
Stochastic Local Algorithms for Learning Belief
Networks: Searching in the Space of the

Orderings

Luis M. de Campos1 and J. Miguel Puerta2

1 Dpto de Ciencias de la Computación e I.A.
Universidad de Granada
18071 - Granada, Spain
lci@decsai.ugr.es

2 Dpto de Informática
Universidad de Castilla-La Mancha

02071 - Albacete, Spain
jpuerta@info-ab.uclm.es

Abstract. An important type of methods for learning belief networks
from data are those based on the use of a scoring metric, to evaluate the
fitness of any given candidate network to the data base, and a search
procedure to explore the set of candidate networks. In this paper we
propose a new method that carries out the search not in the space of
directed acyclic graphs but in the space of the orderings of the variables
that compose the graphs. Moreover, we use a new stochastic search
method to be applied to this problem, Variable Neighborhood Search.
We also experimentally compare our methods with some other search
procedures commonly used in the literature.

Keywords: Belief Networks, Causal Orderings, Learning, Variable
Neighborhood Search, Stochastic Hill-Climbing Search.

1 Introduction

Belief Networks (BNs), also known as Bayesian Networks or Causal Networks,
are knowledge representation tools able to efficiently manage the dependence
and independence relationships among the random variables that compose the
problem domain we want to model. This representation has two components:
a) a graphical structure, more precisely a directed acyclic graph (dag), and b)
a set of parameters, which together specify a joint probability distribution over
the random variables [20]. In belief networks, the graphical structure represents
dependence and independence relationships. The numerical component is a col-
lection of conditional probability measures, which shape the relationships.

Once we have the belief network specified, it constitutes an efficient device
to perform inference tasks. However, there still remains the previous problem of
building such a network. So, an interesting task is to develop automatic meth-
ods capable of learning the network directly from data, as an alternative or a
complement to the method of eliciting opinions from experts.

S. Benferhat and P. Besnard (Eds.): ECSQARU 2001, LNAI 2143, pp. 228–239, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Stochastic Local Algorithms for Learning Belief Networks 229

Nowadays, the problem of learning or estimating a belief network from data
is receiving increasing attention within the community of researchers into uncer-
tainty in artificial intelligence. Algorithms for learning (the structure of) BNs
have been studied, basically from two points of view: Methods based on condi-
tional independence tests [5,6,7,22,23] and methods based on a scoring metric
optimization [12,16,17]. This classification is not exhaustive and/or strict, there
also exist algorithms that use a combination of these two methods [1,2,13,21].
In this paper we only consider learning methods based on a scoring metric.

As learning belief networks is, in general, a NP-Hard problem [11], we have to
solve it with heuristic methods. Most existing scoring-based learning algorithms
apply standard heuristic search techniques, such as greedy hill-climbing, simu-
lated annealing (local search), genetic algorithms, etc. In this paper we focus
on local search methods, more precisely stochastic hill-climbing methods. These
methods examine only possible local changes at each step, and apply the one
that leads to the greatest improvement in the scoring function. When the search
process is carried out in the space of dags, the usual choices for local changes
are arc addition, arc deletion and arc reversal. Thus, there are O(n2) possible
changes, where n is the number of variables.

However, several authors [18,14,8] have shown that the space of orderings
of the variables is much ‘smoother’ than the space of dags. Moreover, it is also
known that, by providing a good ordering of the variables, the learning algo-
rithms become more efficient and accurate. In fact, there is a number of algo-
rithms that need to use such an ordering [1,2,7,10,12]. Therefore, our proposal
is to develop learning methods that carry out the search process in the space of
the orderings instead of the space of dags.

The search method that we are going to adapt to our problem is, in ad-
dition to classical hill-climbing, the recently developed Variable Neighborhood
Search (VNS) [15,19], which is a metaheuristic that uses a systematic change of
neighborhood within a randomized local search algorithm.

The paper is structured as follows: we begin in Section 2 with the prelim-
inaries. In Section 3 we formalize our proposal of learning belief networks by
searching in the space of the orderings: we define our search space, the admis-
ible local changes to move within this space and how to efficiently carry out
the evaluation of the different orderings. In Section 4 we introduce the Variable
Neighborhood Search. In section 5 we propose two learning algorithms based on
orderings: one uses a hill-climbing search and the other uses VNS. In Section 6 we
present the experimental evaluation. Finally, Section 7 contains the concluding
remarks.

