
Experiences with Planning for Natural Language Generation

Alexander Koller and Ronald Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK

{a.koller,r.petrick}@ed.ac.uk

Abstract

We investigate the application of modern planning techniques
to domains arising from problems in natural language gen-
eration (NLG). In particular, we consider two novel NLG-
inspired planning problems, the sentence generation domain
and the GIVE (“Generating Instructions in Virtual Environ-
ment”) domain, and investigate the efficiency of FF and SG-
PLAN in these domains. We also compare our results against
an ad-hoc implementation of GraphPlan in Java. Our results
are mixed. While modern planners are able to quickly solve
many moderately-sized instances of our problems, the overall
planning time is dominated by the grounding step that these
planners perform, rather than search. This has a pronounced
effect on our domains which require relatively short plans
but have large universes. We share our experiences and of-
fer these domains as challenges for the planning community.

Introduction
Natural language generation (NLG; Reiter and Dale 2000)
is one of the major subfields of natural language process-
ing, concerned with computing natural language sentences
or texts that convey a given piece of information to the
user. Intuitively, this task can be viewed as a problem in-
volving actions, beliefs, and goals: an agent communicating
with another agent tries to change the mental state of the
hearer by applying actions which correspond to the utter-
ance of words or sentences. This characterisation of NLG
suggests obvious parallels to automated planning—a view
which has a long tradition in NLG (Appelt 1985; Young
and Moore 1994). More recently, there has been a resur-
gence of interest in applying modern planning techniques to
NLG (Steedman and Petrick 2007; Koller and Stone 2007;
Benotti 2008). While efficiency has not always been the
main focus of NLG, problems in NLG are often more com-
plex than their counterparts in other areas of natural lan-
guage processing (such as parsing (Koller and Striegnitz
2002)), giving rise to computationally challenging domains.
These new approaches combine an interest in planning as a
modelling tool for natural language, with a hope of improved
efficiency by exploiting modern approaches and algorithms.

The focus of this paper is twofold. We begin by presenting
two recent planning domains that arise in the context of natu-
ral language generation: the sentence generation domain and
the GIVE domain. In the sentence generation task, the goal

is to generate a single sentence that expresses a given mean-
ing. Koller and Stone (2007) cast this domain as a planning
problem, where the plan encodes the necessary sentence and
the actions correspond to uttering individual words. In the
GIVE domain (“Generating Instructions in Virtual Environ-
ments”), we describe a new shared task that was recently
posed as a challenge for the NLG community (Koller et al.
2007). GIVE uses planning as one module of an NLG sys-
tem that generates natural-language instructions to guide a
user performing a given task in a virtual environment.

We then discuss some of our experiences using off-the-
shelf planners in our two domains. In particular, we explore
the efficiency of FF (Hoffmann and Nebel 2001) and SG-
PLAN (Hsu et al. 2006)—planners that are easily available,
support an expressive subset of PDDL for encoding precon-
ditions and effects, and have been successful on traditional
benchmarks and in the International Planning Competition
(IPC)—on a range of problem instances from our planning
domains. We also compare these results against an ad-hoc
Java implementation of GraphPlan (Blum and Furst 1997).
Our findings are mixed. On the one hand, it turns out that
modern planners handle some of the search problems that
arise in NLG quite easily (although large problem instances
still remain a challenge). On the other hand, these same
planners spend tremendous amounts of time on preprocess-
ing. For instance, FF spends 90% of its runtime in the sen-
tence generation domain on grounding out literals and ac-
tions, and ends up slower than our version of GraphPlan that
avoids grounding. For domains like ours, which are domi-
nated by the number of actions and the universe size, rather
than the combinatorics of the search problem, this observa-
tion suggests that the overall runtime of a planner could be
improved by grounding more selectively. We therefore offer
these domains as challenges for the planning community.

Planning in NLG
We begin by presenting our two planning domains: the sen-
tence generation domain and the instruction giving domain.

Sentence generation as planning
Sentence generation is the problem of computing, from a
grammar and a semantic representation, a single sentence
that expresses this piece of meaning. This problem is tra-
ditionally split into several steps (Reiter and Dale 2000).



S:self

NP:subj ↓ VP:self

sleeps

V:self

N:self

rabbit

NP:self

the

N:self

white N:self * 

{sleep(self,subj)} {rabbit(self)} {white(self)}

Figure 1: The example grammar.

