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Abstract. This paper presents a model designed under the formalism of
Bayesian Networks to deal with the problem of collaborative recommen-
dation. It has been designed to perform efficient and effective recommen-
dations. We also consider the fact that the user can usually use vague
ratings for the products, which might be represented as fuzzy labels. The
complete proposal is evaluated with MovieLens.

1 Introduction

Over the last ten years, there has been a massive increase in the amount of
information available on Internet, and it is often hard for users to access this
information, possibly because they are unaware it exists. This offers an attractive
framework for research into new, accurate and efficient techniques for accessing
this information. In this framework, Recommender Systems (RS) have emerged
to help people deal with this overload of information. Broadly speaking, an RS
provides specific suggestions about items (or actions) within a given domain,
which may be considered of interest to the user [1]. There are several types of
RS, classified according to the information used when recommending. This paper
focuses on the variant called collaborative filtering, which attempts to identify
groups of people with similar tastes to the user’s and to recommend items that
they have liked. In this case, the objective is usually to predict the utility of an
unseen item for an active user based on items previously rated by other users.

In this paper, we propose to model an RS by using the Bayesian network (BN)
[2] formalism. Given an unobserved item, we will therefore be able to obtain the
most probable vote that a user would give to that item. It must be pointed out
that fuzziness exists in the rating process. Rating an item usually implies the
selection of a vote from a set of labels. However, there is often no meaningful
way to set the boundary between two consecutive labels. For this reason, we
shall also explore the advantages of considering the rating alternatives as vague
concepts. Fuzzy sets formalize the idea of graded membership of an element to
a given set. Although users might think in terms of vague concepts when rating,
it is quite common for an RS to eventually store their ratings using crisp values
with the consequent loss of information. What we offer in this paper, therefore,
is a linguistic modelling in the system output so that the crisp votes generated
by the BNs are converted into fuzzy labels which are closer to the users.
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Our approach for modelling RSs therefore involves processing two different
types of uncertainty: probability arising from a lack of knowledge of how the
different users are related, and fuzziness concerned with the ambiguity or vague-
ness in the description of the ratings. We shall show how the combination of
both theories leads to an improvement when modelling a collaborative RS.

In order to describe our model, this paper is organised into the following parts:
Section 2 will briefly review Bayesian networks and Recommender Systems;
Section 3 will describe the model, explaining its topology and how it is learnt,
the probability estimation, the inference mechanism and finally, how the linguis-
tic modelling is carried out; Section 4 will show the experiments and results; and
finally, Section 5 will discuss the main conclusions and further work.

2 Background

2.1 Bayesian Networks

In recent decades, Bayesian networks [2] have become one of the most con-
solidated methodologies for probabilistic inference. These graphical models are
capable of efficiently representing and manipulating n-dimensional probability
distributions by combining a qualitative and a quantitative representation of
the problem by means of, on the one hand, a directed acyclic graph (DAG),
G = (V, E), where the nodes in V represent the random variables from the
problem we want to solve, and the topology of the graph (the arcs in E) en-
codes dependence relationships between the variables, with the absence of an
arc between any two nodes representing an independence relationship between
the variables; and, on the other, a set of conditional probability distributions
drawn from the graph structure: for each variable Xi ∈ V we have a family of
conditional probability distributions Pr(Xi | pa(Xi)), where pa(Xi) represents
any combination of the values in the parent set of Xi in G, Pa(Xi).

Once the BN is completed, it specifies a complete joint probability distribution
over all the variables, i.e. given a configuration c = (x1, x2, . . . , xn) over the set
of variables X1, . . . , Xn, with xi being the value that variable Xi takes in c, then
Pr(c) =

∏n
i=1 Pr(xi|pa(xi)), where pa(xi) are the values taken by the parent

set of Xi in c. This decomposition of the joint distribution results in important
savings in storage requirements.

In a probabilistic context, the user usually has some evidence of the state that
a variable (or a set of variables) takes. The problem is to compute the posterior
probability distribution for a variable given the evidence, Pr(Xi|ev) [2].

