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Abstract. In this paper we present the theoretical developments nec-
essary to extend the existing Context-based Influence Diagram Model
for Structured Documents (CID model), in order to improve its retrieval
performance and expressiveness. Firstly, we make it more flexible and
general by removing the original restrictions on the type of structured
documents that CID represents. This extension requires the design of a
new algorithm to compute the posterior probabilities of relevance. An-
other contribution is related to the evaluation of the influence diagram.
The computation of the expected utilities in the original CID model was
approximated by applying an independence criterion. We present an-
other approximation that does not assume independence, as well as an
exact evaluation method.

1 Introduction
Document collections in the Information Retrieval (IR) field have been consid-
ered as composed of only textual information for a long time [1]. Information
Retrieval Systems (IRS) represented their contents by means of index terms,
and they were mostly the only tool to retrieve the relevant documents given
the users’ information needs. Nowadays, the internal structure of these docu-
ments is taking more and more importance, basically due to the development of
new formalisms, like SGML and XML, that contribute with features to easily
represent a well defined structure, in order to organize the document contents
comprehensibly and also to facilitate the reading to the user. Therefore, the aim
of new IRSs has changed: by also using the document organization, instead of
returning a relevant document as a whole, these applications will retrieve the set
of document components (structural units) more relevant to a query (chapters,
sections, or paragraphs in a book, for example), giving as a result a new research
subarea on structured documents [2].

Classical probabilistic IRSs [4] rank the documents by considering their prob-
ability of relevance to a given query. In these systems, the action of retrieving
(or not) a document is independent on the action of retrieving (or not) any other
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document. However, this is no longer true when dealing with structured docu-
ments, where the decision about retrieving a document component clearly may
affect the retrieval of other components (for example, it makes no sense to re-
trieve two sections of a chapter and also the complete chapter itself). Therefore,
it is clear that not only the probability of relevance has to be used to retrieve the
document components, but we could also use the usefulness of these components
for the user, taking into account the context where they are placed and what
has been previously retrieved.

Following this direction, the Context-based Influence Diagram model for
Structured Documents (CID model) [6] was born with the capability of mak-
ing decisions about which document components should be retrieved, not only
depending on their probability of relevance, but also on their utility for the user
and the influences provided by the context in which each structural component
is located. This is carried out by means of an Influence Diagram (ID) [11], a gen-
eralization of the well founded Bayesian network formalism [13] in the context
of Decision Theory [8]. Examples in the specialised literature about the applica-
tion of Bayesian networks to Structured Information Retrieval are [3, 9, 12, 14],
although the CID model is the only one, as far as we know, that applies IDs.

However, the CID model presents an important restriction on the structure
of the documents that it can represent: the documents have to be composed of
a strict set of structural layers. So, the structural units from the j-th layer (all
of them being of the same type) must be included in broader units from the
(j − 1)-th layer and so on (except for the units from the first layer). The last
layer would contain the smallest structural units, composed only of text and
not of other units. The CID model was endowed with an efficient propagation
algorithm to compute the posterior probability of relevance of each unit given
a query, which was specifically designed to deal with this strict structure. In
this paper we extend this model to work with a general document organization,
where the rule of strict layers is broken and textual units can be placed anywhere
as well, reformulating the original propagation algorithm.

A second contribution is the development of two new mechanisms to evaluate
the underlying influence diagram of the CID model. Solving an ID means to
determine the expected utility of each one of the possible decisions, for those
situations of interest, with the aim of making decisions which maximize the
expected utility [15]. The expected utility in the CID model depends on the
bi-dimensional posterior probabilities, corresponding to each structural unit and
the unit where it is contained. In [6], and in order to simplify the computations,
it was assumed that the two involved units were independent given the query,
so the bi-dimensional distributions could be approximated just multiplying the
unidimensional posterior probabilities of each unit given the query. In this paper
we present, on the one hand, an exact evaluation method that computes the
bi-dimensional distributions and, on the other hand, another efficient and more
precise approximated evaluation method.

In order to describe precisely these ideas and formalize them, this paper is or-
ganised in the following way: In Section 2 we briefly introduce some preliminary
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concepts: we assume a basic knowledge about Bayesian networks to the reader
and only provide some background about influence diagrams. Section 3 describes
the type of structured documents being considered. The next two sections in-
troduce the model: Section 4 presents the Bayesian network that graphically
represents the structure of the documents, and the corresponding influence di-
agram is described in Section 5. Section 6 explains how to use the model for
retrieval purposes by computing the expected utilities of the document com-
ponents. Formulas for the posterior probabilities which are necessary to carry
out this computation are described in Section 7. Section 8 gives an illustrative
example. Finally, Section 9 contains the concluding remarks.

