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Abstract. Integrating Planning and Scheduling is becoming an increas-
ing topic in Artificial Intelligence due to real application needs. Some
problems allow a strict separation between planning and scheduling. The
way to solve the problem is to assign time and resources to the planned
activities. But in other cases there is an indirect temporal dependency
with other states that can not be taken into account if we follow the first
approach. Techniques from both fields must be merged.

In this paper, we present several approaches to integrate planning and
scheduling that have emerged from the developpement of a tool that sets
up nominal operations in the three satellites of the HISPASAT company.

1 Introduction

Planning and scheduling have always been two very related tasks. Planning gen-
erates a plan (sequence or parallelization of activities) such that it achieves a set
of goals and satisfies a set of domain constraints. Scheduling is an optimisation
task where limited resources are allocated over time among both parallel and
sequential activities such that makespan and/or resources usage are minimised.

Both fields have strong and weak points. From one hand we have the planning
systems with a rich representation of the problem description (usually follow-
ing the so called STRIPS representation). However, this type of representation
has problems for dealing with variables with infinite values such as information
about time and resources. Usually, they use a discrete model of time in which
all actions are assumed to be instantaneous and uninterruptible. Also, there is
not an explicit language that allows to represent the basic Allen primitive re-
lations between temporal intervals [1]. With respect to resources there is not a
way to handle cumulative resources. On the other hand, scheduling systems can
perfectly handle temporal reasoning and resource consumption, but they cannot



produce the needed precedence relations among activities given that they lack
an expressive language to represent the activities.

From this perspective, by combining scheduling and planning systems syner-
gistically these weaknesses can be solved [11]. The planning systems could deal
with time and resources thanks to the scheduling search procedure that inter-
leaves refinement solution (assigning values to variables) and constraint propa-
gation (computation of implications of these assignments to others variables and
elimination of inconsistent values). On the other direction, the planning system
can supply to the scheduler the language and the precedence constraints for the
activities.

As a first step on merging both types of tasks, we have explored the possibil-
ity of using a standard non-linear domain independent planner, PRODIGY [20],
and using it directly for integrating planning and scheduling. This planner does
not have an explicit model of time representation nor a declarative way for spec-
ifying resource requirements or consumption. However, thanks to its capability
of representing and handling continuous values variables, coding functions to
obtain variables values and the use of control rules to prune the search, we have
successfully integrated them in a satellite control domain [17]. This domain needs
to integrate planning and scheduling for setting up nominal operations to per-
form in three satellites during the year. Similar approaches that allow planners
to also reason about temporal and resource usage are IXTET [12] or HSTS [15].

A second approach we have explored consists on using the 0-0SCAR scheduler
system [5,8] in combination with the QPRODIGY planner [20,3].* For a given
problem, PRODIGY generates a plan as a sequence of activities to be executed.
Then, the 0-0SCAR scheduler obtains a viable temporal and resource solution.
A similar approach can be found in [19], though they did not use a planner that
is able to handle by itself some types of temporal information. Therefore their
planner is not able to avoid generating some types of temporal invalid plans.

As a future step we propose to integrate the temporal and resource reasoning
of the scheduler in a parallel execution with the planner, by exchanging relevant
information. This research would follow a similar approach to that reported
in [11]. The main difference relies on the planner. Since ours allows to use some
type of temporal/resource usage reasoning together with some optimisation ca-
pabilities, we can control/vary the amount of reasoning that the planner will
perform.

The paper is structured as follows. Section 2 presents how the planner handles
the problem. Next, the integration of the planner and the scheduler is presented.
Finally conclusions are drawn and future work is outlined.