S:e

NP:a ↓ VP:e

sleeps

V:e

N:a

rabbit

NP:a

the
N:a

white N:a * 

S:e

VP:e

sleeps

V:e

rabbit

NP:a

the N:a

white

Figure 2: Derivation of “The white rabbit sleeps.”

In a first step, called sentence planning, the semantic rep-
resentation is first enriched with more information; for in-
stance, referring expressions, which refer to individuals that
we want to talk about, are determined at this point. In a
second step, called surface realization, this enriched repre-
sentation is then translated into a natural-language sentence,
using the grammar.

In practice, the process of determining referring expres-
sions typically interacts with the realization step and so it
turns out to be beneficial to perform both of these steps to-
gether. This was the goal of the SPUD system (Stone et
al. 2003), which performed this task using a top-down gen-
eration algorithm based on tree-adjoining grammars (Joshi
and Schabes 1997) whose lexical entries were equipped with
semantic and pragmatic information. Unfortunately, SPUD
suffered from having to explore a huge search space, and
had to resort to a non-optimal greedy search strategy to re-
tain reasonable efficiency. To improve on the efficiency of
SPUD, Koller and Stone (2007) translate the sentence gen-
eration problem into a planning problem and use a planning
algorithm for generation.

We illustrate this process on a simplified example. Con-
sider a knowledge base containing the individuals e, r1 and
r2, and a set of attributes encoding the fact that r1 and r2

are rabbits, r1 is white and r2 is brown, and e is an event in
which r1 sleeps. Say that we want to express the informa-
tion {sleep(e, r1)} using the tree-adjoining grammar shown
in Figure 1. This grammar consists of elementary trees (i.e.,
the disjoint trees in the figure), each of which contributes
certain semantic content. We can instantiate these trees by
substituting individuals for semantic roles, such as self and
subj, and then combine the tree instances as shown in Fig-
ure 2 to obtain the sentence “The white rabbit sleeps”.

We compute this grammatical derivation in a top-down
manner, starting with the elementary tree for “sleeps”. This
tree satisfies the need to convey the semantic information,
but introduces a need to generate a noun phrase (NP) for
the subject; this NP must refer uniquely to the target ref-

(:action add-sleeps
:parameters (?u - node

?xself - individual
?xsubj - individual)

:precondition (and (subst S ?u)
(referent ?u ?xself)
(sleep ?xself ?xsubj))

:effect (and (not (subst S ?u))
(expressed sleep ?xself ?xsubj)
(subst NP (subj ?u))
(referent (subj ?u) ?xsubj)
(forall (?y - individual)

(when (not (= ?y ?xself))
(distractor (subj ?u) ?y)))))

(:action add-rabbit
:parameters (?u - node

?xself - individual)
:precondition (and (subst NP ?u)

(referent ?u ?xself)
(rabbit ?xself))

:effect (and (not (subst NP ?u))
(canadjoin N ?u)
(forall (?y - individual)

(when (not (rabbit ?y))
(not (distractor ?u ?y))))))

(:action add-white
:parameters (?u - node

?xself - individual)
:precondition (and (canadjoin N ?u)

(referent ?u ?xself)
(rabbit ?xself))

:effect (forall (?y - individual)
(when (not (white ?y))

(not (distractor ?u ?y)))))

Figure 3: PDDL actions for generating the sentence “The
white rabbit sleeps.”

erent r1. In a second step, we substitute the tree for “the
rabbit” into the open NP leaf, which makes the derivation
grammatically complete. Since there are two different indi-
viduals that could be described as “the rabbit”—technically,
r2 is still a distractor (i.e., based on the description “the rab-
bit”, the hearer might erroneously think that we’re talking
about r2 and not r1)—we are still not finished. To complete
the derivation, the tree for “white” is added to the existing
structure by an adjunction operation, making the derivation
syntactically and semantically complete.

