduling for them. For the rest of 

the tasks, SELFPLANNER gives the user so many options to 

constrain the schedule and express her preferences, that it 

is very unlikely to get an unacceptable plan. In any case, 

our experience has shown that through the actual 

interaction with the system people learn personal policies 

of how to use it and get the most from it.  

As for the psychological objections, we can witness our 

evidence: SELFPLANNER has emerged as a way to fulfill 

personal organization needs and continues to evolve based 

on its users' feedback. The initial motivation was to 

develop an intelligent calendar system able to schedule 

together tasks with the same location reference. However, 

through the actual use of the first prototype, several other 

needs came up, with many of them being already 

implemented as described in this paper. In any case, we 

have to admit that the system's current user base does not 

consist of average users but from computer specialists. So, 

further investigation is required if we want this system to 

be adopted by the general public. 

 As for the future, there are several directions into which 

SELFPLANNER can be extended. Our experience suggests 

that the key to success and broader adoption is the easiness 

of use. We receive constantly suggestions by the users for 

new functions that facilitate data entry. Our immediate 

plans include a mobile interface, as well as manually 

editing of the current plan (currently the current plan is 

read only over Google). Integration of meeting scheduling 

capabilities is also under consideration. 

However, the most challenging extension concerns its 

transformation to a planning system. This next generation 

system will possess semantic knowledge about its user's 

status, a rich ontology with actions having preconditions 

and effects and a set of goals to be achieved. The system 

will help the user to insert tasks into her calendar in order 

to achieve goals or subgoals. For example, the user might 

set a goal for attending a conference, which could generate 

a sequence of actions being inserted into her calendar, 

including preparing the slides, bookings for the trip and 

travelling. Classical planning algorithms for causal 

reasoning can be used to solve the planning problem, 

which can be done in a mixed-initiative manner. 
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