2 Handling time and resources using a planner

PRODIGY [20] is an integrated architecture that has been used in a wide variety
of domains: from artificial domains to real applications such as satellites con-
trol. The problem solver is a non-linear planner that uses a backward chaining

4 QPRODIGY is a planner based on PRODIGY that is able to handle optimisation metrics.



means-ends analysis search procedure with full subgoal interleaving. The plan-
ning process starts from the goals and adds operators to the plan until all the
goals are satisfied. The inputs of the planner are:

1. The domain theory that contains all the actions represented by the opera-

tors. To define them, one has first to define the variables that are used in the
operator. For that, one needs to declare the type of each variable, that can
be either finite or infinite. Finite types can be defined structured in a hier-
archy as in PDDL2.1 [10], although the PRODIGY syntax also allows boolean
operations on types. For infinite types PRODIGY allows coded functions to
generate a list of values to be possible bindings for the corresponding vari-
able by using the information of the current state of the search. In Figure 1,
these functions are represented separatedly from the domain description.
This has been done for two purposes: to emphasize the fact that this type
of knowledge is important for our research purposes (as we will describe in
next sections); and for uniformity with the rest of literature in planning with
respect to the meaning of domain description (usually a set of operators plus
a hierarchy of types).
As an example, in the satellite domain, all data is represented in seconds
since 1900 in GMT, se there is an infinite type TIME that represents this
type of values and is used in the operators. The reason to use this format
is for efficiency: it is faster for the planner to generate the bindings of one
number variable instead of generating values for the six usual time depen-
dent variables (corresponding to the year, month, day, hours, minutes and
seconds). Also GMT is the reference zone time for the satellite company HIS-
PASAT.

2. The second input to the planner is the problem, described in terms of an
initial state and a set of goals to be achieved. In the satellite domain, the
initial state describes all the events that will occur during the year such as
moon blindings, sun blindings, eclipses, etc. With respect to the goals, the
planner has to obtain a plan to perform all the maintenance operations along
the year.

3. When there is more than one decision to be made at decision points, the
third input to the planner, the control knowledge (declaratively expressed
as control rules) could guide the problem solver to the correct branch of the
search tree avoiding backtracking. There are three types of rules: selection,
preference or rejection. One can use them to choose an operator, a binding,
a goal, or deciding whether to apply an operator or continue sub-goaling.

As a result, a Total Order Plan is generated. Figure 1 shows the inputs and
output of PRODIGY. In the case of our study in the satellite domain, the plan con-
tains details in each operator instance about time and resource assignment. The
time representation of PRODIGY is a discrete model of time, in which all actions
are assumed to be instantaneous and uninterruptible. There is no provision for
allowing simultaneous actions. However, the coded functions that can be used
in the preconditions of operators allow to add constraints among and within



operators and therefore the seven Allen primitive relations between temporal
intervals can be handled.

Domain
description

Prodigy

Problem

description

Fig. 1. PRODIGY inputs and output.

As an example, the A meets B primitive is shown in Figure 2. The function
add-time calculates the end time of the operation. DUR is a number, integer or
not, that represents the duration, and TIME defines the time units used (seconds,
minutes, hours, days or months). gen-from-pred is a PRODIGY function that
allows to bind the corresponding variable with all possible values that make
the function’s argument (a literal) match a corresponding literal in the state.
Therefore, (<dstA> (gen-from-pred (starts-at <dstA>))) will match the
literal (starts-at <dstA>) with the current state literals in order to assign
to variable <dstA> all the matching values.

A

variables: (<dstA> (gen-from-pred (starts-at <dstA>)))
(<dendA> (add-time <dstA> DUR4 TIME4))

effects: (finished-A <dendA>)

B
variables: (<dstB> (gen-from-pred (finished-A <dendA>)))
(<dendB> (add-time <dstB> DURBp TIMEjg))
effects: (started-B <dstB>)
(finished-B <dendB>)

Fig. 2. The A meets B Allen primitive.

When operator A is applied, it adds to the state the fact that it has finished
at some point in time (<dstA>+DURy4 in TIME4 time units). Operator B binds
to its variable <dstB> that time point, so it knows when it should start its
execution.



In PRODIGY there is also no provision for specifying resource requirements or
consumption. Resources can be seen as variables that can have associated values
through literals that refer to them. One solution consists on restricting in the
operators the set of values that can be assigned to the variable that represents
the resource.

To represent capacity, we can use the scalar quantity model. The capacity
constraints of a resource with uniform capacity can be calculated using coded
functions as in time. To know more about the time and resource model we have
used, we refer to [17].