The process described above has clear parallels to plan-
ning: we manipulate a state by applying actions in order to
achieve a goal. We can make this connection even more
precise by translating the SPUD problem into a planning
problem.1 For instance, Figure 3 shows the corresponding
PDDL actions for the above generation task, where each ac-
tion corresponds to an operation that adds a single elemen-
tary tree to the derivation. In each case, the first parameter

1See http://code.google.com/p/crisp-nlg/ for
the CRISP system, in which this conversion is implemented.



of the action is a node name in the derivation tree, and the
remaining parameters stand for the individuals to which the
semantic roles will be instantiated. The syntactic precon-
ditions and effects are encoded using open and canadjoin
literals; the status of each referring expression is tracked us-
ing distractor literals. Notice that the action effects contain
terms of the form subj(u), which construct new node names.
In order to meet the syntactic requirements of PDDL, these
terms can be eliminated by estimating an upper bound n for
the plan length, making n copies of each action, ensuring
that copy i can only be applied in step i, and replacing the
term subj(u) in an action copy by the constant subji.

Once the appropriate actions are defined, we can solve the
generation problem as an ordinary planning problem. For
instance, the following plan solves our previous example:
1. sleeps(root, r1),
2. rabbit(subj(root), r1),
3. white(subj(root), r1).
Using this plan, the grammatical derivation in Figure 2, and
therefore the generated sentence “the white rabbit sleeps”,
can be systematically reconstructed. Thus, we can solve the
sentence generation problem via the detour through planning
and bring current search heuristics for planning to bear on
generation.

Planning in instruction giving
The object of the GIVE Challenge (“Generating Instructions
in Virtual Environments”; Koller et al. 2007) is to build
an NLG system which is able to produce natural-language
instructions which will guide a human user in performing
some task in a virtual environment. From an NLG perspec-
tive, GIVE makes for an interesting challenge because it is a
theory-neutral task that exercises all components of an NLG
system, and emphasizes the study of communication in a
(simulated) physical environment. It also has the advantage
that the user and the NLG system can be in physically differ-
ent places, as long as the 3D client and the NLG system are
connected over a network. This makes it possible to eval-
uate GIVE NLG systems on a large scale over the Internet.
The first GIVE evaluation will take place in late 2008; cur-
rently eight research teams from five countries are working
on developing systems to participate in the challenge.2

A map of an example GIVE world is shown in Figure 4.
In this world, the user’s task is to pick up a trophy in the top
left room. The trophy is hidden in a safe behind a picture, so
the user must first move the picture out of the way and open
the safe by pushing a sequence of buttons (the small square
boxes on the walls) in the correct order. In order to get to all
these buttons, the user must also open the door in the centre
of the map and deactivate the alarm tile by pushing further
buttons. To simplify both the planning and the NLG task,
the world is discretised into tiles of equal size; the user can
turn by 90 degree steps in either direction, and can move
from the centre of one tile to the centre of the next. Figure 5
shows some of the available actions in PDDL syntax.

2See the GIVE website for more details about this project:
http://www.give-challenge.org/.

Figure 4: Map of the GIVE development world.

The plans generated in the GIVE domain are often non-
trivial. For instance, in the above example the shortest plan
consists of 108 action steps; the first few steps are as follows:

1. turn-left(north,west),
2. move(pos 5 2, pos 4 2,west),
3. manipulate-b1-off-on(pos 5 2),
4. turn-right(west, north).

Most of the actions in this plan are “move” actions. This
makes the bulk of the GIVE problem very similar to the
Gridworld problem, which also involves finding a route
through a world with discrete positions—but with the addi-
tional need to press buttons in the right order, reason about
many more objects in the world, and navigate somewhat
more complicated room shapes.

The GIVE task comes with a number of interesting re-
search challenges both for the NLG and the planning com-
munities. On the NLG side, one major problem is that ver-
balising each action instance in the plan in turn makes for
very poor natural-language instructions. For instance, the
NLG system could generate an instruction sequence starting
with “turn left; walk forward; press the button; turn right;
walk forward; walk forward; turn right; walk forward; walk
forward; turn left; walk forward”. However, such directions
would be clumsy and boring, and it is to be expected that
frustrated users will quickly cancel an interaction with such
a system, resulting in a bad evaluation score. Having just
pressed the button, it would be much better to say “turn
around and walk through the door”. That is, plans must
be summarised by merging multiple action instances into
a single instruction, in order to present them to the user.3
Conversely, it may also be necessary to elaborate on a sin-
gle planning step by expressing it with several instructions.
Having just entered the top left room, it may be easier for
the user to understand the instruction “walk to the centre of
the room; turn right; now press the green button in front of
you”, rather than the instruction “press the green button on
the wall to your right”. To plan the referring expression “the
green button in front of you” at a time when the button is

3This task is similar to the construction of “macro” actions, but
is primarily intended for plan presentation.