2.2 Recommender Systems

The usual formulation of the recommendation problem is to predict the vote
or rating that an active user would give to an unseen item. This estimation
can be used to recommend those items with the highest estimated ratings to
the user. RSs are usually classified into the three main categories based on how



Collaborative Recommendations Using BNs and Linguistic Modelling 1187

the recommendations are made. The first type are content-based RSs, which
store content information about each item to be recommended. This information
will be used to recommend similar items to those favoured by the user in the
past, based on how similar certain items are to each other or the similarity
with respect to user preferences. The second kind are collaborative filtering RSs,
which attempt to identify groups of people with similar tastes to those of the user
and recommend items that they have liked (predicting the vote for a given user
depends on the votes of people with similar tastes or preferences). In order to do
so, they use some kind of aggregation measure considering the ratings of other
(most similar) users for the same item. Alternatively, predictions may be made
by building (offline) an explicit model of the relationships between items. This
model is then used (on-line) to finally recommend the product to the users. In
this approach, the predictions are not therefore based on any ad hoc heuristic but
rather on a model learnt from the underlying data using statistical and machine
learning techniques. Finally, Hybrid RSs combine both previous approaches.

Considering collaborative RSs, we can distinguish between two approaches.
The first approach uses BN learning algorithms to learn a full joint probability
distribution about items and then uses this distribution to make on-line pre-
dictions [3,4]. BN-based classifiers [5,6,7] have also been applied. The second
approach builds several conditional models and predicts the likelihood of an
individual item given a combination of the observed votes for other users [8].

3 The Collaborative Bayesian Network-Based Model

We shall consider a large number m of items I = {I1, I2, . . . , Im}, a large set of
n users, U = {U1, U2, . . . , Un}. For each user, a set of ratings about the quality
of certain observed items in I. The user’s ratings (preferences) are values in
the set S. The set of observed data can then be viewed as a very sparse n × m
matrix, R (users only rate a very small proportion of items). In the matrix,
R[a][j] represents the rate of user Ua for the item Ij and will also be denoted as
sa,j, assuming 0 when the item has not been rated by the user.

We are interested in representing the relation I −→ U in a BN, modelling
the database of user votes for the set of observed items, as well as the relation
U −→ U , modelling the relationships between users. We shall therefore consider
the set of items I and users U as variables in the BN (nodes in the graph).

It is clear that the voting pattern of each user (Ua) will depend directly on
the vote given to each observed item. We shall include an arc from each item,
Ij , voted by user Ua to the node representing that user. Each item Ij ∈ I will
have an associated random binary variable, taking values from the sets {ij,0, ij,1}
(not relevant, relevant, respectively, to the user’s interest). In the case of user
variables, Ua ∈ {ua,1 . . . , ua,r} ∪ {ua,0} (a new state (ua,0) is added to represent
the fact that the user has no interest in voting).

Our model might be able to represent relations between users, U −→ U .
These should be modeled in the BN by the inclusion of arcs between any two
similar users. As the similarities between two users tend to be symmetric, we
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Fig. 1. Collaborative Recommending System Topology

would be including a cycle in the BN, something which is forbidden. To solve
this problem, we propose that a new set of nodes V be considered to denote
collaborative votes. There is therefore one collaborative node for each user in
the system, i.e. V = {V1, V2, . . . , Vn}, which will also be used to predict the vote
that the active user could give to an unseen item and they will therefore take
their values in the set of valid rating labels, i.e. {va,1, va,2, . . . , va,r}, omitting
va,0 as an alternative state (see Figure 1).

3.1 Learning User Relationships

We shall now describe how the selection of similar users for a given one, Va, is
performed from the database of votes, in order to form its set of parents in the
graph, Pa(Va) (those user variables, Ub ∈ U , with Ua and Ub having the greatest
similarity between their tastes). Thus, given a similarity measure, Pa(Va) is
obtained using a threshold or p variables with the highest similarity.

A first measure is the Cosine Measure [9], based on the computation of the
cosine of the angle formed by two vectors (any two rows of matrix R). In the
range [0, 1], the greater the similarity between the vectors, the greater the cosine:

Cosine(Ua, Ub) =

∑
Ij∈I ra,j · rb,j

√∑
Ij∈I r2

a,j

√∑
Ij∈I r2

b,j

(1)

A second alternative is Pearson’s Correlation Coefficient, which determines
whether there is a linear relationship between two variables (domain [−1, 1]). A
0 valoue means that there is absolutely no correlation; 1 means that there is an
exact and positive correlation, and −1 that the correlation is exact but negative.

Pearson(Ua, Ub) =

∑
Ij∈P (Ua)∩P (Ub)

(ra,j − ra)(rb,j − rb)
√∑

Ij∈P (Ua)∩P (Ub)(ra,j − ra)2
∑

Ij∈P (Ua)∩P (Ub)
(rb,j − rb)2

(2)
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In this case, the summations over Ij are over those items for which both users
Ua and Ub have recorded votes. In addition, ra is the mean vote for user Ua.

