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Abstract. In this paper we focus on the problem of belief aggregation,
i.e. the task of forming a group consensus probability distribution by
combining the beliefs of the individual members of the group. We pro-
pose the use of Bayesian Networks to model the interactions between
the individuals of the group and introduce average and majority canon-
ical models and their application to information aggregation. Due to
efficiency restrictions imposed by the Group Recommending problem,
where our research is framed, we have had to develop specific inference
algorithms to compute group recommendations.

1 Introduction

In this paper we investigate the value of using Bayesian Networks (BN) to repre-
sent how different individuals in a group interact in order to achieve a final choice
or recommendation. Although aggregating information is a common task to a
number of disciplines, including statistics, decision theory, economics, political
science, psychology, etc., our research is framed in the problem of Group Rec-
ommending, task included in the more general field of Recommending Systems
(RS). The the objective is to obtain the most appropriate recommendations for
groups of people where their members may be inter-related in different ways.
In this problem it is usual to assume that the individuals do not have observed
those items that might be recommended. This kind of RS is appropriate for do-
mains where a group of people participates in a single activity such as watching
a movie or going on holiday and also situations where a single person must make
a decision about a group of people. This is a relatively novel problem (research
started focusing on group recommending at the start of the 21st century [1,2])
and has hardly been researched in the literature.

Since the focus of this paper is on the combination of individuals opinions, we
will discuss, non the process by which the individuals reach their opinion, neither
the relationships between the members of the group. In this case we shall assume
that all the individuals use the same set of labels to express their preferences on
an item, and that these preferences are represented by means of a probability
distribution (probably estimated from a data set). On the other hand, we will
not discuss about subjects such as how the groups are formed or how long they
have existed.
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According to [3] “... there is nothing close to a single well-accepted normative
basis for group beliefs, group preferences or group decision making.” In this paper
we show how different common decision rules in the literature could be managed
by a proper design of canonical models with the language of BN, giving some
new lights into the combination processes, particularly:

– The average strategy, AVG, which obtains the group rate as the average of
the members’ rates.

– The majority strategy, MAJ, which obtains the group rate as a simply count-
ing of the votes that every group’s member gives for an item. The final rate
will be that one with more votes in the count.

The second section of this paper presents related work on information ag-
gregation. Section 3 describes how to model the group interaction by means
of BN topology, and presents the use of both average and majority gates. Sec-
tion 4 presents some experimental results obtained when applying the proposed
methodology to recommend movies for group of users. Finally, Section 5 includes
our conclusions and some comments about further research.

2 Related Work

There are many papers focusing on combination of probabilistic information,
ranging from a pure statistical approach (see [4,5] for a review) to more applied
problems, as the combination of classifiers [6], prediction markets [7], various
sources of information in a single BN [8] or different BNs into a unique model [3].

In general, the methods for combining information are dichotomized [4] into
mathematical and behavioural approaches. Mathematical approaches consist of
processes or analytical models that operate on the individual probability dis-
tributions to produce a single “combined” probability distribution; whereas be-
havioural approaches attempt to generate agreement among expert by having
them interact in some way. Since this paper is focused on mathematical ap-
proaches we are going review those paper relevant to this subject.

Combining Probability Distributions: Mathematical approaches can be
further distinguished into axiomatic approaches (considering a set of assumptions
that the combination criteria might satisfy) and Bayesian approaches [4]:

– Axiomatic approach: Common functions to deal with belief aggregation are:
i) Linear Opinion Pool where the probability of the group , Pr(G), is ob-
tained as the weighted arithmetic average over the probabilities of the indi-
viduals, Pr(Vi), i = 1, . . . , n, i.e. Pr(G) =

∑n
i=1 wiPr(Vi), wi being weights

summing one.
ii) Logarithmic Opinion Pool (weighted geometric average) defined as Pr(G)
= α

∏n
i=1 Pr(Vi)wi , α being a normalization constant and the weights wi

(called expert weights) typically are restricted to sum one. If the weights are
equal to 1/n, then the combined distribution is proportional to geometric
average.
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– Bayesian Approach [5,4] has been used to combine expert information. This
approach assumes that if there is a decision maker who has prior probability
over the group vote Pr0, and a likelihood function over individual opinions
given the group vote, then, taking the individuals opinions as evidence the
group priors over the pattern of vote can be updated according to Bayes
rule. Usually, an in order to obtain efficient combinations, it is assumed that
individuals opinion are conditionally independent given the group vote.