2 Background: Influence Diagrams

Influence Diagrams [11, 16] are probabilistic graphical models that provide a
simple notation for designing decision models by clarifying the qualitative issues
of what factors need to be considered and how they are related, i.e. an intuitive
representation of the model. They have also associated an underlying quantita-
tive representation in order to measure the strength of the relationships: we can
quantify uncertain interactions among random variables and also the decision
maker’s options and preferences. The model is used to determine the optimal
decision policy. IDs contain three types of nodes: (a) Decision nodes (drawn
as rectangles) represent variables that the decision maker controls directly, and
model the decision alternatives available for the decision maker. (b) Chance nodes
(drawn as circles) represent random variables, i.e. uncertain quantities that are
relevant to the decision problem and can not be controlled directly, quantified
by means of conditional probability distributions. (c) Utility nodes (drawn as
diamonds) represent utility, i.e. express the profit or the preference degree of the
consequences derived of the decision process, and are quantified by the utility of
each of the possible combinations of outcomes of their parent nodes.

There are also different types of arcs in an influence diagram: arcs between
chance nodes represent probabilistic dependences (note that the subgraph con-
taining only chance nodes and the related arcs is a Bayesian network). Arcs from
a decision node to a chance node or to a utility node establish that the future
decision will influence the value of the chance node or in the profit obtained,
respectively. Finally, arcs from a chance node to a utility node will express that
the profit will depend on the value that this chance node takes.

3 Type of Structured Documents

We start with a document collection containing M documents,D={D1, . . . , DM},
and the set of the terms used to index these documents (the glossary of the collec-
tion). We assume that each document Di is organized hierarchically, representing
structural associations of elements in Di, which will be called structural units.
Each structural unit is composed of other smaller structural units, except some
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Document1

Index Terms

Title Author Abstract

Title Subsection1

Title Title 

Parag1

Parag2Parag1 Parag1

Subsection2

Section1 Section2

Ref1 Ref2

Bibliography

Fig. 1. Example of the structure of a scientific article

‘terminal’ or ‘minimal’ units which are indivisible, they do not contain any other
unit. Instead, these are composed of terms: each term used to index the complete
document Di will be assigned to all the terminal units containing it. Conversely,
each structural unit, except the one corresponding to the complete document, is
included in only one structural unit. Therefore, the structural units associated
to a document Di form a (inverted) tree. There is not any restriction about this
tree structure, which contrasts with the rigid structure considered in [6], where
all the paths from the root to the leaves have the same length.

For instance, a scientific article may contain a title, authors, abstract, sections
and bibliography; sections may contain a title, subsections and paragraphs; in
turn subsections contain paragraphs and perhaps also a title; the bibliography
contains references; titles, authors, paragraphs, abstract and references would
be in this case the terminal structural units (see Figure 1).

4 The Underlying Bayesian Network

The Bayesian network will contain two kinds of nodes, representing the terms and
the structural units. The former will be represented by the set T = {T1, T2, . . . ,
Tl}. There are two types of structural units: basic structural units, those which
only contain terms, and complex structural units, that are composed of other
basic or complex units. The notation for these nodes is Ub = {B1, B2, . . . , Bm}
and Uc = {S1, S2, . . . , Sn}, respectively. Therefore, the set of all structural units
is U = Ub ∪ Uc. In this paper, T or Tk will represent a term; B or Bi a basic
structural unit, and S or Sj a complex structural unit. Generic structural units
(either basic or complex) will be denoted as Ui or U . Each node T , B or S
has associated a binary random variable1, which can take its values from the

1 In this paper, the random variable and its associated node in the graph will be noted
identically.
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Fig. 2. Bayesian network representing a structured document collection

sets {t−, t+}, {b−, b+} or {s−, s+} (the term/unit is not relevant or is relevant),
respectively. A unit is relevant for a given query if it satisfies the user’s informa-
tion need expressed by this query. A term is relevant in the sense that the user
believes that it will appear in relevant units/documents.