A common problem due to the sparsity of the data set R arises: let us consider
two users rating a common item. Then, Pearson(Ua, Ub) = 1, so Ub will be set
as the parent of Va and also Ua is a parent of Vb, resulting in low quality parent
sets. In order to avoid this situation, we also propose taking into account the
number of items that both Ua and Ub rated simultaneously, i.e. their overlap
degree. The criterion can therefore be implemented with two alternatives 1:

The Jaccard Coefficient [9] measures the overlap degree between two sets by
dividing the numbers of items observed by both users (intersection) and the
number of different items from both sets of rated products (union):

Jaccard(Ua, Ub) =
| {Ij ∈ I/ra,j �= 0} ∩ {Ij ∈ I/rb,j �= 0} |
| {Ij ∈ I/ra,j �= 0} ∪ {Ij ∈ I/rb,j �= 0} | (3)

A second choice is the Overlap Coefficient, which substitutes the denominator
of Equation 3 for the number of products rated by one of the two users:

Overlap(Ua, Ub) =
| {Ij ∈ I/ra,j �= 0} ∩ {Ij ∈ I/rb,j �= 0} |

| {Ij ∈ I/ra,j �= 0} . (4)

The final similarity measures that we propose are combinations of both criteria:
vote correlation between common items and the overlap degree, i.e.

PearsonJC(Ua, Ub) = abs(Pearson(Ua, Ub)) × Jaccard(Ua, Ub),
P earsonOC(Ua, Ub) = abs(Pearson(Ua, Ub)) × Overlap(Ua, Ub).

(5)

where abs denotes the absolute value, as we take into account those users with
a high positive correlation value (very similar tastes), and those with very low
positive correlations (same items but totally opposite votes).

3.2 Probability Estimation

In order to complete the model’s specification, the numerical values for the con-
ditional probabilities must be estimated from the data sets, but prior to this,
we shall introduce some notation. xi,j denotes the fact that variable Xi takes
the jth-value. We write Pr(xi,j |pa(Xi)) for Pr(Xi = xi,j |pa(Xi)), with pa(Xi)
denoting a configuration of the parent set of Xi, Pa(Xi).

With respect to the set of items I, since they are root nodes in the graph, they
store marginal probability distributions which are linear in size to the number of
states. Variables U and V must store a set of conditional probability distributions
with an exponential size to the number of parents. Since a user can rate a
large number of items and a collaborative node might be related to a large
number of users, assessing and storing these probability values can be quite
complex. We therefore propose a weighted-sum canonical model to represent
these probabilities, enabling us to design a very efficient inference procedure.
1 Ua is the user for which we are learning its set of parents.
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Thus, for a given Xi, we define Pr(xi,j |pa(Xi)) =
∑

Yk∈Pa(Xi) w(yk,l, xi,j),
where w(yk,l, xi,j) is a weight measuring how this lth value of variable Yk de-
scribes the jth state of Xi. For every item, Ij , a priori probability distributions
are estimated: Pr(ij,1) = α and Pr(ij,0) = 1 − α, ∀Ij ∈ I, α being a constant.

For every user node Uk, we need to assess a set of conditional probability
distributions, one for each possible configuration of the set of items rated by Uk,
representing its rating pattern. Considering the above restrictions, these will be
computed using a canonical model: assuming that the user Uk rated an item Ij

with the label l, their weights could be defined by means of: w(ij,0, uk,s) = 0, ∀s �=
0; w(ij,0, uk,0) = 1/|Pa(Uk)|; w(ij,1, uk,s) = φ(s|l)

|Pa(Uk)| , ∀s �= 0, w(ij,1, uk,0) = 0.
Focusing on collaborative nodes V , for each node Va we must compute those

weights w(ub,•, va,•) given by users Ub with similar tastes, i.e. Ub ∈ Pa(Va).
On one side, and in view of the fact that user ratings are related statistically,
these weights might be considered to depend on the frequency that user Ua

votes with value s given that user Ub has the state t, i.e. freq(ua,s|ub,t), and on
the other, considering that the highest weights are assigned to the most similar
users, it seems natural that these weights will also depend on the similarity
degree between users. The way the weight associated to user Ub is distributed is
therefore defined by means of the following equation:

w(ub,t, va,s) =
freq(ua,s|ub,t) × sim(Ua, Ub)

|Pa(Va)|
∑

Ub∈Pa(Va) sim(Ua, Ub)
, with s ∈ S, t ∈ S ∪ {0} (6)

With respect to the estimation of freq(ua,s|ub,t): if user Ub has no interest
in voting (Ub = ub,0) then Pr(ua,s|ub,0) = 1/r, for all s ∈ S (the weight as-
sociated with the ‘no interest in voting’ situation will be distributed uniformly
among the different candidate rates at collaborative nodes). If user Ub voted,
then freq(ua,s|ub,t) with t �= 0 can be estimated by means of:

freq(ua,s|ub,t) =
N∗(ub,t, va,s) + βqs

N∗(ub,t) + β
, 1 ≤ t, s ≤ r.

