Least-commitment temporal planning*

Antonio Garrido, Eva Onaindia

Dpto. Sistemas Informéticos y Computacién
Universidad Politécnica de Valencia (Spain)
{agarridot,onaindia}@dsic.upv.es

Abstract. We present a search process to avoid the inefficiencies of a
Graphplan backward search in a temporal planning approach. Our pro-
posal consists of a two-stage process which first extracts a relaxed plan
which is next used as the basis of a heuristic search.

1 Introduction

Many of the current challenges in planning focus on increasing and improv-
ing the functionalities of the planners for dealing with more real features, such
as temporal capabilities, more expressive domain definition languages, heuristic
techniques and optimisation criteria, etc. [1-4]. In particular, 10 of 14 planners
which participated in the last International Planning Competition (IPC-2002)
offered temporal capabilities, what shows the need to push forward the capabil-
ities of the planning systems.

This paper deals with three of the previous functionalities: i) planning with
temporal features (actions with duration), ii) more expressive domain definition
languages (PDDL2.1 [1]), and iii) plan optimisation (makespan). Traditional
temporal planners have adopted a conservative model of actions, which means
that two actions cannot overlap in any way if they have conflicting preconditions
or effects. However, there exist planning problems that require a richer model of
actions. The domain definition language used in the IPC-2002 was PDDL2.1 [1],
which provides a model of durative actions. This model allows a more accurate
exploitation of action concurrency in order to obtain better quality plans.

This paper describes our experiences with a Temporal Planning SYStem
(from now on TPSYS [2]) to manage the model of durative actions proposed
in PDDL2.1. TPSYS performs a Graphplan backward search, which guarantees
the properties of completeness and optimality w.r.t. makespan. However, back-
ward search has some inefficiencies that impose limitations when dealing with
temporal, large problems. In order to overcome these limitations we suggest a
modification in the search process which is based on a two-stage search process.
First, a backward search generates an initial relaxed plan. Next, this relaxed plan
is used as the basis for generating a solution plan by means of a non-complete
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heuristic process. The time of execution of actions is only committed when ac-
tions are applicable and no mutex holds. This allows to speedup the performance
of search to be able to solve problems with more than a few actions, producing
non-optimal, but good quality, plans.

2 Review of TPSYS

TPSYS is based on a three-stage process, which combines the ideas of Graphplan
and TGP [2,4,5]. This means that TPSYS incrementally extends a temporal
planning graph, performs a backward search through that graph and extracts a
feasible, optimal plan.

In TPSYS, a temporal planning problem is specified as the tuple {Zs, A, Fs, Dmaz }
where Z, and F; represent the initial and final situation. A represents the set
of durative actions. Unlike conservative actions, durative actions present more
conditions to be guaranteed for the success of the action. These conditions are
SCond,, ECond, and Inv, with the conditions of a to be guaranteed at the
start, end and over all the execution of a, respectively. Durative actions have also
two types of effects: SEf f, and EEf f, with the effects to be asserted at the
start and end of a, respectively. Finally, D,,,. stands for the maximum duration
allowed by the user (time is modelled by R and their chronological order).

Like other Graphplan-based planners, TPSYS identifies binary mutual ex-
clusion relations between actions and between propositions. The first stage of
TPSYS calculates the action-action (AA) and proposition-action (PA) static mu-
tex relationships. These mutex relationships are static because they only depend
on the definition of the actions and they always hold.

The second stage extends a temporal planning graph which alternates tempo-
ral levels of propositions (Py)) and actions (Ap;). Those levels are chronologically
ordered by their instant of time ¢ representing the time in which propositions are
present and actions can start or end. Action-action (AAp), proposition-action
(PAp) and proposition-proposition (PPy) mutex relationships are calculated
during the extension of the temporal planning graph. Mutex information pro-
vides useful information to improve search efficiency.