Group Recommending: Although the problem of group recommending is
relatively new, the same dichotomy can be found, depending on whether they
use individuals opinions to get to a consensus recommendations [9,10,11] or
not [1,2,12]. In general, when focusing on “mathematical” approaches, ad hoc
combinations criteria have been used. For instance [2], which selects the music
stations to be played at a gym, computes the group preference for each (music)
category by summing the squared individual preferences. Then, using a weighted
random selection operator, the next music station to be played is selected.

Related to collaborative-based group RS is Polylens [1], which is an extension
of the MovieLens [13] system that recommends movies to groups of users. These
systems use nearest neighbour algorithms to find those individuals which are
similar to group tastes and to obtain recommendations which merge the vot-
ing preferences of these individuals according to the principle of least misery
(minimum criterion).

3 Modeling Group Decision Networks

As mentioned before, in this paper we shall not consider questions about how
groups are formed nor how they are managed. We shall therefore assume that we
know the composition of the groups, and our problem is to study how this infor-
mation can be represented in the BN and also how to predict recommendations
for groups, i.e. how the inference processes can be performed.

We propose to identify a group as an entity where recommendations are made
by considering the particular recommendations of its members in some way.
Figure 1 shows a typical situation where each member of the group has a guess
about the probability of relevance of a given item. In order to model group be-
haviour we propose that the group node (G) has as parents (Pa(G)) the set of
nodes representing its individuals (right hand side of Figure 1). In this paper
we shall not discuss the case where the combination mechanism might be repre-
sented by means of a “naive-Bayes-like” approach, i.e. a root group node having
as children the set of individuals. This modelization might be related to the
classical Bayesian Approach for combining probability distributions. Following
with our model, in Figure 1 we use dashed lines to represent the idea that the
individuals opinion would be obtained by considering different pieces of infor-
mation. It is interesting to note that we do not impose any restriction about
the dependences or independences between the members of the group, i.e. the
individuals might use information of some common variables when predicting
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Fig. 1. Modeling group’s interactions

their votes. We will only assume that the group opinion is independent of the
information sources, IS, given that we know the opinion of its members, i.e.
I(G|Pa(G)|IS).

With the idea of being general, the predicted rate for the ith group, Gi,
will be obtained by considering the individuals opinions, possibly updated after
knowing new pieces of evidence, ev. Ideally, the opinion obtained by merging
these individuals probabilities should represent the information of the group.
Considering the proposed BN representation, the posterior probability of the
group voting with rate s is obtained by means of

Pr(Gi = s|ev) =
∑

pa(Gi)

Pr(Gi = s|pa(Gi)) × Pr(pa(Gi)|ev).

being pa(Gi) a particular configuration for the parent set of Gi, i.e an instance
of its members. We shall denote by R = {1, . . . , r} the set of possible rating
alternatives. These conditional probability distributions can be considered as a
“social value function” describing how the opinions of the members affect the
group’s recommendation.

One of our objectives is to obtain combining strategies able to be implemented
in real-time situations. Therefore the reduction of the computational complex-
ity becomes a key design parameter. Thus, since in real Group Recommending
applications, the problem is to select those items, Ik, with higher probability
of being liked by the group, i.e. for each pair item–group we have to compute
the probability Pr(Gi|Ik) and considering that there usually exists a large set of
unobserved items in the system (which act as the evidence) this process becomes
computationally expensive and therefore it is necessary to look for efficient al-
gorithms. It is also interesting to note that with this requirement in mind, we
propose to use canonical models to define the probabilities P (Gi|pa(Gi)). In gen-
eral, since the group might be large, it implies important savings in storage (we
do not need to store the exponential number of conditional probability values)
and also efficient inference algorithms could be obtained.
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3.1 Weighted Sum Gate

With this gate we are modeling that the group rate can be considered as the
average vote of its members. This situation can be represented by means of the
following additive canonical model, which is an extension of [14]:

P (Gi = k|pa(Gi)) =
|Pa(Gi)|∑

j=1

w(vj,s, gi,k), (1)

where w(vj,s, gi,k) can be interpreted as the weight (effect) that the jth group
member voting the sth value has in the kth rate of the group Gi. The only
restriction that we have to impose is that w are a set of non-negative weights
verifying that

∑

k∈R

∑

Vj∈Pa(Gi)

w(vj,t, gi,k) = 1, ∀ pa(Gi)

It is interesting to note that by the way of defining how to compute the weights
w we can control the bias of the individuals (bias is related to the preference of
a user to one particular vote and its capability to predict the group judgements)
and also the relative quality (importance) of the individuals in the group. For
example, given the group in Figure 1 with R = {1, 2, 3}, assuming that all the
users are equal for prediction purposes and that there is no individual bias, i.e.
the weights might be defined as follows

w(vj,t, gi,k) =
{ 1

|Pa(Gi)| if k = t,

0 otherwise.
(2)

Then, we have that Pr(Gi|1, 2, 2, 2) = {0.25, 0.75, 0.0} and Pr(Gi|1, 2, 2, 3) =
{0.25, 0.5, 0.25}.

Propagating with canonical weighted-sum. Assuming that, given the mem-
bers opinion, the group’s rating is independent of the IS, the exact a posteri-
ori probabilities for group nodes, Pr(Gi = s|ev), can be computed efficiently by
means of a straight application of the following theorem1:

Theorem 1. Let Gi be a group node, let V1, . . . , Vn be the individuals in the
group. If the conditional probability distributions can be expressed with a canon-
ical weighted sum and the evidence, ev, belongs to the information sources, IS,
then the exact a posteriori probability distribution for the group can be computed
using the following formula:

Pr(gi,s|ev) =
n∑

j=1

r∑

t=1

w(vj,t, gi,s) · Pr(vj,t|ev).

1 Due to the lack of space, we do not include the proof of the theorems.
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We consider this theorem important because it expresses that exact propa-
gation can be done without imposing any restriction about the dependence or
independence among individuals patterns of rating. Moreover, when there is no
individual bias, i.e., the weights can be defined as w(vj,t, gi,s) = wj if t = s, and
0 otherwise, our model coincides with the classical Linear Opinion Pool. Thus
Linear Opinion Pool can be considered as a particular case of the average gate.

3.2 Majority Gate

Our objective in this section is to model the Majority criterion where the final
decision will depend on a simple counting of the votes received for each rating
from the individuals. The rate which receives the largest number of votes is then
selected as the consensus (majority) decision. This is the usual combination
strategy when, for each individual, we only know the label representing his/her
rate.

Definition 1 (Majority Gate). A group node Gi is said that represents a
majority combination criterion if given a configuration of its parents pa(Gi) the
conditional probability distributions can be represented as

Pr(Gi = s|pa(Gi)) =
{ 1

m if s = argmaxk count(k, pa(Gi))
0 otherwise (3)

where count(k, pa(Gi)) is a function returning the number of occurrences of
the state k in the configuration pa(Gi), and m is the number of states where
count(k, pa(Gi)) reaches the maximum value.

For example, considering a node Gi with five parents and with three candidate
rates, ranging from 1 to 3, then Pr(Gi|1, 1, 2, 1, 1) = (1, 0, 0) and Pr(Gi|1, 2,
2, 1, 3) = (0.5, 0.5, 0). This representation of the majority gate implies an impor-
tant saving in storage (we can compute its values when needed). Nevertheless,
and in order to combine the individuals opinions, we need to perform the expo-
nential number of computations. We shall see how these computations can be
performed efficiently.

Propagating with majority gates: A key idea behind majority criterion is
that the order in which the individuals are considered does not matter, and
therefore there exist many different configurations collapsing to the same sit-
uation. For example, consider that four individual vote with 1 and one indi-
vidual votes with 2. In this case there are five different configurations repre-
senting the same situation, i.e. pa1(Gi) = {2, 1, 1, 1, 1}, pa2(Gi) = {1, 2, 1, 1, 1},
pa3(Gi) = {1, 1, 2, 1, 1}, pa4(Gi) = {1, 1, 1, 2, 1} and pa5(Gi) = {1, 1, 1, 1, 2}.