N∗(ub,t, va,s) is the number of items from I(Ua) ∩ I(Ub) that have been rated
with value t by user Ub and with s by user Ua. N∗(ub,t) is the number of items
in I(Ua) ∩ I(Ub) voted with t by user Ub. Values β and qs are the parameters of
a Dirichlet prior over user ratings with

∑r
i=1 qi = 1.

3.3 Recommending: Inference in the Bayesian Network

In order to predict the satisfaction degree that a user would give to a new item
acting as evidence we shall compute the a posteriori probability distribution for
the collaborative node Va, Pr(Va = s|ev) for all s ∈ S. Although general purpose
algorithms do exist, they take exponential time with the number of parents when
applied to a BN with the proposed topology [2]. Nevertheless, considering that
the evidence only affects user nodes and the conditional independence statements
represented in the network, the a posteriori probabilities for the collaborative
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nodes can be computed efficiently by using the advantages of the canonical
weighted-sum representation in Section 3.2.

Theorem 1: Let lXa denote the number of states that Xa takes in the collabo-
rative BN network and let Yj be a node in Pa(Xa). Let us assume that the set
of conditional probability distributions over Xa are expressed using a canonical
weighting scheme, i.e. Pr(xa,s|pa(Xa)) =

∑
Yj∈Pa(Xa) w(yj,t, xa,s), where yj,t

is the value that variable Yj takes in the configuration pa(Xa) and w(·, ·) are
a set of non-negative weights verifying that

∑lXa
s=1

∑
Yj∈Pa(Xa) w(yj,t, xa,s) =

1, ∀ pa(Xa). If the evidence, ev, is only on ancestors of Xa, the exact a posteri-
ori probabilities can then be computed with the following formula:

Pr(xa,s|ev) =
∑

Yj∈Pa(Xa)

lYj∑

t=1

w(yj,t, xa,s) · Pr(yj,t|ev).

Propagation would therefore comprise two steps: computation of posterior
probability in those user nodes, Ua, affected by the evidence, and with this
information, the computation of the a posteriori distributions in the correspond-
ing nodes, Va. The next step would be vote selection, with two alternatives:
the most probable vote, MaxPostP (rVa = arg maxl Pr(Va,l|ev), and the vote
with the largest difference between the a priori and a posteriori distributions,
MaxDifPostPPriP (rVa = arg maxl(Pr(Va,l|ev) − Pr(Va,l)). This would involve
rewarding those states with the greatest increase in probability.

3.4 Vote Modelling

We assume that it is more difficult for a user to rate a product with an exact
value from the set S of possible alternatives than to say ’this item is good’.
Additionally, in this case he/she is not ruling out the fact that the item could be
’bad’ or ’excellent’, the previous and subsequent grades on the scale. Since the
judgements are not usually strict and have a certain degree of flexibility, it seems
appropriate to use the fuzzy-set formalism to describe the degree of satisfaction
of a user evaluating an item. Following Zadeh’s [10] definition, a fuzzy set A of a
reference set Ω is identified by its membership function, μA : Ω −→ [0, 1], where
μA(x) is the membership degree of element x ∈ A, ∀x ∈ Ω.

User ratings will then be considered as fuzzy observations from S, i.e. each
particular vote could be seen as a fuzzy set from S, i.e. SL = {l1, l2, . . . , lr}2.

As mentioned before, we are focusing on linguistic modelling at the output,
i.e. instead of offering a value from S as the prediction, it would return a fuzzy
label in SL which is closer to the user’s interest. Having computed Pr(Va|ev),
we would then select the fuzzy label l ∈ SL that best predicts the user’s vote.