Regarding the arcs of the model, there is an arc from a given node (either term
or structural unit) to the particular structural unit node it belongs to, expressing
the fact that the relevance of a given structural unit to the user will depend on
the relevance values of the different elements (units or terms) that comprise it. It
should be noted that with this criteria, terms nodes have no parents. Formally,
the network is characterized by the following parent sets, Pa(.):

– ∀T ∈ T , Pa(T ) = ∅.
– ∀B ∈ Ub, ∅ �= Pa(B) ⊆ T .
– ∀S ∈ Uc, ∅ �= Pa(S) ⊆ Ub ∪ Uc, with Pa(S1) ∩ Pa(S2) = ∅, ∀S1 �= S2 ∈ Uc.

It should be noticed that the hierarchical structure of the model determines
that each structural unit U ∈ U has only one structural unit as its child, the
unique structural unit containing U (except for the leaf nodes, i.e. the complete
documents, which have no child). We shall denote indistinctly by Hi(U) or Uhi(U)
the single child node associated with node U (with Hi(U) = null if U is a leaf
node). Figure 2 displays an example of the proposed network topology.

The numerical values for the conditional probabilities have also to be assessed:
p(t+), p(b+|pa(B)), p(s+|pa(S)), for every node in T , Ub and Uc, respectively,
and every configuration of the corresponding parent sets (pa(X) denotes a con-
figuration or instantiation of the parent set of X, Pa(X)). Once specified, the
network may be used to compute the posterior probabilities of relevance of all
the structural units U ∈ U for a given query.

In our case, the number of terms and structural units considered may be quite
large (thousands or even hundreds of thousands). Moreover, the topology of the
Bayesian network contains multiple pathways connecting nodes (because the
terms may be associated to different basic structural units) and possibly nodes
with a great number of parents (so that it can be quite difficult to assess and store
the required conditional probability tables). For these reasons we shall use the
canonical model to represent the conditional probabilities proposed in [5] (as the
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CID model does), which supports a very efficient inference procedure. We have
to consider the conditional probabilities for the basic structural units, having a
subset of terms as their parents, and for the complex structural units, having
other structural units as their parents. These probabilities are defined as follows:

∀B ∈ Ub, p(b+|pa(B)) =
∑

T∈R(pa(B))

w(T,B) , (1)

∀S ∈ Uc, p(s+|pa(S)) =
∑

U∈R(pa(S))

w(U, S) , (2)

where w(T,B) is a weight associated to each term T belonging to the basic unit
B, w(U, S) is a weight measuring the importance of the unit U within S. In any
case R(pa(U)) is the subset of parents of U (terms for B, and either basic or com-
plex units for S) relevant in the configuration pa(U), i.e., R(pa(B)) = {T ∈
Pa(B) | t+ ∈ pa(B)} and R(pa(S)) = {U ∈ Pa(S) |u+ ∈ pa(S)}. So, the more
parents of U are relevant the greater the probability of relevance of U . These
weights can be defined in any way, the only restrictions are that w(T,B) ≥ 0,
w(U, S) ≥ 0,

∑
T∈Pa(B) w(T,B) ≤ 1, and

∑
U∈Pa(S) w(U, S) ≤ 1. For example,

they can be defined using a normalized tf-idf scheme, as in [6], or we could also
consider the relative importance of each type of unit (for example, the title or the
abstract could be more representative of the content of a document than a section).

With respect to the prior probabilities of relevance of the terms, p(t+), they
can also be defined in any reasonable way, for example an identical probability
for all the terms, p(t+) = p0, ∀T ∈ T , as proposed in [6].

5 The Influence Diagram Model
Once the Bayesian network has been constructed, it is enlarged by including
decision and utility nodes, thus transforming it into an influence diagram. We
use the same topology proposed in [6] for the CID model: a) Decision nodes: One
decision node, Ri, for each structural unit Ui ∈ U . Ri represents the decision
variable related to whether or not to return the structural unit Ui to the user.
The two different values for Ri are r+

i and r−
i , meaning ‘retrieve Ui’ and ‘do not

retrieve Ui’, respectively. b) Utility nodes: One of these, Vi, for each structural
unit Ui ∈ U , will measure the value of utility of the corresponding decision.