The third stage performs the extraction of an optimal plan, as an acyclic flow
of actions, through the temporal planning graph. This stage is based on a back-
ward Graphplan search. Since the third stage starts as soon as all the propositions
in the final situation are present, non pairwise mutex, and the plan extraction
is complete, TPSYS obtains the plan of optimal makespan. The properties of
completeness and optimality make the search stage the most time consuming —
like in most of Graphplan-based planners. In consequence, improving this stage
seems to be a worth-while activity.

3 Some inefficiencies of Graphplan-based backward search

In order to motivate the need of improving the backward search in a Graph-
plan-based planner, we discuss the behaviour of that search in the simple plan-
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Fig. 1. Outline of the planning graph for the ferry problem. Shaded propositions
represent the non-pairwise mutex problem goals at level 6. Mutex relations between
propositions are represented by thick lines. For simplicity, inverse actions of board and
debark (for instance, debark(cl1,f1,11)) are not represented.

ning problem called ferry. The domain consists of transporting a number of
cars from one location to another using a ferry which can carry only one car
at a time. To keep the problem simple enough we assume three cars cl, ¢2
and ¢3 to be transported from location I1 to I2 by ferry f1. The actions are
board(?car, ?ferry, ?locat), sail(?ferry, ?locat1,?locat2) and debark(?car, ¢ferry, ?locat).
The makespan of the feasible plan is 11, but the backward search starts from
time 6 (see Fig. 1) because the mutex relations are binary. Thus, at time 6 every
pair of the problem goals {P2,P4}, {P2,P6}, {P4,P6} are non pairwise mutex,
and the planner attempts to extract one plan from here. Since every pair of
actions is mutex, only one action is planned in each level. For simplicity, we
assume that applicable actions are selected in each level from top to bottom
in the planning graph of Fig. 1. This way, action A2 is firstly planned at time
6. Next, actions A7 and A1l are planned at time 5 and 4, respectively. Then,
A4 is planned at time 3, but no feasible plan is found, and the chronological
backtracking leads to plan A6 at time 3, again with no success. After that, the
chronological backtracking leads to time 6 in which firstly action A4 and secondly
action A6 are planned with no success. This is the first indication of inefficiency
in the backward search: a lot of effort is wasted trying, unsuccessfully, to plan
nearly identical actions in problems with symmetry among goals. In this example
all permutations of actions A2, A4, A6 are planned under the same schema.
Finally, as no plan is found from time 6, the planning graph is extended to
time 7 and the search is re-started from scratch. This is the second indication
of inefficiency. When search is re-started from a new level, no actions planned
in previous stages of search are reused as part of the current plan, committing
similar failures in the new omne-deeper-level search space. In this example, the
plan for transporting at least one car could be reused from the previous stage



of search, but this is never considered. Fortunately, memoization techniques [5,
6] remember many conflicting propositions thus reducing the amount of failures
committed during search. However, the way in which memoization prunes one
branch of search does not allow to solve the real conflict until exhausting all the
actions from the current level. This is the third indication of inefficiency. If one
proposition becomes unsupported, it could be more efficient to plan a new ac-
tion which achieves that proposition than discarding that branch and backtrack.
In this example, if the ferry is required in [1 it is better to insert the action
sail(f1,12,11) (A8) in the plan —extending the planning graph if necessary—
than discarding the plan and backtrack. This would allow to guide the search to
achieve the goals instead of continuing in a blind fashion.

Furthermore, when dealing with temporal planning problems where actions
have different duration the influence of these inefficiencies is much more signif-
icant. In that case, the number of levels generated in the temporal planning
graph is higher, and all the previous inefficiencies and wasted search is repeated
more frequently. In particular, if we model the actions board(?car, ¢ferry, ?locat),
sail(?ferry, ?locat1, ?locat2) and debark(?car,?ferry, ?locat) with durations 1, 5
and 2, respectively, the backward search for this example starts after extend-
ing 16 levels but no plan is found until level 34 is extended and explored. This
indicates how these inefficiencies are more outstanding in temporal approaches
based on Graphplan backward search.