One alternative for carrying out this selection is to compute the a posteriori
probability for each fuzzy event, l ∈ SL, and then return the most probable fuzzy
2 For instance, with the MovieLens collection, SL = { 1 = Awful, 2 = Fairly Bad, 3

= OK, 4 = Enjoyable, 5 = Must see }, while S = {1, 2, 3, 4, 5}.
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set (ProbFL): vote = argmaxl{
∑r

s=1 μl(s)Pr(Va = s|ev)}. A second alternative
is to use a similarity measure between the a posteriori probabilities and the
fuzzy labels, giving as output the fuzzy label which is most similar to the a
posteriori values. A direct similarity measure cannot be applied since we are
not only talking about fuzzy labels and probabilities. It is therefore necessary to
make transformations so as to allow both fuzzy labels and probability values to
be compared with the same language: Possibility Theory [11].

We shall use Πev(Va) to denote the possibility distribution over the ratings
obtained after transforming the a posteriori probability distribution Pr(Va|ev)
and Πl(Va) to denote the possibility distribution representing the fuzzy label l.
We can then use a similarity measure between them in order to select the best
rate, returning the label which best matches the (a posteriori) possibility values.

We propose to use a similarity measure based on a geometric distance model,
the idea being that the smaller the distance between ΠA and ΠB, the greater
the similarity between them. Given two possibility distributions, a one parameter
class of distance functions can be defined as [12]:

dz(ΠA, ΠB) =
[∑n

x=1 abs(πA(x) − πB(x))z
] 1

z (7)

In this paper, we propose to use the parameter z = 2, and therefore the
predicted vote will be the one with the lowest d2, i.e. vote = arg minl{d2(Πev(Va),
Πl(Va))}. This approach will be called DistPossM.

In order to transform Pr(Va|ev) into Πev(Va), all that needs to be done is
to normalize it by using the value of maximum probability [13], i.e. π(xi) =

Pr(xi)
maxn

j=1 Pr(xj)
. For l ∈ SL −→ Πl(Va), it is satisfied as directly as πl(s) = μl(s).

This technique will be noted as MaxPoss.
An alternative to MaxPoss is the so-called AcumPoss. The probabilities are

sorted increasingly. The associated possibility would be the sum of the probabil-
ities of the events which are below it in the ranking [13]: let σ be an increasingly
sorted ranking of the events considering the associated posterior probabilities,
and σ(j) the event ranked jth, then π(xi) =

∑i
j=1 Pr(xσj | ev), i = 1, . . . , n.

We must remember that with MaxPostP, we can apply both ProbFL and
DistPossM. With this last one, it is possible to apply MaxPoss and AcumPoss,
but with MaxDifPostPPriP, we are only able to apply DistPossM with MaxPoss
(differences between probabilities are not probability distributions).

4 Experimentation

The most widely used experimental data set in the recommendation field, and
therefore the one that we have selected for our experiments, is currently Movie-
Lens [14], consisting of 100, 000 ratings (1= Awful, 2= Fairly bad, 3= It’s Ok, 4=
Will enjoy, 5= Must see) for 1682 movies by 943 users. The data set is divided
into 5 training and test sets (disjoint 80% – 20%) for 5-fold cross validation.

In order to test the performance of our model, we shall measure its capability
to predict a user’s true rating or preferences (system accuracy). Following [15],
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Table 1. MAE for Cosine and Pearson variants per number of parents

MaxPostP MaxDifPostPPriP
#P Cosine PearsonJC PearsonOC Cosine PearsonJC PearsonOC

5 0.8495 ± 0.0063 0.8513 ± 0.0085 0.8127 ± 0.0059 1.1268 ± 0.0042 1.3398 ± 0.0126 0.9888 ± 0.0049
10 0.8316 ± 0.0056 0.8263 ± 0.0069 0.7918 ± 0.0041 0.9427 ± 0.0041 1.0734 ± 0.0098 0.8550 ± 0.0013
20 0.8224 ± 0.0061 0.8117 ± 0.0068 0.7861 ± 0.0037 0.8592 ± 0.0046 0.9246 ± 0.0074 0.8073 ± 0.0032
30 0.8191 ± 0.0061 0.8075 ± 0.0059 0.7872 ± 0.0041 0.8350 ± 0.0045 0.8714 ± 0.0063 0.7939 ± 0.0036
50 0.8198 ± 0.0056 0.8029 ± 0.0055 0.7886 ± 0.0051 0.8193 ± 0.0044 0.8301 ± 0.0057 0.7848 ± 0.0042
75 0.8238 ± 0.0062 0.8047 ± 0.0045 0.7938 ± 0.0045 0.8123 ± 0.0047 0.8105 ± 0.0043 0.7837 ± 0.0038
100 0.8249 ± 0.0056 0.8056 ± 0.0049 0.7966 ± 0.0047 0.8092 ± 0.0048 0.8020 ± 0.0038 0.7817 ± 0.0037

we adopt the mean absolute error (MAE) which measures how close the system
predictions are to the user’s rating for each movie by considering the average
absolute deviation between a predicted rating and the user’s true rating: MAE =∑N

i=1 abs(pi − ri)/N , with N being the number of cases in the test set, pi the
vote predicted for a movie, and ri the true rating. In each result table presented,
we shall show the average MAE obtained after repeating the experiment for each
training and test sets and the standard deviation for the 5 experiments.