In addition to the arcs between chance nodes (already present in the Bayesian
network), a set of arcs pointing to utility nodes are also included, employed to
indicate which variables have a direct influence on the desirability of a given
decision, i.e. the profit obtained will depend on the value of these variables.
In order to represent that the utility function of Vi obviously depends on the
decision made and the relevance value of the structural unit considered, we
use arcs from each chance node Ui and decision node Ri to the utility node Vi.
Another important set of arcs are those going from Hi(Ui) to Vi, which represent
that the utility of the decision about retrieving the unit Ui also depends on
the relevance of the unit which contains it (obviously, for the units which are
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Fig. 3. Topology of the influence diagram

not contained in any other unit these arcs do not exist). This last kind of arc
allows us to represent the context-based information and can avoid redundant
information being shown to the user. For instance, we could express the fact that
on the one hand, if Ui is relevant and Hi(Ui) is not, then the utility of retrieving
Ui should be large (and the one of not retrieving it almost null). On the other
hand, if Hi(Ui) is relevant, even if Ui were also relevant the utility of retrieving
Ui should be small because, in this case, it would be preferable to retrieve the
largest unit as a whole, instead of each of its components separately.

Another utility node, denoted by Σ, that represents the joint utility of the
whole model is also considered. It has all the utility nodes Vj as its parents. These
arcs represent the fact that the joint utility of the model will depend (additively)
on the values of the individual utilities of each structural unit. Figure 3 displays
an example of the topology of the influence diagram being considered.

Moreover, the influence diagram requires numerical values for the utilities. For
each utility node Vi we need eight numbers, one for each combination of values of
the decision node Ri and the chance nodes Ui and Hi(Ui) (except for the leaf nodes,
which only require four values). These values are represented by v(ri, ui, uhi(Ui)),
with ri ∈ {r−

i , r+
i }, ui ∈ {u−

i , u+
i }, and uhi(Ui) ∈ {u−

hi(Ui)
, u+

hi(Ui)
}.

6 Solving the Influence Diagram

To solve an influence diagram, the expected utility of each possible decision (for
those situations of interest) has to be computed, thus making decisions which
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maximize the expected utility. In our case, the situation of interest corresponds
with the information provided by the user when he/she formulates a query. Let
Q ⊆ T be the set of terms used to express the query. Each term Ti ∈ Q will
be instantiated to either t+i or t−i ; let q be the corresponding configuration of
the variables in Q. We wish to compute the expected utility of each decision
given q. As we have assumed a global additive utility model, and the different
decision variables Ri are not directly linked to each other, we can process eachone
independently. The expected utilities for each Ui can be computed by means of

EU(r+
i | q) =

∑

ui∈{u
−
i

,u
+
i

}
uhi(Ui)

∈{u
−
hi(Ui)

,u
+
hi(Ui)

}

v(r+
i , ui, uhi(Ui)) p(ui, uhi(Ui)|q) . (3)

EU(r−
i | q) =

∑

ui∈{u
−
i

,u
+
i

}
uhi(Ui)

∈{u
−
hi(Ui)

,u
+
hi(Ui)

}

v(r−
i , ui, uhi(Ui)) p(ui, uhi(Ui)|q) . (4)

In the context of a typical decision making problem, once the expected util-
ities are computed, the decision with greatest utility is chosen: this would mean
to retrieve the structural unit Ui if EU(r+

i |q) ≥ EU(r−
i |q), and not to retrieve

it otherwise. However, our purpose is not only to make decisions about what to
retrieve but also to give a ranking of those units. The simplest way to do it is to
show them in decreasing order of the utility of retrieving Ui, EU(r+

i |q)2. In this
case only four utility values have to be assessed, and only eq. (3) is required.

7 Computing Probabilities

In order to provide to the user an ordered list of structural units, we have to be able
to compute the posterior probabilities of relevance of all the structural units U ∈
U , p(u+|q), and also the bi-dimensional posterior probabilities, p(u+, u+

hi(U)|q)3.
The specific characteristics of the canonical model used to define the conditional
probabilities will allow us to efficiently compute the posterior probabilities4.

7.1 Calculus of Unidimensional Posterior Probabilities

Proposition 1

∀B ∈ Ub, p(b+|q) =
∑

T∈Pa(B)\Q

w(T,B) p(t+) +
∑

T∈Pa(B)∩R(q)

w(T,B) . (5)

2 Other options would also be possible to generate a ranking, as for example to use
the difference between both expected utilities, EU(r+

i |q) − EU(r−
i |q).

3 Notice that the other required bi-dimensional probabilities, p(u+, u−
hi(U)|q),

p(u−, u+
hi(U)|q) and p(u−, u−

hi(U)|q), can be easily computed from p(u+, u+
hi(U)|q),

p(u+|q) and p(u+
hi(U)|q).