4 Combining least-commitment and heuristics to improve
the search process

In this section we describe how the search process can be improved by combining
least-commitment and heuristic techniques. Our new approach consists of two
stages. First, a backward chaining stage generates an initial relaxed plan from
the information of the temporal planning graph. Actions, which can be mutex,
in this relaxed plan support all the problem goals but with no commitment on
their start time. Second, a forward chaining stage allocates the execution time of
the actions in the relaxed plan. While allocating actions, mutex between actions
break the initial plan relaxzation, and subsequently new actions must be planned
to solve these mutexes.

4.1 Generation of an initial relaxed plan

This stage generates an initial relaxed plan from the information of the temporal
planning graph (from now on TG). We define a relaxed plan IT as a partially
ordered set of actions in which both the problem goals and action preconditions
are satisfied. It is called relazed because no mutex relationships are considered
during its generation.

Plan II is generated in a similar way to the relaxed plan solution in FF [7]
with the exception that we handle durative actions (see Algorithm 1). Starting
from the level in which the TG extension finishes, we simply insert into II the



actions with the earliest start time of execution which support the preconditions
of FS (final fictitious action in a relaxed plan). It is important to note that
actions are not committed in time yet. Next, start, invariant and end conditions
of the inserted actions are supported in the same way, and so on. The process
finishes once all the (sub)goals are supported by actions in II.

1: goals + F;
2: II «— {IS UFS} {initial and final fictitious actions}
3: while goals # () do
extract g; from goals
if g; is not supported in II then

a < arg min(earliest start time from T'G)

Va; which supports g;
if a is the only action which supports g; then
mark a as obligatory in II
I+ IIU{a}
goals « goals U{SConda U Inv, U ECond,}

b

—_

Algorithm 1: Generation of an initial relaxed plan II.

Note that in step 6 we do not need to perform real search —or backtracking—
because none of the mutexes are considered at this point and, therefore, this
strategy always leads to a solution.

One important property of II is that if there is no mutex between actions
whose execution overlaps, all actions in II form a feasible, optimal plan. Unfor-
tunately, this is not a very common situation and mutex relations break the plan
relazation. This entails to postpone the allocation of actions, and/or to plan new
actions to solve the unsupported (sub)goals.

4.2 Planning and allocating of actions

This stage allocates actions in time in the relaxed plan. This is done through
a search in a plan space (called set_of_plans) formed by all the generated
plans {I;}. Actions in each II; are divided into two disjunctive sets: Alloc; and
Relax;. Alloc; is formed by the actions which have been allocated in time and
will never be removed from II;. Relax; is formed by the actions which have not
been allocated yet, and so they can be removed from IT;. Initially, Alloc; is empty
and Relaz; contains all the actions in II;. This stage finishes once Relaz; gets
empty, obtaining in Alloc; the actions of the plan.

The idea is to move forward in time, simulating the real execution of II;,
progressively taking care of the actions which can start their execution. The
current time of execution in II;, represented by time_of _execution;, is initialised
to 0. Algorithm 2 describes the behaviour of this stage. The algorithm always
selects the plan II; with lowest cost from set_of _plans trying to satisfy all the
problem goals (step 3). If the goals are supported the algorithm exits with success
(step 5). Otherwise, available actions from Relax; are tried to be allocated in




1: set_of plans < II, generated in Algorithm 1
2: while set_of_plans # ) do

3:  extract the lowest cost II; from set_of_plans
4 if Alloc; supports all the problem goals then

5 exit with success

6: else

7 if Ya; € Alloc; | 3g; € ECond(a;) which is unsolved then
8: insert new plans into set_of_plans to satisfy g;