The main objective of the experimentation that we have designed is to measure
the general performance of the model and compare it with other models. Specific
objectives are: 1) to investigate the best vote selection method; 2) to determine
the ideal size of the sets of parents of collaborative nodes; 3) to discover which
similarity measure performs best; and 4) to observe whether linguistic modelling
is a useful technique and how it should be carried out.

The first step is to design a battery of experiments without linguistic modelling
in an attempt to find answers to objectives 1) to 3). From previous experimen-
tation, the values of the parameters are: α = 0, β = 1 and qi = 1/5.

We need to conduct various experiments, considering a different number of
parents (#P ) fixed for all the collaborative node (5, 10, 20, 30, 50, 75 and
100), selected using Cosine, PearsonJC and PearsonOJ similarities. In terms
of the technique for selecting the favourite vote, we shall test MaxPostP and
MaxDifPostPPriP.

The results of the experiments are shown in Table 1. The tendency is for
the best performance to be reached systematically by the Pearson Coefficient
corrected with the overlap over the other two, independently of the prediction
method used. MaxDifPostPPriP is a slight improvement on MaxPostP. Regard-
ing the suitable number of parents, it seems that an intermediate number (20,
30 or 50) is the most appropriate when using the MaxPostP method, and a large
number of them with MaxDifPostPPriP (100). The behaviour of the first method
seems to be as expected: with a low number there is not enough information,
and with a large number, noise is introduced, leading to bad recommendations in
both cases. We were, however, surprised by the behaviour of the second method.

One reason why this situation occurs is that when an item is instantiated to
perform a recommendation for a given user, if the item has not been evaluated
by either of its parents there is no change in its a posteriori probability distri-
bution with respect to the a priori since the collaborative node does not receive
any influence by any other node. When the number of parents is low, this situ-
ation is more probable, so there will be more collaborative users with identical
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Table 2. MAE obtained using the a priori distribution of Ua

MaxPostP MaxDifPostPPriP
#P Cosine PearsonJC PearsonOC Cosine PearsonJC PearsonOC

5 0.8286 ± 0.0052 0.8252 ± 0.0056 0.8043 ± 0.0047 0.8430 ± 0.0045 0.8487 ± 0.0051 0.8136 ± 0.0056
10 0.8201 ± 0.0050 0.8105 ± 0.0047 0.7871 ± 0.0038 0.8250 ± 0.0042 0.8285 ± 0.0049 0.7899 ± 0.0040
20 0.8154 ± 0.0057 0.8025 ± 0.0057 0.7832 ± 0.0037 0.8112 ± 0.0049 0.8109 ± 0.0058 0.7798 ± 0.0036
30 0.8148 ± 0.0057 0.8008 ± 0.0054 0.7850 ± 0.0041 0.8062 ± 0.0048 0.8012 ± 0.0052 0.7772 ± 0.0038
50 0.8167 ± 0.0054 0.7984 ± 0.0051 0.7870 ± 0.0047 0.8029 ± 0.0050 0.7908 ± 0.0043 0.7745 ± 0.0043
75 0.8215 ± 0.0060 0.8018 ± 0.0043 0.7926 ± 0.0043 0.8031 ± 0.0052 0.7872 ± 0.0039 0.7767 ± 0.0040
100 0.8232 ± 0.0055 0.8033 ± 0.0046 0.7956 ± 0.0045 0.8032 ± 0.0051 0.7860 ± 0.0037 0.7764 ± 0.0040

probability distributions, and therefore, the difference is 0, and the selection of
the vote is basically random. This implies that lots of prediction mistakes are
made. As the number of parent increases, it is more likely that someone has
rated the instantiated items, so the distributions will be different, and fewer
cases presented. In order to confirm this, we have counted the number of times
that this situation arises, finding the following summarised results (for 5 and
100 parents): Cosine (4464.4, 175.4), PearsonJC (6839.8, 332.2) and PearsonOC
(2939.0, 144.2). When this number decreases, the number of parents increases.

Having detected the problem in a node Va, we have adopted the solution of
predicting the vote with the maximum a priori probability computed in its clone
node Ua. Table 2 shows the results considering the ’parent help’.