4 Proofs of the results stated in the paper are not included due to space limitations.
They can be found in [7].
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∀S ∈ Uc, p(s+|q) =
∑

U∈Pa(S)

w(U, S) p(u+|q) . (6)

As we can see, the posterior probabilities of the basic units can be computed di-
rectly. The posterior probabilities of the complex units can be calculated in
a top-down manner, starting from those for the basic units. However, it is
possible to design a more direct inference method. We need some additional
notation: ∀S ∈ Uc, let Ab(S) = {B ∈ Ub |B is an ancestor of S}, Ac(S) =
{S′ ∈ Uc |S′ is an ancestor of S}, and ∀B ∈ Ub, let Dc(B) = {S ∈ Uc |S is
a descendant of B}. Notice that, for each basic unit B in Ab(S), there is
only one path going from B to S. Let us define the weight w(B,S) as the
product of the weights of the arcs in the path from B to S, i.e. w(B,S) =
w(B,Hi(B))

∏
S′∈Ac(S)∩Dc(B) w(S′, Hi(S′)). Then, we get the following result:

Proposition 2

∀S ∈ Uc, p(s+|q) =
∑

B∈Ab(S)

w(B,S) p(b+|q) . (7)

Proposition 2 states that we can compute the posterior probability of a complex
structural unit S by calculating the average of the posterior probabilities of all
the basic structural units B contained in S, each probability being weighted
by the product of the weights of the arcs in the (single) path going from B
to S. This result is the basis to develop an inference process able to compute
all the posterior probabilities of the structural units in a single traversal of the
graph, starting only from the instantiated terms in Q, provided that the prior
probabilities of relevance have been calculated and stored within the structure:

Proposition 3

∀B ∈ Ub, p(b+|q) = p(b+) +
∑

T∈Pa(B)∩R(q)

w(T,B)
(
1− p(t+)

)
−

∑

T∈Pa(B)∩(Q\R(q))

w(T,B) p(t+)(8)

∀S ∈ Uc, p(s+|q) = p(s+) +
∑

B∈Ab(S)
P a(B)∩Q�=∅

w(B,S)
(
p(b+|q)− p(b+)

)
. (9)

This result indicates how we can compute the posterior probabilities from the
prior probabilities traversing the nodes in the graph that will require updating.
An algorithm that computes all the posterior probabilities p(b+|q) and p(s+|q),
based on Proposition 3, starts from the terms in Q and carries out a width
graph traversal until it reaches the basic units that require updating, computing
p(b+|q) using eq. (8). Starting from these modified basic units, it carries out
a depth graph traversal to compute p(s+|q), only for those complex units that
require updating, using eq. (9). This algorithm needs the previous computation
and storage of the nodes’ prior probabilities. This can be done easily using
Propositions 1 and 2 (with q = ∅).
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7.2 Calculus of Bi-dimensional Posterior Probabilities

Now, the required probabilities are the posterior bi-dimensional probabilities
p(u+, u+

hi(U)|q), for any structural unit U ∈ U and its unique child Uhi(U),
provided that Uhi(U) �= null. We have to distinguish two cases, depending on
whether U is a basic unit (U ∈ Ub) or a complex unit (U ∈ Uc). The following
two propositions provide formulas to compute these bi-dimensional probabilities.

Proposition 4. ∀S ∈ Uc, ∀B ∈ Ub such that B ∈ Pa(S),

p(s+, b+|q) =
∑

Bi∈Ab(S)
Bi �=B

w(Bi, S) p(b+
i , b+|q) + w(B,S)p(b+|q) . (10)

Proposition 5. ∀S1, S2 ∈ Uc such that S1 ∈ Pa(S2),

p(s+
1 , s+

2 |q)=
∑

B1∈Ab(S1)

∑

B2∈Ab(S2)\Ab(S1)

w(B1, S1)w(B2, S2) p(b+
1 , b+

2 |q)+w(S1, S2)p(s+
1 |q).

(11)

These results, which are analogous to Proposition 2 in the unidimensional case,
show that we can compute the required bi-dimensional probabilities as soon as
we compute the bi-dimensional probabilities for pairs of basic structural units
in Ub and the unidimensional probabilities of all the structural units in Ub ∪ Uc.
The following proposition shows how these bi-dimensional probabilities for pairs
of basic structural units can be computed.