It must be noticed that since the order is not a factor, we might talk about
combinations. We will denote by Δ(Gi) the set of combinations with repetition
from the individual votes in Pa(Gi) and we use δ(Gi) or < > to denote a single
combination. Thus, the above situation should be represented by δ(Gi) =<
1, 1, 1, 1, 2 >. Considering that the number of parents of Gi is n and that each
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parent has r different states we find that the number of possible combinations
with repetition is CRr

n = (n + r − 1)!/(n!(r − 1)!)
The next theorem shows that in order to combine the different individual

rates we only need to take into account the probability distributions associated
to the set of combinations with repetition.

Theorem 2. Let Gi a group node in a BN whose conditional probability distri-
butions are represented using a majority gate, let Δ(Gi) be the set of possible
combinations with repetition of the values in its parent set, Pa(Gi), then

Pr(Gi = s|ev) =
∑

δ(Gi)∈Δ(Gi)

Pr(Gi = s|δ(Gi))Pr(δ(Gi)|ev) (4)

This theorem shows that if we know Pr(δ(Gi)|ev), the combination of the infor-
mation with a majority gate could be done in a time proportional to the size of
CRr

n, i.e. in the order of O(nr−1). Taking into account that in many situations
r << n, this implies important savings with respect to considering the number
of possible configurations, O(rn). For instance, if n = 20 and r = 2 we have that
CRr

n = 21 whereas the number of configurations (permutations) is more than 1
million.

Nevertheless, to compute Pr(δ(Gi)|ev) we must sum over all the possible
configurations in the combination, i.e.

Pr(δ(Gi)|ev) =
∑

pa(Gi)∈δ(Gi)

Pr(pa(Gi)|ev)

where pa(Gi) ∈ δ(Gi) represents that the combination with repetition δ(Gi) can
be obtained from the configuration pa(Gi) by removing the order constraints.
Thus, since we shall need to compute these probability values for all the possi-
ble combinations, we find that an exponential number of computations will be
required to obtain the group decision.

Assuming independence to approximate Pr(δ(Gi)|ev). Since we want
to compute Pr(δ(Gi)|ev) efficiently, we propose to approximate this joint dis-
tribution by assuming independence between the individuals. Although this as-
sumption might be very restrictive, it has been demonstrated very fruitful in
practical purposes when combining information [4,6].

Firstly, and with the idea of being general, we are going to introduce some
notation: Let π(x) be any configuration of n independent variables X1, . . . Xn.
As these variables are independent Pr(π(x)) =

∏n
i=i Pr(xi,j), xi,j being the

value that variable Xi takes in the configuration π(x). Let δk be a combination
with repetition of a subset of k variables, X1, . . . Xk, and s ∈ δk represents the
fact that there exists at least one variable taking the value s in the combination
δk. Also, we say that δk−1 is a s-reduction of δk, denoted by δ↓s

k , if δk−1 can be
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Fig. 2. Recursion graph for computing Pr(< 1, 1, 1, 2, 2 >)

obtained by removing a value s from the combination δk. The following theorem
shows how Pr(δn) can be computed recursively:

Theorem 3. Let δn be any combination with repetition from the set of X1, . . . , Xn.
Then, if Xi is independent of Xj , ∀i �= j, the probability associated with the com-
bination δn can be computed as

Pr(δn) =
{

Pr(x1,k) if n = 1, with δ1 =< k >
∑

s∈δn
Pr(δ↓s

n−1)Pr(xn,s) if n > 1
(5)

A first idea should be to apply directly this result to compute Pr(δ(Gi)|ev).
For instance, Figure 2 shows the recursion graph for the computation of Pr(<
1, 1, 1, 2, 2 >), where each different combination obtained after a reduction has
been displayed only once. The key observation is that the number of (sub)combi-
nations obtained after applying a reduction process is relatively small. Thus,
a recursive algorithm may encounter each one of them many times in different
branches of its recursion graph. For example, Figure 2 shows that the (sub)combi-
nation Pr(< 1, 1, 2 >) should be computed two times and the (sub)combination
Pr(< 1, 1 >) three times. Moreover, some of these subproblems might also
appear when computing different joint probabilities, like Pr(< 1, 1, 2, 2, 2 >).
Therefore, applying directly Theorem 3 does more work than necessary.