In this case, the overlap variant performs better in both prediction methods.
With respect to the number of parents, we can see how in both approaches,
intermediate values show the best results. The values shown in this table are
better than those presented in Table 2, so the use of this technique is suitable.
In terms of which prediction method is preferable, MaxDifPostPPriP obtains
the best results although the difference is not entirely significant.

Focusing on the application of the linguistic modelling to the output of the
system, we have used the following set of linguistic labels in this second stage of
the experimentation (with triangular membership functions):

F L1: μF L1,l1
= {1/1, 0.5/2, 0/3, 0/4, 0/5}, μF L1,l2

= {0.5/1, 1/2, 0.5/3, 0/4, 0/5},

μF L1,l3
= {0/1, 0.5/2, 1/3, 0.5/4, 0/5}, μF L1,l4

= {0/1, 0/2, 0.5/3, 1/4, 0.5/5},

μF L1,l5
= {0/1, 0/2, 0/3, 0.5/4, 1/5}.

F L2: μF L2,l1
= {1/1, 0.5/2, 0.25/3, 0/4, 0/5}, μF L2,l2

= {0.5/1, 1/2, 0.5/3, 0.25/4, 0/5},

μF L2,l3
= {0.25/1, 0.5/2, 1/3, 0.5/4, 0.25/5}, μF L2,l4

= {0/1, 0.25/2, 0.5/3, 1/4, 0.5/5},

μF L2,l5
= {0/1, 0/2, 0.25/3, 0.5/4, 1/5}.

F L3: μF L3,l1
= {1/1, 0.25/2, 0/3, 0/4, 0/5}, μF L3,l2

= {0.5/1, 1/2, 0.5/3, 0/4, 0/5},

μF L3,l3
= {0.25/1, 0.5/2, 1/3, 0.5/4, 0.25/5}, μF L3,l4

= {0/1, 0/2, 0.5/3, 1/4, 0.5/5}
μF L3,l5

= {0/1, 0/2, 0/3, 0.25/4, 1/5}.

F L4: μF L4,l1
= {1/1, 0.5/2, 0.25/3, 0/4, 0/5}, μF L4,l2

= {0.25/1, 1/2, 0.25/3, 0/4, 0/5},

μF L4,l3
= {0/1, 0.25/2, 1/3, 0.25/4, 0/5}, μF L4,l4

= {0/1, 0/2, 0.25/3, 1/4, 0.25/5},

μF L4,l5
= {0/1, 0/2, 0.25/3, 0.5/4, 1/5}.

Our aim here is not to tune the model by experimenting with a wide set of
fuzzy labels, but rather to determine whether there is an improvement in the
recommending ability of our model when linguistic modelling is applied. We have
therefore generated the fuzzy labels by changing the granularity degree between
them, without their design being too exhaustive.

Table 3 shows the result of the experimentation when linguistic modelling is
applied to MaxPostP and MaxDiffPPostPPri but only for 20, 30 and 50 parents
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Table 3. MAE values for various experiments related to linguistic modelling

#P FL1 FL2 FL3 FL4
PostP-MaxPoss-FL?-DistPossM

20 0.7384 ± 0.0053 0.7401 ± 0.0048 0.7735 ± 0.0040 0.9247 ± 0.0049
30 0.7400 ± 0.0045 0.7427 ± 0.0047 0.7787 ± 0.0042 0.9347 ± 0.0059
50 0.7432 ± 0.0046 0.7470 ± 0.0040 0.7895 ± 0.0049 0.9558 ± 0.0068

PostP-PriorP-MaxPoss-FL?-DistPossM
20 0.7357 ± 0.0047 0.7368 ± 0.0039 0.7690 ± 0.0030 0.9044 ± 0.0057
30 0.7374 ± 0.0042 0.7395 ± 0.0039 0.7749 ± 0.0035 0.9211 ± 0.0066
50 0.7412 ± 0.0043 0.7442 ± 0.0035 0.7863 ± 0.0044 0.9473 ± 0.0073

PostP-AcumPoss-FL?-DistPossM
20 0.7666 ± 0.0049 0.7795 ± 0.0047 0.7407 ± 0.0054 0.7893 ± 0.0040
30 0.7678 ± 0.0048 0.7805 ± 0.0050 0.7396 ± 0.0054 0.7905 ± 0.0044
50 0.7672 ± 0.0055 0.7823 ± 0.0054 0.7383 ± 0.0054 0.7916 ± 0.0051