Proposition 6. ∀B1, B2 ∈ Ub, let us define

δ(B1, B2|q) =
∑

T∈(Pa(B1)∩Pa(B2))\Q
w(T,B1)w(T,B2) p(t+)(1− p(t+)) . (12)

Then p(b+
1 , b+

2 |q) = p(b+
1 |q) p(b+

2 |q) + δ(B1, B2|q) (13)
p(b+

1 , b−
2 |q) = p(b+

1 |q) p(b−
2 |q)− δ(B1, B2|q)

p(b−
1 , b+

2 |q) = p(b−
1 |q) p(b+

2 |q)− δ(B1, B2|q)
p(b−

1 , b−
2 |q) = p(b−

1 |q) p(b−
2 |q) + δ(B1, B2|q)

The results in Proposition 6 state that the bi-dimensional probabilities can
be expressed as the product of the unidimensional probabilities, plus a factor
that outweighs the common relevance or irrelevance of the units and penalizes
relevance of one unit and irrelevance of the other. This factor, δ(B1, B2|q), de-
pends essentially of the number of common terms for B1 and B2 which are not
instantiated. So, if two basic units do not share any term, or all the shared terms
are instantiated, δ(B1, B2|q) = 0 and the units are independent. On the other
hand, the more uninstantiated terms share B1 and B2, the greater δ(B1, B2|q)
and the more degree of dependence between these units exists.

This way of expressing the bi-dimensional probabilities of the basic units as
a product of marginals plus an interaction factor, can be extended to the other
cases, as the following two propositions show.
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Fig. 4. Graphical representations of some δ interactions

Proposition 7. ∀S ∈ Uc, ∀B ∈ Ub such that B ∈ Pa(S), let us define

δ(B,S|q) =
∑

Bi∈Ab(S)
Bi �=B

w(Bi, S) δ(B,Bi|q) . (14)

Then
p(s+, b+|q) = p(s+|q) p(b+|q) + δ(B,S|q) + w(B,S) p(b+|q) (1− p(b+|q))(15)
p(s+, b−|q) = p(s+|q) p(b−|q) − δ(B,S|q) − w(B,S) p(b+|q) (1− p(b+|q))
p(s−, b+|q) = p(s−|q) p(b+|q) − δ(B,S|q) − w(B,S) p(b+|q) (1− p(b+|q))
p(s−, b−|q) = p(s−|q) p(b−|q) + δ(B,S|q) + w(B,S) p(b+|q) (1− p(b+|q))

The interaction factor between a complex unit S and a basic unit B, δ(B,S|q),
is a weighted average of the interaction factors between B and the basic units
(different from B) included in S. The other value in eq. (15), w(B,S)p(b+|q)(1−
p(b+|q)), can be considered as a kind of interaction of B with itself. The first
part of figure 4 shows the interactions computed according to eq. (15).

Proposition 8. ∀S1, S2 ∈ Uc such that S1 ∈ Pa(S2), let us define

δ(S1, S2|q) =
∑

B1∈Ab(S1)

∑

B2∈Ab(S2)\Ab(S1)

w(B1, S1)w(B2, S2) δ(B1, B2|q) . (16)

Then

p(s+
1 , s+

2 |q) = p(s+
1 |q) p(s+

2 |q) + δ(S1, S2|q) + w(S1, S2) p(s+
1 |q) (1− p(s+

1 |q))(17)
p(s+

1 , s−
2 |q) = p(s+

1 |q) p(s−
2 |q)− δ(S1, S2|q)− w(S1, S2) p(s+

1 |q) (1− p(s+
1 |q))

p(s−
1 , s+

2 |q) = p(s−
1 |q) p(s+

2 |q)− δ(S1, S2|q)− w(S1, S2) p(s+
1 |q) (1− p(s+

1 |q))
p(s−

1 , s−
2 |q) = p(s−

1 |q) p(s−
2 |q) + δ(S1, S2|q) + w(S1, S2) p(s+

1 |q) (1− p(s+
1 |q))

The interaction factor between two complex units S1 ans S2 is also a weighted
average of the interaction factors between the basic units included in S1 and those
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included in S2 but not in S1. The other value in eq. (17), w(S1, S2)p(s+
1 |q)

(1−p(s+
1 |q)), acts as a kind of interaction between the basic units included in

S1with themselves. The second part of figure 4 shows the involved interactions.
Therefore, in the light of the results in Propositions 6, 7 and 8, to compute

the bi-dimensional posterior probabilities, in addition to the calculus of the pos-
terior unidimensional probabilities, we only need to compute the interactions
δ(B1, B2|q), δ(B,S|q) and δ(S1, S2|q).