(:action move
:parameters (?from - position

?to - position
?ori - orientation)

:precondition (and (player-pos ?from)
(adjacent ?from ?to ?ori)
(player-orient ?ori)
(not-blocked ?from ?to)
(not-alarmed ?to))

:effect (and (not (player-pos ?from))
(player-pos ?to)))

(:action turn-left
:parameters (?ori - orientation

?newOri - orientation)
:precondition (and (player-orient ?ori)

(next-orient-left ?ori ?newOri))
:effect (and (not (player-orient ?ori))

(player-orient ?newOri)))

(:action turn-right
:parameters (?ori - orientation

?newOri - orientation)
:precondition (and (player-orient ?ori)

(next-orient-right ?ori ?newOri))
:effect (and (not (player-orient ?ori))

(player-orient ?newOri)))

(:action manipulate-b1-off-on
:parameters (?pos - position)
:precondition (and (state b1 off)

(player-pos ?pos)
(position b1 ?pos))

:effect (and (not (state b1 off))
(state b1 on)
(not (state d1 closed))
(state d1 open)
(not (blocked pos_6_5 pos_6_4))
(not (blocked pos_6_4 pos_6_5))))

Figure 5: PDDL actions for the GIVE domain.

not yet in front of the user, the NLG system must keep track
of the hypothetical changes in what objects are visible to
the user. Thus the acts of referring and instructing, and the
modules for planning and NLG, must be tightly integrated.

From a planning perspective, GIVE imposes very strict
runtime requirements on the planner and its associated mod-
ules: planning must happen in real time and the system
must respond to a user in a timely fashion. If the system
takes too much time deliberating over an instruction to give,
rather than actually giving this instruction, the user may have
walked or turned away, thus making the instruction invalid.
Furthermore, plan execution monitoring also plays an im-
portant role in the GIVE problem. At a high level, the system
needs to monitor a user’s actions and compare them against
the generated instruction set to determine if the user has cor-
rectly followed directions or not. In the case of the latter,
new instructions may have to be generated. In practice, the
situation can be quite complicated since the mental state of
the user is not known and so the system must be inferred

from observing the user’s actions in real time. For example,
a user directed to “turn around and walk through the door”
may not necessarily perform these actions to the letter, i.e.,
immediately turning 180 degrees and proceeding directly to
the door. Instead, the user might take a roundabout route
through the room, eventually exiting out the door. Although
the user’s actions do not match the generated instructions ex-
actly, they meet the intended goal. The system must be able
to identify such “equivalent” plans and not immediately gen-
erate new instructions as soon as the user’s actions have gone
off course. Furthermore, a user can communicate certain in-
tentions to the system, both through action and inaction. For
instance, the system should infer that a user has failed to fol-
low instructions if the user exits a room when given a direc-
tive to “walk to the centre of the room”. The system should
also make a similar conclusion if a user simply does nothing
when given the instruction.

Experiments
We now describe the results of three simple experiments de-
signed to evaluate the suitability of particular planners (FF,
SGPLAN, and an ad-hoc implementation of GraphPlan) in
our two NLG domains. As a first impression, our results
indicate that planning is a promising tool for both domains.
In the GIVE domain, SGPLAN 5.2.2 computes a domain
plan from the initial state to the goal in 0.3 seconds, which
is fast enough for moderately-sized problems instances in
the application.4 In the sentence generation domain, FF dra-
matically outperforms the best previously known algorithm
for the same problem (a reimplementation of (Stone et al.
2003)), although the latter is a greedy search algorithm with
a heuristic that is hand-tailored to the domain.

We also observe that although FF manages the search for a
plan very efficiently, it spends comparatively large amounts
of time computing instantiations of predicates and actions,
most of which are then never used during the search. As a
result, FF’s “grounding time” dominates its overall planning
time, leading to some conflicting results. Our experiments
below seek to improve our understanding of this situation.

Experiment 1: Sentence generation
In the first experiment, we construct a series of sentence
generation problems which require the planner to compute a
plan representing the sentence “Mary likes the Adj1 . . . Adjn
rabbit.” Each problem instance assumes a certain number m
of rabbits that were distinguished by n ≤ m different prop-
erties, such that all n properties are required to distinguish
the target referent from all other rabbits. The n properties are
realized as n different adjectives, in any order. This setup al-
lows us to control the plan length (a plan with n properties
will have length n + 4) and the universe size (the universe
will contain m + 1 individuals in addition to the differently-
typed individuals used to encode the grammar).