PostP-PriorP-AcumPoss-FL?-DistPossM
20 0.8007 ± 0.0058 0.8126 ± 0.0053 0.7757 ± 0.0061 0.7977 ± 0.0047
30 0.7924 ± 0.0053 0.8045 ± 0.0054 0.7649 ± 0.0055 0.7976 ± 0.0049
50 0.7834 ± 0.0059 0.7982 ± 0.0057 0.7549 ± 0.0056 0.7973 ± 0.0055

PostP-FL?-ProbFL
20 0.7412 ± 0.0049 0.7512 ± 0.0042 0.8054 ± 0.0049 1, 03 ± 0.0048
30 0.7434 ± 0.0047 0.7539 ± 0.0035 0.8131 ± 0.0048 1, 05 ± 0.0047
50 0.7477 ± 0.0049 0.7610 ± 0.0039 0.8277 ± 0.0054 1, 08 ± 0.0054

PostP-PriorP-FL?-ProbFL
20 0.7381 ± 0.0045 0.7470 ± 0.0032 0.8001 ± 0.0038 1, 01 ± 0.0056
30 0.7405 ± 0.0043 0.7502 ± 0.0027 0.8087 ± 0.0039 1, 03 ± 0.0054
50 0.7457 ± 0.0046 0.7579 ± 0.0033 0.8241 ± 0.0047 1, 07 ± 0.0059

MaxDifPostPPriP-MaxPoss-FL?-DistPossM
20 0.8098 ± 0.0040 0.8527 ± 0.0042 0.8198 ± 0.0038 0.7957 ± 0.0042
30 0.7960 ± 0.0052 0.8415 ± 0.0054 0.8073 ± 0.0051 0.7890 ± 0.0045
50 0.7891 ± 0.0054 0.8355 ± 0.0054 0.8009 ± 0.0046 0.7862 ± 0.0048

(the other sizes show worse results). From this, the main conclusion that we can
draw is that the linguistic modelling usually helps improve the performance of
the model when an appropriate selection of the parameters is carried out. More
specifically, and focusing initially on MaxPoss, the best linguistic label is FL1,
with the remaining labels obtaining worse values. The use of the information
provided by the parents is a useful technique when the probability distributions
in the nodes from V are equal. If we deal with the AcumPoss method, the
tendency changes substantially as this method does not improve MaxPostP. In
this case, the best values are obtained with FL3 and the technique of using the
parent distribution does not improve the basic approach. Finally, with ProbFL,
the behaviour is similar to MaxPoss. With respect to the linguistic modelling
applied to MaxDiffPPostPPri, the MaxPoss method works best with FL4.

More specifically, we can draw the following general conclusions from this
detailed experimentation: 1) the Jaccard coefficient modified with the overlap
is the best measure for selecting user parents; 2) it is better to select an in-
termediate number of parents; 3) we think that it is better to make recom-
mendations by using MaxPostP with and without linguistic modelling; 4) the
application of linguistic modelling is interesting. The use of MaxPoss and FL1
recommended.

We should compare our model’s performance with other published RSs, ex-
perimenting with MovieLens and MAE, in order to discover its potential as a
recommender system. The best results published so far are around 0.72 − 0.73
of the MAE metric: Kim and Yum [16] with 0.70, Li and Kim [17] got 0.735,
Sarwar et al. [18], 0.72; Chen and Yin [19], 0.732 and Mobasher et al. [20] got
0.73. With these data to hand, we can conclude that our model, obtaining a
better MAE of 0.7357, competes well with the best published standards.
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5 Conclusions and Further Research

In this paper, we have proposed a general BN-based model for collaborative
recommendation, which is both effective and efficient. We have also studied the
possibility of considering the set of ratings as vague concepts. Schematically,
our system consists of two components: the first uses probabilistic reasoning
to compute the probability distribution over the expected vote by means of a
Bayesian network, and efficient methods for learning the topology, estimating the
probability distributions and propagating; and the second computes the user’s
vote (the fuzzy set), thereby better representing this probability distribution.

By way of future work, we are planning to study mechanisms to incorporate
better specifications of the products into the system and new methods for esti-
mating the weights stored in the nodes of the BN. We do, however, wonder, like
[15], whether “users are sensitive to a change in the mean absolute error of 0.01.
This observation suggests that we might explore different directions instead of
merely continuing to improve the MAE metric. In the future, we therefore plan
to study problems such as how our system can communicate its reasoning to the
users, the minimum amount of data (ratings) required for us to yield accurate
recommendations, or how to include item information when recommending.
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