In order to design an algorithm to compute the interactions δ(B1, B2|q) be-
tween pairs of basic units, and considering that the number of terms instantiated
in Q will usually be much lesser than the total number of terms in T , it may be
interesting to compute (only once) and store the ‘prior interactions’ δ(B1, B2|∅)
and then to derive the values of δ(B1, B2|q) from those of δ(B1, B2|∅), by travers-
ing the graph starting only from the terms in Q. This can be done easily because
from eq. (12) we obtain:

δ(B1, B2|q) = δ(B1, B2|∅) −
∑

T∈Pa(B1)∩Pa(B2)∩Q
w(T,B1)w(T,B2) p(t+)(1−p(t+)) . (18)

In order to design an algorithm to compute δ(B,S|q) and δ(S1, S2|q), it is impor-
tant to notice that we need these values only when B ∈ Pa(S) and S1 ∈ Pa(S2);
as each unit has only one child, the required values are δ(B,Hi(B)|q) and
δ(S, Hi(S)|q), which only depend on B and S respectively. Therefore, we shall
use a variable delta[U] to store the value δ(U, Hi(U)|q) for each unit U ∈ Ub∪Uc

such that Hi(U) �= null. As in the case of δ(B1, B2|q), it is also convenient to
compute (only once) and store the values δ(U, Hi(U)|∅). This will allow us to
compute all the values δ(U, Hi(U)|q) by only traversing the nodes in the graph
that require updating, starting from the terms instantiated in Q. This is possible
because from of eqs. (14) and (16), we easily obtain:

δ(B,Hi(B)|q) = δ(B,Hi(B)|∅) +
∑

Bi∈Ab(Hi(B))
Bi �=B

w(Bi, Hi(B)) (δ(B,Bi|q)− δ(B,Bi|∅)) .

δ(S, Hi(S)|q) = δ(S, Hi(S)|∅) +∑
B∈Ab(S)

∑
B′∈Ab(Hi(S))\Ab(S) w(B,S)w(B′, Hi(S)) (δ(B,B′|q)− δ(B,B′|∅)) .

From eq. (14) and (16), it can also be noticed that δ(U, Hi(U)|q) is the
weighted sum, over all the pairs of basic units B1 and B2, B1 included in U
and B2 included in Hi(U) but not in U , of the values δ(B1, B2|q), the weighting
values being the products of the weights of the arcs in the single path joining B1
and B2 and passing through U and Hi(U), except the weight w(U, Hi(U)) of
the arc from U to Hi(U). This simple observation is the basis of the algorithm
to compute all the values δ(U, Hi(U)|q). Starting from each pair of basic units
that had required updating (i.e. δ(B1, B2|q) �= δ(B1, B2|∅)), we traverse the
graph from parents to children (and computing the product of the weights of
the arcs we encounter), until we identify the single node S (if it exists) where
the two paths that started at B1 and B2 converge. If U1 and U2 are the nodes
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in these two paths nearest to S (i.e. arcs U1 → S ← U2 exist in the graph), then
we can update the values δ(U1, S|q) and δ(U2, S|q) by adding to delta[U1] the
computed product of weights of arcs times the difference between δ(B1, B2|q)
and δ(B1, B2|∅), divided by the weight w(U1, Hi(U1)) (and performing the same
kind of updating for delta[U2]).

7.3 Approximating the Bi-dimensional Posterior Probabilities

The previous results show how we can compute exactly the bi-dimensional prob-
abilities involved in the computation of the expected utilities. But this process
could be expensive in terms of memory and time for very large document col-
lections. This reason leads us to propose another approximation, finer than the
one presented in [6], which assumed the independence between each structural
unit and the one which contains it, i.e. p(u+, u+

hi(U)|q) = p(u+|q)p(u+
hi(U)|q). In

the light of the results in the previous section, this approximation assumes that
δ(U, Uhi(U)|q) ≈ 0 and w(U, Uhi(U)) p(u+|q) (1 − p(u+|q)) ≈ 0. While the first
equality may be justified at some extend, the second one clearly can not. The
proposed approximation is therefore

p(u+, u+
hi(U)|q) = p(u+|q)p(u+

hi(U)|q) + w(U, Uhi(U)) p(u+|q) (1− p(u+|q)) (19)

which can be computed as efficiently as the previous one.