4All runtimes were measured on a Pentium 4 CPU running at 3
GHz. Java programs were allowed to “warm up”, i.e. the planner
was run five times and the first four measurements discarded to en-
sure that the JVM had just-in-time compiled all relevant bytecode.



2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 10,10
1

10

100

1000

10000

100000

1000000
SGPLAN total
FF total
FF grounding
SGPLAN parsing
GraphPlan (Java)

Figure 6: Runtimes (in ms) in the sentence generation do-
main. The horizontal axis represents parameters (m,n)
from (1, 1) to (10, 10) in lexicographical order.

The results of this experiment are shown in Figure 6. The
input parameters (m,n) are plotted in lexicographic order
on the horizontal axis and the runtime is shown in millisec-
onds on the vertical axis. These results reveal a number of
interesting insights. First, FF significantly outperforms SG-
PLAN in this domain.5 Second, FF’s runtime is dominated
by its initial grounding step, in which it computes the ground
instances of all predicates and actions used in the planning
problem to avoid unnecessary instantiations during search.
In particular, the ratio of grounding time to total runtime is
generally above 85%, and rises to above 99% at m = 11,
which is still a small universe in this application.6

In our examples, the time spent by FF on grounding
is such that it is consistently outperformed by an ad-hoc
Java implementation of GraphPlan which only computes in-
stances of predicates and actions as they are discovered (i.e.,
while the planning graph is being built)—despite the fact
that FF is consistently much faster as far as pure search time
is concerned. Looking at this difference from another an-
gle, FF’s performance is much more sensitive to the do-
main size: if we fix n = 1, FF takes 60 ms to compute a
plan at m = 1, but 2.4 seconds to compute the same plan
at m = 10; our GraphPlan implementation takes 30 ms at
m = 1 and still only requires 50 ms at m = 10. Conversely,
GraphPlan’s runtime grows much faster with the plan size
(i.e., with growing values of n for a fixed m). Larger, but
still realistically-sized, instances of the sentence generation
problem are still problematic for the planners we tested.

Experiment 2: Minimal GIVE worlds
In the second experiment, we evaluate the performance of
the planners on problems arising in the GIVE domain. We

5Experiments with SGPLAN use a pre-release version of SG-
PLAN, kindly provided by Chih-Wei Hsu. The release version of
SGPLAN 5.2.2 had a bug, causing it to crash on some instances.

6The “grounding” time reported here is what FF reports as
“time spent: instantiating action templates”.

u1

l1

u2

l2

h

(n = 2)

Figure 7: Minimal GIVE world.

construct a series of test worlds, similar to the one illustrated
in Figure 7. These worlds consist of a 2n by h grid of posi-
tions, such that there are buttons at positions (2i− 1, 1) and
(2i, h) for 1 ≤ i ≤ n. The player starts in position (1, 1)
and must press all the buttons in order to successfully com-
plete the game. The world is generated as a GIVE world de-
scription, and then automatically converted into a planning
problem (as in Figure 5) by the GIVE software.

Results for the h = 20 case, with n ranging from 1 to 40,
are shown in Figure 8. The most obvious result is that FF is
unable to solve any problems beyond n = 13 on our exper-
imentation machine within the memory limit of 1 GB. SG-
PLAN, on the other hand, solves instances beyond n = 40
without major problems.7 The time spent on grounding is
not a major factor in either planner, probably because the
planners need more time to actually compute the plan—for
instance, the optimal plan for the problem n = 40 has a
length of about 1600 steps. As a concrete example, the fol-
lowing is a plan for n = h = 1:

1. move(pos 1 1, pos 1 2, north),
2. manipulate-u1-off-on(pos 1 2),
3. turn-right(north, east),
4. move(pos 1 2, pos 2 2, east),
5. turn-right(east, south),
6. move(pos 2 2, pos 2 1, south),
7. manipulate-l1-off-on(pos 2 1).

Experiment 3: GIVE worlds with extra positions
In the final experiment, we vary the structure of the GIVE
world in order to judge the effect of universe size on the
planning problem in this domain. Starting with the ordi-
nary GIVE world described in Experiment 2, we add an-
other w by h empty “junk” positions to the right of the min-
imal world (see Figure 9). These new positions are not actu-
ally needed in any plan, but approximate the situation in the
actual GIVE domain, where most grid positions are never
used. We leave the initial state and goal untouched. As be-
fore, we generate a GIVE world description and then convert
it into a planning problem.