2 Preliminaries

In this section we briefly review BNs and how to learn them. A BN is a directed
acyclic graph G = (V , E), where V , a set of nodes, represents the system vari-
ables and E, a set of arcs, represents the dependence relationships among the
variables. A set of parameters is also stored for each variable in V , usually con-

230 L.M. de Campos and J.M. Puerta

ditional probability distributions. For each variable xi ∈ V we have a family of
conditional distributions P (xi|PaG(xi)), where PaG(xi) represents the parent
set of the variable xi. From these conditional distributions we can recover the
joint distribution over V :

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|PaG(xi)) (1)

This expression represents a decomposition of the joint distribution. The
dependence/independence relationships which make possible this decomposition
are graphically encoded (through the d-separation criterion [20]) by means of
the presence or absence of direct connections between pairs of variables.

The problem of learning a BN can be stated as follows: given a training set
D = {v1, . . . ,vm} of instances of V , find the BN that best matches D. The
common approach to this problem is to introduce a scoring function, f , that
evaluates each network with respect to the training data, and then to search for
the best network according to this score. Different Bayesian and non-Bayesian
scoring metrics can be used [1,4,12,16,17].

A desirable and important property of a metric is its decomposability in
presence of full data, i.e, the scoring function can be decomposed in the following
way:

f(G : D) =
n∑

i=1

f(xi|PaG(xi) : Nxi,PaG(xi)) (2)

where Nxi,PaG(xi) are the statistics of the variable xi and PaG(xi) in D, i.e.,
the number of instances in D that match each possible instantiation of xi and
PaG(xi). The decomposition of the metric is very important for the learning
task: a local search procedure that changes one arc at each move can efficiently
evaluate the improvement obtained by this change. Such a procedure can reuse
the computations made in previous stages. An example is a greedy hill-climbing
method that at each step performs the local change that yields the maximal gain,
until it reaches a local maximum. As this procedure is trapped in the first local
maximum it reaches, several methods for avoiding this situation have been used,
such as stochastic hill-climbing, simulated annealing, tabu search, etc. The main
representative of stochastic hill-climbing is hill-climbing with random restart,
which has been used by several authors with relative success (see [16] for more
details). This fact has motivated us to try a new search method based on the
same principles that the previous one, but with a systematic and reasonable
random search in a larger neighborhood at each step if the current local search
does not improve the best current maximum. This method, VNS [19], has been
applied to solve optimization problems with successful results.

For a dag G, given a causal ordering θ (i.e., an ordering compatible with the
topology of the dag1), the following independence relationships are true: xi is
conditionally independent of all the variables that precede it in the ordering,
1 if there is an arc xi → xj , then θ(xi) < θ(xj).

Stochastic Local Algorithms for Learning Belief Networks 231

given its parent set PaG(xi), for all xi. This fact provides a systematic method
to build belief networks: for each node xi, the parents of xi in the dag are
the minimal subset of predecessors of xi (in the ordering θ) which makes xi

conditionally independent of the rest of its predecessors.
However, different orderings may produce different networks. We would prefer

those networks that are able to represent as much true independence relation-
ships as possible (i.e., having as few arcs as possible). For that reason it makes
sense to search for the best ordering.

3 Searching in the Space of the Orderings

Let us assume that we want to find a belief network for a problem having n
variables, V = {x1, x2, . . . , xn}, and we have a database of cases D. Although we
are looking for a network, we are going to perform a main search process in the
space of the orderings for the variables in V , and this search will be guided by
a scoring function, that evaluates the network obtained from the given ordering
by means of a secondary search process (in the space of the dags compatible
with this ordering).

So, our search space is the set of n! orderings, θ, of the variables in V (i.e.,
the set of permutations of n elements). Now, we have to define the operator to
move from one configuration to another neighboring configuration in this space.
We propose to use the interchange between two positions i and j in the sequence
defining an ordering. More precisely, if θ is the current configuration, then the
n(n− 1)/2 neighboring configurations of θ are those orderings θij , where i < j,
defined as follows:

Let xu and xv such that θ(xu) = i and θ(xv) = j. Then

θij(xk) =

θ(xk) if xk 6= xu and xk 6= xv

j if xk = xu

i if xk = xv

Now, we have to decide how to evaluate the quality of an ordering θ. Our
proposal is to use a scoring metric, f , defined for dags and to perform a search
process in the space of dags compatible with θ. The scoring value of the obtained
dag Gθ, f(Gθ : D), will be the value of θ (f(θ : D) = f(Gθ : D)). For example, we
can use a (deterministic) hill-climbing algorithm with operators of arc addition
and arc removal (arc reversal has no sense because the ordering is fixed). In
other words, we have to find the best parent set of each variable xk among the
variables that precede xk in the ordering θ. The search of the parent set of a
variable xk can be done independently of the parent sets of the other variables.