3 Using a planner and a scheduler

The first approach that we have described in the previous section to integrate
planning and scheduling within the same tool presents some problems when
dealing with time and resources such as low reuse of the coded functions, that is,
it is domain dependent. In this section we present two approaches that explicitly
use a scheduler, 0-OSCAR [5,8], in combination with the planner to perform
the same integration. We first describe at a high level the scheduler, and then
describe the integration approaches.

3.1 The scheduler: O-OSscAR

0-OSCAR is a scheduler that follows a Constraint Satisfaction approach [14] to
solve complex multi-capacity temporal problems. The release used in this paper
is able to solve project scheduling problems with time windows by using the ISES
algorithm [7]. Its basic solving method uses a two layered problem representation:

1. The ground layer, or ground-CSP, that only represents the temporal aspects
of the problem in the form of a quantitative temporal constraints network [9];

2. The higher layer is a meta-CSP, where resource conflicts are represented and
reasoned about. In this layer resource constraints are super-imposed, giving
rise to a set of resource conflicts that are solved with a number of sequencing
decisions [6,7].

The search proceeds by iteratively performing the following steps:

— Propagation of temporal consequences through the ground-CSP to compute
currents bounds for all temporal variables.

— Computation of the meta-CSP identifying the set of resource capacity vio-
lations implied by the temporal network.

— Selection of a conflict in the meta-CSP according to variable ordering heuris-
tic.

— Resolution of the conflict by imposing a new precedence constraint in the
ground-CSP. This is done using a value ordering heuristic that preserves
temporal flexibility.



The result is an efficient greedy procedure for generating feasible solutions
to the Resource Constrained Project Scheduling Problem with time windows
(RCPSP,102)- This basic one-pass procedure is then inserted in a random restart
optimization cycle that incrementally searches for better solutions by sampling
new solutions on problems with reduced temporal horizons.

3.2 PRODIGY and 0O-OSCAR

A second approach to solve the complete planning and scheduling problem con-
sists of integrating in sequence the planner PRODIGY and the scheduler 0-OSCAR.
Figure 3 shows the inputs and outputs of this approach. In this case, we remove
from the domain all time-related information, letting 0-OSCAR take advantage of
handling the temporal information. PRODIGY generates a sequence of atemporal
operations that describes the precedence relations among activities. Then, the
plan is given to 0-OSCAR that assigns a start and end time for each operator. A
parser must be built to translate the atemporal plan into the 0-OSCAR inputs.

omain
description
Problem Prodigy »  Paser |— » O-OSCAR

description

Fig. 3. Sequential approach of PRODIGY and O-OSCAR.

As an example, the main inefficient operations for solving problems in the
satellite domain with PRODIGY alone were checking the moon blindings within
manoeuvre operations. Using the second approach, we can now handle it by
eliminating the function that calculates the blindings. Then, we model them as
a binary resource, i.e. sun availability, with two values: 0 if it is available and 1
when it is not available due to any type of blindings. As a result, 0-OSCAR tries
to locate the manoeuvre operations where the sun resource is available.

The disadvantages of this approach are:

— Not every precedence ordering between plan steps in a Total Order plan
is necessary for maintaining its consistency. In order to solve this, a set of
TO plans can be compressed into a structure known as a Partially Ordered
set of steps, along with a set of constraints on these steps [18,21]. Another
way of avoiding this, would be directly using a partial-order planner, such
as UCPOP [16]. However, we wanted to maintain the rich representation lan-
guage of PRODIGY (that allows infinite types, for instance) together with



its flexibility to easily inspect the search trees, define control knowledge, or
define new alternative control strategies (through the use of functions called
handlers) [4].

— The lack of communication between the two systems: in case of a failure
in the scheduler, a new solution has to be generated from scratch so the
computational cost is high.

— There is no way to represent explicitly in the Prodigy language, or in PDDL2.1,
resources, temporal constraints between activities or define a makespan in
the solution.