7Our ad-hoc implementation of GraphPlan is unable to find any
of these plans.



1 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

FF total
FF grounding
SGPLAN total
SGPLAN parsing

Figure 8: Runtimes (in seconds) of FF and SGPLAN on the
minimal GIVE worlds for h = 20. The horizontal axis is n.

u1

l1

u2

l2

h

w

(n = 2)

Figure 9: GIVE world with extra “junk” positions.

Results for the h = 20, n = 5 case (with w ranging from
1 to 70) are shown in Figure 10. As in Experiment 2, FF
again runs out of memory, this time at w = 17. SGPLAN
happily solves inputs beyond w = 70. However, unlike in
Experiment 2, both planners now spend a substantial propor-
tion of their time on grounding. In SGPLAN, this translates
to a “parsing time” (which we assume includes grounding)
which grows from 180 ms to 21.7 seconds as w grows from
1 to 75. The rest of the runtime (which also includes the
search time) only grows from 400 ms to 2.3 seconds. This
difference is particularly dramatic given that the actual opti-
mal plan in each case is an identical plan of about 100 steps
(namely, the one we would have found in Experiment 2 for
h = 20 and n = 5). The planning times for these instances
are also concerning since times over a couple seconds nega-
tively affect the overall response time of the system, which
must react in real time to user actions.

Discussion
The positive conclusion we can draw from the simple ex-
periments reported above is that modern planners are fairly
good at controlling the search for many of the moderately-
sized NLG problems we looked at. This is particularly true
for FF in the sentence generation domain, which generates
nontrivial 14-word sentences in about two seconds. There
is still room for improvement, however: special-purpose al-
gorithms generate much larger referring expressions in mil-
liseconds (Areces, Koller, and Striegnitz 2008). Although

1 10 20 30 40 50 60 70
0

5

10

15

20

25

FF total
FF grounding
SGPLAN total
SGPLAN parsing

Figure 10: Runtimes (in seconds) of FF and SGPLAN on
the GIVE worlds with junk positions for h = 20 and n = 5.
The horizontal axis is w.

search efficiency is not the main concern in these domains,
it nevertheless becomes a factor in scenarios like Experi-
ment 2, where the world is almost completely unconstrained
and (unsurprisingly) the search becomes much slower.

The most restrictive bottleneck in the two domains we in-
vestigated is the initial grounding step that many modern
planners perform. While this may be a good strategy for
traditional planning benchmarks and IPC domains—where
plan length often dominates universe size, and an initial in-
vestment into grounding pays off in saved instantiations dur-
ing the search—this approach is less effective in the domains
we’ve considered. As our experiments show, there are natu-
ral planning domains in which relatively short plans must be
computed in large universes. For instance, in the case of the
sentence generation domain, it is not unrealistic to look for
plans of length 20 over a universe consisting of thousands of
domain individuals and tens of thousands of actions, some of
which require three domain individuals as parameters. The
common strategy of splitting the universe over several types
of individuals will not be very effective here.

The recent trend in planning research has (rightfully) fo-
cused on the development of algorithms that control search
in sophisticated ways, resulting in a host of planners that
are more powerful and more successful than their prede-
cessors. However, the common strategy of grounding out
sets of predicates and actions in implementations of these
algorithms has a very pronounced effect on domains such as
those described above. More sophisticated techniques based
on reachability analysis may have the potential to help im-
prove this situation, provided such approaches can avoid the
drawbacks resulting from unnecessary grounding. Since our
domains are not that unusual in their structure and compo-
sition, we hope that the lessons learnt from our experiences
can help improve the performance of current systems. We
believe that such improvements are necessary if planning is
to become a more mature technology that can offer tools to a
wider community of users. At the end of the day, real-world
users will care about the total runtime of a planner, and this



is more than just the search time.
By and large, our experiences with the planning commu-

nity from the point of view of a “customer” (one of the au-
thors is not a planning researcher) have been relatively pleas-
ant. Thanks to the planning competitions, it is easy to iden-
tify and download a fast implementation, at least for Linux.
However, in the course of our experiments we found (and
reported) bugs in both SGPLAN and FF. We also discov-
ered that deciding between the range of available planners is
not always straightforward. As our experiments have shown,
even planners as closely related as FF and SGPLAN can dif-
fer significantly in their performance on different domains.