However, if the metric f being used is decomposable, we should try to take
advantage of this fact to reduce the complexity of evaluating an ordering θij , by
using as much information about the evaluation of θ as possible. As θ has been
already evaluated, we know that

f(θ : D) =
n∑

k=1

f(xk|PaGθ
(xk) : Nxk,PaGθ

(xk))

232 L.M. de Campos and J.M. Puerta

Therefore, for the nodes xk such that θ(xk) < i or θ(xk) > j, the set of prede-
cessors of xk will be the same for θ and for θij , so that we can be sure that

PaGθij
(xk) = PaGθ

(xk)

and we do not need to calculate f(xk|PaGθij
(xk) : Nxk,PaGθij

(xk)).

For the nodes xk such that i ≤ θ(xk) ≤ j, their sets of predecessors change,
so that we are forced to search again for their parent sets. For each one of these
nodes xk, we start from an empty parent set and, by applying the operators of
arc addition and arc removal, perform a hill-climbing search.

With the aim of improving the efficiency of the search process, we are going
to restrict, by means of a parameter, r (radius), the number of neighboring
configurations. The only admissible neighbors of a given ordering θ are those
orderings θij such that the ‘distance’ between the variables to be interchanged is
not greater than r, i.e., |j−i| ≤ r. This will allow to speed up the search process,
because each configuration has less neighbors (exactly r(n− (r +1)/2)), and the
discarded neighbors are precisely the ones whose evaluation is more complex. A
radius r = n−1 is equivalent to no restriction. If the starting point of the search
process is a good ordering, we believe that a drastic change in this ordering (i.e.,
to interchange two very distant nodes) is not expected to produce an important
improvement in the score. In any case, an interchange betwen two distant nodes
xu and xv can also be obtained by performing successive interchanges involving
xu, xv and some intermediate nodes (for example, an interchange of lenght |j−i|
may be obtained by means of three interchanges of lenght |j − i|/2).

4 Variable Neighborhood Search

In this section we review the rules of the basic VNS and apply them for learning
belief networks.

Let us denote a finite set of pre-selected neighborhood structures with Nk

(k = 1, . . . , kmax), and let Nk(x) be the set of solutions in the kth neighborhood
of x (heuristic local search usually uses one neighborhood structure, i.e., kmax =
1). The basic VNS heuristic comprises the following steps:

Initialization. Select the set of neighborhood structures Nk, k = 1, . . . , kmax,
that will be used in the search; find an initial solution x; choose a stopping
criterion.
Repeat the following until the stopping criterion is met:
(a) Set k = 1; Until k = kmax, repeat the following steps:

(a.1) Shaking. Generate a solution x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x)).

(a.2) Local search. Apply some local search method with x′ as the initial
solution; denote with x′′ the solution obtained as local optimum.

(a.3) Move or not. If this local optimum is better than the incumbent,
move there (x ← x′′), and continue the search with N1(k = 1);
otherwise, set k = k + 1.

Stochastic Local Algorithms for Learning Belief Networks 233

The stopping condition may be based, for example, on maximum running
time, maximum number of iterations (of step (a)), or maximum number of iter-
ations (of step (a)) between two improvements. Note that point x′ is generated
at random in order to avoid cycling, which might occur if any deterministic rule
were used.

Once we have an appropriate local search method for an optimization prob-
lem, it is easy to program steps (a.1) and (a.3) of the basic VNS. For example,
if Nk is obtained by k-interchanges of solution attributes (as will be our case),
only a few lines have to be added to an existing code for a local search method.

The basic VNS is a descent (ascent) first improvement method. Without
much additional effort it could be transformed into a descent-ascent method
(in step (a.3) set also x ← x′′ with some probability even if the solution is
worse than the incumbent). Of course, this variant is reminiscent of simulated
annealing. Other variants of the basic VNS include:

– Introduce kmin and kstep, two parameters that control the movement be-
tween neighborhood structures, i.e., in the previous algorithm, instead of
k = 1, set k = kmin and instead of k = k + 1, set k = k + kstep. These
parameters guide the intensification and diversification of the search.

– Remove the local search. This variant, which is denoted as Reduced VNS,
is useful for very large problems for which local search is costly. This works
in similar way to the Monte-Carlo method but in a more systematic way.
Its relationship with the Monte-Carlo method is the same as that of VNS to
multi-start methods.

When using more than one neighborhood structure in the search, as it is
done in VNS, the following problem specific questions have to be answered:

– What Nk should be used and how many of them?
– What should be their order in the search?
– What search strategy should be used in changing neighborhoods?

Furthermore, we must decide what local search routine will be used in the
local search step.