We propose to compute every probability for a given subcombination just once
and then saves its values in a table, thereby avoiding the work of recomputing
this probability every time the subcombination is encountered.

The next algorithm shows how to compute the joint probability distributions
for all the possible combinations with replacement in the set Δ. We follow a
bottom-up approach where we first compute the probabilities associated with
the (sub)combinations with lower size, being the size the number of variables
used to form the combinations with repetition, and these probabilities will be
used as the base of the calculus for the combinations with greater size. Ini-
tially, when considering the first variable X1, we have r different combinations
with replacement, one for each possible value of the variable X1. Then, in a
general stage, we found out that the probabilities associated with each combi-
nation δk of the first k variables are used in the computation of the probabilities
of r different combinations with size k + 1, one for each possible value of the
variable Xk+1. Each one of these combinations will be denoted by δk∪s with
1 ≤ s ≤ r.
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Computing Pr(Δ)
Pr(δ1) = Pr(X1)
for ( k = 1; k<n; k++ )

for each δk ∈ CRr
k do // for each combination of size k

for (s = 1; s<=r; s++ ) //for each value of Xk+1
Pr(δk∪s)+ = Pr(δk) × Pr(xk+1,s)

An inspection of the algorithm yields a running time of T (n) =
∑n

i=1 rCRr
i ,

i.e. T (n) ∈ O(rnr), being much more efficient than applying directly the recursive
algorithm from Theorem 3. For example, in case of bivaluated variables, as the
usual case in decision problems, we have a quadratic algorithm for combining
the output of the different individuals. With respect to the memory needed to
store the intermediate results we find out that the values in the stage k are only
used in the stage k − 1, therefore the used memory is in the order of O(CRr

n).

4 Experimentation: Recommending Movies for Groups

In order to study the performance of the use of AVG or MAJ gates when combin-
ing probabilistic information we consider the following problem: The prediction
of the rate with which a group of people might score a given movie.

The data sets: With respect to the used datasets, they have been obtained
from MovieLens2. Since MovieLens does not include group information we have
decided to build them from the MovieLens training sets3. We have used two
different criteria trying to capture different processes behind the creation of a
group: (C1) Implementing the idea of the group of my colleagues, we set each user
as the group administrator and we look for the 10 most similar users (those which
are positively correlated with the administrator in the training dataset). Then,
we select those groups of five individuals with the only restriction that at least
they have rated (observed) one movie in common. Note that since similarities
are not transitive, this criterion does not imply necessarily having groups with
highly correlated members. (C2) Second, we have decided to fix a group (also
with five individuals) with the only restriction that all the members of the group
must rate at least four common movies.

With respect of the group test sets, they are obtained from each one of the
MovieLens test sets. Particularly, whenever we find a movie in the test sets
which has been rated by all the members of a group we include the tern (group
ID, movie ID, group rate) in its group test dataset. Note that the group rate is
obtained, by means of a deterministic function CombineRate(r1, . . . , rn), as the
2 MovieLens was collected by the GroupLens Research Project at the University of

Minnesota. The dataset contains 1682 movies and 943 users, containing 100,000
transactions where a user rates a movie using a scale from 1 to 5.

3 With the idea of using 5 fold cross validation, we have used 5 different data subsets,
each one obtained by splitting MovieLens into two disjoint sets, the first one for
training (with 80% of the data) and the second one for test (with 20% of the data).
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average or the majority individual’s true rate, r1, . . . , rn. Therefore, combining
the decision used by a group to rate a movie and the criterion used to form a
group, we obtain four different test datasets, i.e. AVG-C1 and MAJ-C1 (with a
mean of 115 different records) and AVG-C2 and MAJ-C2 (with a mean of 17524
records).