3.3 PRODIGY, a TO-PO algorithm, and 0-0OSCAR

To overcome the first drawback of the last approach, we convert the Total Order
output given by PRODIGY into a Partial Order plan. A PO plan represents a set
of TO plans, where each TO is a linear sequence of steps in the PO such that the
PO relation in the latter is not violated by the sequence. We have followed the
algorithm in [21] that takes advantage of the given total ordering of the plan,
by visiting at each step, only earlier plan steps. The algorithm is sketched in
Figure 4.

Procedure Build Partial Order(TO-Plan)

Input:

TO-Plan: A totally ordered plan (being n the number of steps in the plan) and the start operator
with preconditions set to the initial state.

Output: A partially ordered plan shown as a directed graph

1. for i=n down-to 1 do
(a) for each precond€Preconditions(op;) do
Find an operator op; in plan that has as an effect precond
Add directed edge from op; to op;)
(b) for each deleDelete-Effects(op;) do
Find all operators that have as a precondition (some of the, a) delete effects of op;
Add directed edge from these operators to op;
(c) for each addePrimary-Adds(op;) (if it appears either in the goal or in the subgoaling chain
of a goal proposition) do
Find all operators that delete any of the primary adds of op;
Add directed edge from these operators to op;
2. Remove Transitive Edges in the graph
Every directed edge e connecting op; and op; is removed if there is another path that connects
the two vertices

Fig. 4. Algorithm that transforms a TO into a PO.

This greedy algorithm constructs an entirely new PO, analysing the action
conditions, and using the original TO to guide the greedy strategy. It may fail to




produce a minimally constrained deordering as explained in [2] because of step
1(a) in the algorithm. From all possible operators in the plan that achieve an
effect needed as precondition of another operator op; later in the plan, it always
selects the closest one before op;. Since, there may be other operators earlier
in the plan having the same effect and being a better choice, the algorithm is
not optimal. However, given that PRODIGY (as most current planners) is not
an optimal planner either (unless all alternatives are searched for, which can be
actually done in PRODIGY), then the non-optimality of the TO-PO algorithm is
not a crucial point.

Domain
description
Problem
description

Temp. Constrains
&
Resources

A 4

Fig. 5. Sequential approach of a PO solution of PRODIGY and O-OSCAR.

This approach is shown in Figure 5. As it is also the case of the last one,
it shares the high computational cost and the lack of an explicit representation
for time and resources, but there is a little bit more communication between the
planner and the scheduler. The algorithm can be extended to look for different
deorderings depending on the information that the scheduler gives back. This
means there are two meta level backtracking points: another deordering from the
TO-PO algorithm, or another plan from the planner in case previous alternatives
fail.

4 Conclusions and future work

In this paper we have presented an initial step to integrate planning and schedul-
ing and some thoughts on possible further developments. First we have used a
classical planner to reason about time and resources for a satellite domain. Then,
the temporal and resource information has been eliminated from the domain, and
the output generated by the planner is used as an input for a scheduler. The
current step is quite preliminary and mainly aimed at putting together different
architectures and to understand the problems involved in their integration. The
experimental results mainly show that the approach works but further work is
needed to gain effectiveness.

One aspect that has not been addressed yet concerns the feedback from the
scheduler to the planner to be used to influence the planner choices. Along this

Prodigy TO-PO Parser O-OSCAR '



line we are currently pursuing a thighter integration schema to interleave the
refinement solution inside the search tree of PRODIGY. In particular we are us-
ing QPRODICY [3] in the aim of taking advantage of the quality metrics that
this version is able to use. The sketchy idea is to have two systems evolving
in parallel; the one of PRODIGY and a second with the time and resource con-
straint representation contained in the scheduler. Information is continuously
exchanged between these two representations and in particular is used to in-
fluence the PRODIGY search to prune choices that lead to either temporal or
resource inconsistency.

Further directions that are currently pursued concern the knowledge engi-
neering aspects. From the experience gained in the HISPASAT project and study-
ing the weak points of the integration, we are developing a graphical domain
construction and validation tool for PDDL2.1 language as it has being done in
the GIPO environment [13]. The language has been extended having in mind
resources definition, temporal constraints between activities and the possibility
to minimise/maximise the makespan or resources usage.
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