9: else

10: a + arg max(allocation priority)
VYa;€Relax; available at time_of_execution;
11: if a is mutex in Alloc; then
12: if a is not obligatory then
13: remove a from II;
14: else
15: if a is applicable then
16: allocate a in Alloc; to be started at time_of_execution;
17: else
18: insert new plans into set_of_plans to make a applicable

19:  update time_of_execution;

Algorithm 2: Planning and allocating of actions.

the current time_of _execution;. If action a is non-obligatory and mutex with
actions in Alloc;, a is removed from II; (step 13), delaying the fulfillment of its
goals to a future time of execution. The reason to remove a non-obligatory action
is that it could be a bad choice for the plan. If a is not mutex and applicable, a is
allocated in time (step 16). Branching points are in steps 8 and 18, in which it is
necessary to insert new actions to achieve unsolved propositions. For each action
a; which supports one of these propositions, a new plan II; is generated with a;
marked as obligatory in II;. It is important to note that a; is not allocated in
time, but it is inserted with its earliest start time of execution extracted from the
TG. This is part of the least-commitment technique performed in the allocation
of actions when they are inserted into plans.

The algorithm has two important points of selection (steps 3 and 10). In step
3, the plan II; with the lowest cost from set_of _plans is selected. This cost is
estimated as follows:

cost(I;) = cost(Alloc;) + cost(Relazx;), where
cost(Alloc;) = a - unsup(FS, Alloc;) + 8 - duration(Il;), and
cost(Relaz;) = Z v - unsup(a, Alloc;) + 6 - add(a,FS) + 0 - del(a,FS) +
Ya€Relax;
A - PA_mutex(a,FS) + u - duration(a)

The cost of a plan II; is the sum of the cost due to Alloc; and Relazx;.
unsup(action, Alloc;) is an estimation of the number of actions necessary to




achieve the conditions of action in Alloc; from the current time_of _execution;.
add(a, FS) is the number of conditions of FS which a supports, whereas del(a, FS)
is the number of conditions of FS which a deletes. PA_mutex(a,FS) is the number
of mutex between conditions of FS and action a. This mutex information is
extracted from the TG and it indicates the impossibility to have simultaneously
the conditions of FS and a. duration represents the duration of the plan/action.
Note that «, 8,7, 60, A, u > 0 because they have a positive impact in the cost of
the plan, whereas 6 < 0 because it has a negative impact in the cost of the plan.

In step 10, the available action a with the maximal allocation priority in
Relazx; is selected to be studied at time time_of _execution;. This priority is
estimated as follows:

prio(a) = p - unsup(a, Alloc;) + o - succ(a, Relax;) + 7 - meetsucc(a, Relax;) +
¥ - duration(a)

The allocation priority of action a depends on several factors. succ(a, Relax;)
is the number of direct successor actions of a in Relax;. meetsucc(a, Relax;) is
the number of direct successor actions of a which can start as soon as a ends,
i.e. which meet a. These two values indicate the importance of an action for
the successor actions in Relax;. Intuitively, the more successor actions a has,
the more important a is in the plan. Similarly, the meeting successor actions
indicate the number of successor actions which can be executed without mutex.
unsup and duration are defined as above. Coefficients o, 7 > 0 as they are used
to select the next appropriate action to be allocated. However, p, % < 0 because
they indicate that action a is not promising enough to be allocated yet.

The previous evaluation functions can have many more heuristic factors.
However, according to our experiments these factors are general enough for most
temporal planning problems. Moreover, an important point is that the precise
value of each coefficient is not so relevant as in other heuristic approaches based
on local search [3].