Selecting a rate: Given Pr(X) encoding a probability distribution over the
candidate rates, the problem is to determine which is the output rate that should
be recommended for X . Two basic alternatives might be considered for the
RateSelection process:

MP Maximum a posteriori probability, i.e. rate = arg maxs{Pr(X = s|ev)}.
AP A posteriori average rate, i.e. rate =

∑r
k=1 k × Pr(X = k|ev)}.

Experimental framework: The objective is to predict which is the rate that
a group of people will use to score an unobserved movie, I. We assume that for
each member of the group, Vk, we know a probability distribution representing
the belief about how this individual should rate this movie, i.e. Pr(Vk = s|I).
Particularly, in this experimentation, these probabilities are estimated using a
Collaborative-based RSs [12], i.e. they have been estimated by considering the
ratings that users similar to Vk have given to the movie I.

In this framework it might be possible that, for a given user Vk, none of the
users similar to him had rated the movie I. In this situation the probabilities
Pr(Vk|I) have been estimated without information. Therefore, and in order to
study the bias that the a priori distribution might produce in the predicted rate,
we will consider a modification of the approaches used to select a rate: The
idea is to use only the new piece of evidence that each candidate rate receives,
computed as the difference between the a priori (without evidence) and the a
posteriori probability values, i.e. Pr(Ga = s|ev) − Pr(Ga = s). Note that this
idea could be used with both AP (denoted by PD+AP) or MP (denoted by
PD+MP) in the RateSelection process.

In order to study the performance of the combination methods, we are going
to consider two different situations: In the first one, that could be considered
the Baseline (see left hand side of table below), the predicted rate is defined as
the average or majority rate of r1, . . . , rn, being rk the rate that, individually,
each member predicts using RateSelection. The second alternative (right hand
side below) consists on, firstly using the AVG or MAJ gates, combining the indi-
viduals probability distributions into a unique group distribution which ideally
represents the group pattern of vote (CombineProb(Pr1, . . . , P rn)). Then, the
group rate is selected.

Baseline Using Group Layer
For each Vk ∈ G do Pr(G|ev) = CombineProb(Pr1, . . . , P rn)

rk = RateSelection(Prk) G_rate = RateSelection( Pr(G|ev))
G_rate = CombineRate(r1, . . . , rn)
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Table 1. Experimental Results

(C1) Using Similarity (C2) Common movies
Group Comb. Rate Baseline Group layer Baseline Group layer
Dec. Gate Selection %S MAE %S MAE %S MAE %S MAE
AVG AVG AP 47,53 0,566 45,37 0,590 57,40 0,441 58,90 0,422

PD+AP 60,86 0,398 61,42 0,402 66,76 0,337 64,76 0,361
MAJ MP 45,63 0,495 62,13 0,394 44,33 0,486 62,12 0,392

PD+MP 44,99 0,497 62,32 0,392 45,05 0,481 61,86 0,395
MAJ AVG AP 43,01 0,655 40,72 0,683 47,82 0,578 48,23 0,567

PD+AP 54,64 0,476 58,24 0,446 56,30 0,457 58,44 0,438
MAJ MP 59,34 0,461 60,10 0,424 55,11 0,493 58,05 0,446

PD+MP 59,19 0,461 60,29 0,422 55,72 0,486 58,35 0,443

Two different accuracy measures will be considered [13]: the percentage of
success (%S), which measures the frequency with which the system makes correct
predictions and the mean absolute error (MAE), which measures the average
absolute deviation between a predicted rate and the group’s true rate.

Table 1 presents the average results obtained after repeating the experiment
with the 5 folds. First column represents the criterion used in the test dataset
to decide the group rate. Second column represents the canonical model used
in the group layer. In this experimentation, we have used an unbiased uniform
weighting scheme in the AVG gate, i.e. w(vj,s, gi,k) = 1/|Pa(Gi)| if k = s and
0 in the other cases. Note that this model corresponds with the classical Linear
Opinion Pool when all the users are considered equivalent for prediction pur-
poses. Third column represents the criteria used in the RateSelection process.
The next two columns represents how the groups have been constructed. In this
table, the results for each particular dataset can be found in the cells indexed
by the pair (Group Dec., group construction criterion).