Conclusion
In this paper, we introduced two novel planning domains
arising from problems in natural language generation: the
sentence generation domain and the GIVE navigation do-
main. We also reported on the results of a number of exper-
iments in which we applied off-the-shelf planners to a set of
problem instances in these domains.

Our results were mixed. While modern planners do a
pretty good job of controlling the complexity of search, they
also suffer from practical problems that limit their perfor-
mance in unexpected ways. In particular, in both domains
the grounding step performed by FF and SGPLAN domi-
nates the time it takes to perform the search itself. In future
work, we hope to extend our analysis by exploring other
planners, such as SHOP2 (Nau et al. 2003), which do not
perform the initial grounding step. We also believe our do-
mains would provide suitable challenges for planners en-
tered in future editions of the IPC.

The NLG community’s recent interest in planning
presents a valuable opportunity for planning researchers.
While GIVE highlights certain challenges such as plan ex-
ecution monitoring and plan presentation (i.e., summarisa-
tion and elaboration), it also offers a platform on which such
technologies can be evaluated in experiments with human
users. Furthermore, research related to reasoning under un-
certainty, resource management, and planning with knowl-
edge and sensing, can also be investigated in this domain
setting. Provided some of the challenges we have high-
lighted can be addressed, projects like GIVE (and other
NLG-inspired problem domains) offer a constructive plat-
form for the planning community to showcase their tech-
niques to a wider audience—and to improve the quality of
their tools for real-world planning tasks.

Acknowledgements
This work arose in the context of the Planning and Language
Interest Group at the University of Edinburgh. We thank all
members of this group, especially Hector Geffner and Mark
Steedman, for interesting discussions. This work was par-
tially supported by the DFG Research Fellowship “CRISP:
Efficient integrated realization and microplanning” and by
the European Commission through the PACO-PLUS project
(FP6-2004-IST-4-27657).

References
Appelt, D. 1985. Planning English Sentences. Cambridge
England: Cambridge University Press.
Areces, C.; Koller, A.; and Striegnitz, K. 2008. Referring
expressions as formulas of description logic. In Proceed-
ings of the 5th International Natural Language Generation
Conference.
Benotti, L. 2008. Accommodation through tacit sensing.
In LONDIAL 2007 Workshop on the Semantics and Prag-
matics of Dialogue.
Blum, A., and Furst, M. 1997. Fast planning through graph
analysis. Artificial Intelligence 90.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14.
Hsu, C. W.; Wah, B. W.; Huang, R.; and Chen, Y. X. 2006.
New features in SGPlan for handling soft constraints and
goal preferences in pddl 3.0. In Proc. Fifth International
Planning Competition, ICAPS-2006.
Joshi, A., and Schabes, Y. 1997. Tree-Adjoining Gram-
mars. In Rozenberg, G., and Salomaa, A., eds., Handbook
of Formal Languages. Berlin: Springer-Verlag. chapter 2.
Koller, A., and Stone, M. 2007. Sentence generation as
planning. In Proc. of the 45th ACL.
Koller, A., and Striegnitz, K. 2002. Generation as depen-
dency parsing. In Proc. 40th ACL.
Koller, A.; Moore, J.; di Eugenio, B.; Lester, J.; Stoia,
L.; Byron, D.; Oberlander, J.; and Striegnitz, K. 2007.
Shared task proposal: Instruction giving in virtual worlds.
In White, M., and Dale, R., eds., Working group reports of
the Workshop on Shared Tasks and Comparative Evalua-
tion in Natural Language Generation.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research
20:379–404.
Reiter, E., and Dale, R. 2000. Building Natural Language
Generation Systems. Cambridge University Press.
Steedman, M., and Petrick, R. P. A. 2007. Planning dialog
actions. In Proceedings of the 8th SIGdial Workshop on
Discourse and Dialogue (SIGdial 2007), 265–272.
Stone, M.; Doran, C.; Webber, B.; Bleam, T.; and Palmer,
M. 2003. Microplanning with communicative intentions:
The SPUD system. Computational Intelligence 19(4).
Young, R. M., and Moore, J. D. 1994. DPOCL: a prin-
cipled approach to discourse planning. In Proceedings of
the Seventh International Workshop on Natural Language
Generation.