5 Preliminary results

We have implemented the previous search process in TPSYS, conducting two
experiments!. We wanted to compare the performance of the new search process
vs. the backward Graphplan search. Obviously, the quality of the plans will be
different, but our interest focusses on the capability of the planner to solve
more complex problems. In the first experiment, we have studied the impact
of the new search process in problems with a high degree of symmetry among
goals. Therefore, we have used two well-known planning domains with symmetry
among goals, which are the ferry and the gripper domain. Fig. 2 shows the
results for some problems of these domains and demonstrates that the least-
commitment search (tpsys-LC) scales up much better than Graphplan backward

1 All the experiments were run on a Celeron 400MHz with 256 Mb



search (tpsys-GP), even in the simpler problems. Moreover, every plan found by
both approaches is optimal.
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Fig. 2. Impact of the redundancy among goals in the two search processes.

The second experiment deals with more general problems. In particular,
we tested the performance of both approaches in some domains of the last
IPC—2002 competition. These domains represent transportation problems, space-
applications problems, etc. Fig. 3 shows the results of these comparisons.

Both search approaches have difficulties to solve all the problems, but least-
commitment search can solve more problems and faster. Backward search diffi-
culties rise as a result of the redundancy in the search process. Least-commitment
search difficulties rise as a result of the heuristic, greedy approach, which can
lead to the wrong path in the search. The satellite, rovers and zenotravel
domains show the highest speedups. In the driverlog domain many of the paths
to achieve the problem goals interact negatively, and the greedy approach gets
stuck in the wrong path as shown in Fig 3-a.

6 Conclusions through related work

Graphplan has become a popular approach to planning, so many attempts to im-
prove its functionalities and to overcome its main inefficiencies have been stud-
ied. In particular, several works have been done to reduce the redundancy in the
search space. The work developed by Fox & Long in TIM [8] allows to extract
information about the structure of the planning domain to eliminate irrelevant
propositions and actions, thus reducing the number of actions to be considered
during search. Moreover, detection and exploitation of symmetry have shown im-
pressive results on the performance of the Graphplan-based planners [9,10]. On
the other hand, Kambhampati [6] has analysed the similarities of Graphplan and
dynamic CSPs to provide several strategies, such as explanation based learning
(EBL) and dependency directed backtracking (DDB), very useful for backward
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Fig. 3. Times of execution for some problems of the IPC-2002 (all tests were
censored after 600 seconds).

search. In particular, EBL/DDB techniques and learning —memoizing— from
failures significantly improves the backward search, reducing the amount of un-
successful search. With some modifications [10], these last techniques also avoid
the whole re-play of the search when re-starting from scratch from a new level.

Graphplan has also been augmented with least-commitment techniques in
Cayrol’s work [11]. In this case, the definition of mutex relationships is relaxed,
which allows to achieve the problem goals earlier in the planning graph. Al-
though this entails a more compact search space, it is necessary a posterior
transformation of the plan to guarantee its executability. Our application of
least-commitment to temporal planning is totally different to Cayrol’s because
we do not use a backward search through a planning graph. We generate a re-
laxed plan, similarly to FF [7], to be used as the basis of the solution plan.
Next, the planner refines and allocates actions in time according to their mutex
relations and to several local heuristic criteria in the line of LPG [3].

This paper contributes in the way in which least-commitment can be applied
in a temporal approach. The techniques presented can be used in any Graph-
plan-based approach for planning, substituting the backward stage by the new
two-stage search. An advantage of this kind of search is that it combines the
information calculated in the planning graph with a heuristic, greedy process



of search. The process of search is guided by two estimation functions which
use local features to select the next action or plan to be considered. The main
disadvantage of this approach is that it is not complete preserving. However,
although completeness and optimality are desired properties, guaranteeing them
entails an exhaustive search, thus preventing planners from producing plans with
more than a few actions. In particular, none of the planners with temporal fea-
tures which participated in the last ATPS Planning Competition can guarantee
optimal plans in reasonable times of execution. In fact, the outstanding plan-
ners in that competition are based on local search and hill-climbing techniques,
which are not complete preserving. Our future work follows that line of research
to improve the overall performance of the planner and the quality of the plans
generated by a proper use of estimation heuristic functions to guide the search.
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