8 Example

To illustrate the behaviour of the generalized CID model, let us consider a simple
example, where there is a single document, composed of the Sections 6 and 7 of
this paper. Moreover, we use as indexing terms only the words appearing in the
titles of these sections and the corresponding subsections. The Bayesian network
representing this document is displayed in Figure 5. This ‘collection’ contains ten
terms, five basic and two complex structural units. We shall use the same nor-
malized tf-idf weighting scheme proposed in [6] (the resulting weights of the arcs
are also displayed in Figure 5), and the prior probability of all the terms has been
set to 0.1. The utility values are v(r+

i , u+
i , u+

hi(Ui)
) = 0.5, v(r+

i , u+
i , u−

hi(Ui)
) = 1,

v(r+
i , u−

i , u+
hi(Ui)

) = −1, v(r+
i , u−

i , u−
hi(Ui)

) = 0 for all the structural units, except
for the complete document, where v(r+

i , u+
i ) = 1 and v(r+

i , u−
i ) = −0.5.

Let us study the output provided by the model for two queries Q1 and Q2,
where Q1 is “posterior probabilities” and Q2 is “approximating posterior proba-
bilities”. After instantiating to relevant these terms, we propagate this evidence
through the network. The posterior probabilities of the structural units are dis-
played in Table 1. For Q1, all the three subsections of section 7 appear more
relevant than the section itself, whereas for Q2 subsection 7.3 is clearly the most
relevant structural unit and section 7 is the second one. However, for Q1, it
seems us that retrieving section 7 would be better for the user than retrieving
its subsections (section 7 speaks about posterior probabilities as a whole). If we
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Fig. 5. The Bayesian network representing part of this document

Table 1. Posterior probabilities and expected utilities for queries Q1 and Q2. EUex,
EUap and EUin represent the utilities computed using the exact method, the approx-
imation proposed in eq. (19) and the approximation using independence, respectively

section 6 section 7 title (sect.7) subsect. 7.1 subsect. 7.2 subsect. 7.3 document

p(.|Q1) 0.100 0.300 0.210 0.303 0.357 0.303 0.239
EUex(.|Q1) -0.113 0.170 -0.045 0.081 0.141 0.081 -0.142
EUap(.|Q1) -0.113 0.170 -0.045 0.080 0.138 0.080 -0.142
EUin(.|Q1) -0.127 0.097 -0.059 0.048 0.111 0.048 -0.142

p(.|Q2) 0.100 0.432 0.210 0.303 0.357 0.747 0.331
EUex(.|Q2) -0.180 0.258 -0.164 -0.032 0.032 0.505 -0.004
EUap(.|Q2) -0.180 0.258 -0.164 -0.033 0.029 0.504 -0.004
EUin(.|Q2) -0.214 0.173 -0.178 -0.064 0.002 0.476 -0.004

compute the expected utilities (Table 1 also displays all the utility values) using
either the exact method or the proposed approximation, we can see that section 7
gets the highest value for Q1 (and subsection 7.3 maintains the highest value for
Q2), as desired. Notice also that the approximation that assumes independence
behaves differently.

9 Concluding Remarks

In this paper we have presented the theoretical developments concerning two
extensions of the CID model for structured document retrieval. First, we have
generalised the type of structure of documents that the CID model can deal
with. In the new approach, the structural units containing text can be placed
anywhere, and the organization of document components is general, in the sense
that they do not have to be included in homogeneous layers. The change of struc-
ture has required the design of a new propagation algorithm that supports it.

We have also proposed two new methods of computing the bi-dimensional
probability distributions needed for the calculus of the expected utilities of re-
trieving document components. The CID model assumed independence between
each structural unit and the unit containing it, given the query. This is a very
strong assumption, reason by which we have designed a method to compute
exactly these distributions, based on interactions among units. We have also de-
veloped a new approximation in order to alleviate the possible computational



Improving the CID Model for Structured Document Retrieval 229

cost of the exact method in very large collections, which also considers interac-
tions but approximates them without complex calculations.

At present, we are in the implementation stage. We intend to test our model
with the INEX structured collection [10], in order to determine the quality and
efficiency of each evaluation method. Also, as future work, we want to perform
some experiments oriented towards the detection of best entry points, since this
structured IRS has been specifically designed to find them.
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