From this table, as general conclusions, we can say that: i) it is better to use
BN (the AVG or MAJ gates) to combine individual preferences, ii) MAJ gate
could be preferable in the case it is unknown how the group (true) decisions
are obtained (quite good results have been obtained using also MAJ gates when
the “real” group vote is obtained using AVG), iii) With respect to the AVG
gate, it seems preferable to use PD+AP to correct the a priori bias of the AVG
gate. Also, better results have been obtained when the groups have been formed
without considering similarities (we believe that these results can be improved
by using proper weights in AVG gate), iv) With respect to MAJ gate it seems
to perform better when considering similar users. No significant differences can
be found between the use of MP or PD+MP.

5 Conclusions

A general BN-based model for combine probabilistic information in a group
recommending framework has been proposed in this paper. With this model the
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interaction among the individuals when deciding a group rate are represented
intuitively by means of the use of AVG (average) and MAJ (majority) canonical
modes. Linear time inference algorithms (assuming independence in the case of
MAJ gate) have been developed to compute the a posteriori distribution for
the group. These distributions represent the group preferences for a given item.
Experimental results show the validity of our proposal.

By way of future work, we are planning to evaluate the model with real
data, involving real groups to determine the quality of the recommendations
provided and also to apply these methodology to problems as the combination
of classifiers.
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under Projects TIN2005-02516 and TIC-276, respectively.

References

1. O’Connor, M., Cosley, D., Konstan, J.A., Riedl, J.: Polylens: A recommender sys-
tem for groups of user. In: Proceedings of the Seventh European Conference on
Computer-Supported Cooperative Work, pp. 199–218 (2001)

2. McCarthy, J.E., Anagnost, T.D.: Musicfx: an arbiter of group preferences for com-
puter supported collaborative workouts. In: CSCW ’00: Proceedings of the 2000
ACM conference on Computer supported cooperative work, p. 348. ACM Press,
New York (2000)

3. Pennock, D.M., Wellman, M.P.: Graphical models for groups: Belief aggregation
and risk sharing. Decision Analysis 2(3), 148–164 (2005)

4. Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in
risk analysis. Risk Analysis 19, 187–203 (1999)

5. Genest, C., Zidek, J.: Combining probability distributions: A critique and anno-
tated bibliography. Statistical Sciences 1(1), 114–148 (1986)

6. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans.
on Pattern Anal. and Machine Intell. 20(3), 226–238 (1998)

7. Chen, Y., Chao-Hsien Chu, T.M., Pennock, D.M.: Information markets vs. opinion
pools: An empirical comparison. In: EC ’05: Proceedings of the 6th ACM conference
on Electronic Commerce, pp. 58–67. ACM Press, New York (2005)

8. Druzdzel, M., Diez, F.J.: Combining knowledge from different sources in causal
probabilistic models. Journal of Machine Learnig Research 4, 295–316 (2003)

9. McCarthy, K., Salam, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group
recommender systems: a critiquing based approach. In: IUI ’06: Proceedings of
the 11th international conference on Intelligent user interfaces, pp. 267–269. ACM
Press, New York (2006)

10. Masthoff, J., Gatt, A.: In pursuit of satisfaction and the prevention of embar-
rassment: affective state in group recommender systems. User Model User-Adap
Inter. 16, 281–319 (2006)



584 L.M. de Campos et al.

11. Yu, Z., Zhou, X., Hao, Y., Gu, J.: Tv program recommendation for multiple viewers
based on user profile merging. User Model. and User-Adap. Inter. 16(1), 63–82
(2006)

12. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Group
recommending: A methodological approach based on bayesian networks. In: IEEE-
Workshop on Web Personalization, Recommender Systems and Int. User Interface,
pp. 835–845. IEEE Computer Society Press, Los Alamitos (2007)

13. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

14. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: The bnr model: foundations
and performance of a bayesian network-based retrieval model. Int. J. Approx. Rea-
soning 34(2-3), 265–285 (2003)


	Average and Majority Gates: Combining Information by Means of Bayesian Networks
	Introduction
	Related Work
	Modeling Group Decision Networks
	Weighted Sum Gate
	Majority Gate

	Experimentation: Recommending Movies for Groups
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