5 Learning Algorithms Based on Orderings

We have a database D = {v1, . . . ,vm}, containing m instances of V . We assume
a given decomposable scoring metric f(G : D) for dags. Let Θn be the set of
all the orderings of n elements and Gθ be the family of all dags G whose set of
vertices is V and whose arcs are compatible with the ordering θ. The problem
considered is then:

Find θ∗ = arg max
θ∈Θn

f(θ : D) (3)

where
f(θ : D) = f(Gθ : D) = max

G∈Gθ

f(G : D) (4)

234 L.M. de Campos and J.M. Puerta

Thus, we first find the best dag, Gθ (according to the selected metric f), com-
patible with an ordering θ, and next select the ordering θ∗ that has produced the
best dag. The dag Gθ∗ is the desired solution of our learning problem. We tackle
this problem from a heuristic point of view: the two optimization processes are
solved using search methods.

The (approximate) solution to the problem in Equation (4) will be obtained
by using the search process of dags described in Section 3 (i.e., a hill-climbing
search of the best parent set of each node in V).

To solve the problem in Equation (3), we propose two alternatives. The first
one is to also use a hill-climbing search in the space of the orderings (with
the operator of interchange of two positions described in Section 3, and a fixed
radius). We call this algorithm HCSO (Hill-Climbing Search based on Orderings).

The second alternative is to use a VNS. This algorithm will be called VNSO
(Variable Neighborhood Search based on Orderings). To do this, we need to
define the neighborhood structures Nk. N1 will be the neighborhood defined by
the operator of interchange of any two positions, i.e.,

θ′ ∈ N1(θ)⇐⇒ θ′(xu) = θ(xv), θ′(xv) = θ(xu) and θ′(xk) = θ(xk) ∀xk 6= xu, xv

N2 will be defined by the interchange of two pairs of positions, i.e.,

θ′′ ∈ N2(θ)⇐⇒ θ′′ ∈ N1(θ′) and θ′ ∈ N1(θ)

Similarly,
θ′′ ∈ Nk(θ)⇐⇒ θ′′ ∈ N1(θ′) and θ′ ∈ Nk−1(θ)

The search strategy between neighborhoods that we are going to use is the one
used in the basic VNS (k = 1 and at each step k = k + 1). As stopping criterion
we use the maximum number of iterations between two improvements, together
with a maximum number of total iterations.

The local search chosen for the step (a.2) of VNSO is just HCSO. However,
instead of using HCSO with a fixed radius r and, in accordance with the search
strategy used by VNS, we propose an updating scheme for this parameter: when
we move from Nk to a greater neighborhood Nk+1, we also increase the radius
(from r to r + 1), and when we move to N1, the radius is set to its initial value.

6 Experimental Evaluation of the Algorithms

In order to test the behavior of the methods proposed in the paper, we have
selected the ALARM network [3]. This network has 37 nodes and 46 arcs and is
used for diagnosis in a medical domain. It has been considered as a benchmark
for evaluating learning algorithms. All the experiments have been carried out on
the first 10000 cases of the ALARM database (and comparing the results with
the true ALARM network). The scoring function used in all the experiments is
the K2 metric [12].

We have run the HCSO with two different radii: r = 36 (the maximum radius
in this case) and r = 7. For VNSO, we have used kmax = 7 and the initial radius
is r = 7. We have also used three different options to obtain the initial solution:

Stochastic Local Algorithms for Learning Belief Networks 235

– S-PC: Learning a network using the PC algorithm [22] and extracting a
topological ordering.

– S-∅: To start from an empty dag and an arbitrary ordering (in our case we
used the ordering of the variables in the database).

– S-K2SN: To initialize the search with the result of the algorithm K2SN [9].
This algorithm is an extension of the algorithm K2 that does not require a
given ordering: Starting from an empty graph, K2SN iteratively determines
the best node to add, until all the nodes have been included in the graph. At
each step, the best parent set for each node not previously introduced in the
structure is selected (among the nodes already included in the graph, as the
K2 algorithm does) and the node producing the best score is added to the
graph, linking it to its corresponding parent set. In this way K2SN returns
an ordering and a graph compatible with this ordering.

As stopping criterion, we have chosen a maximal number of two iterations
without improvement, combined with a maximal number of three total iterations.

In order to compare our algorithms with the classical local search methods,
we also use the classical hill-climbing in the space of dags (HCST), with operators
of arc addition, arc removal and arc reversal, and the same three initialization
methods.

6.1 Experimental Results

The information we have collected from each experiment is the following: the
value of the K2 metric (log) of the best individual evaluated; the number of
arcs added (A), deleted (D) and inverted (I), compared with the true ALARM
network; the number of iterations carried out by the algorithm, i.e., the total
number of hill-climbing searches carried out (nS); the total number of individu-
als evaluated during the search (nE); the total number of statistics (local scores)
used (tS); the total number of different statistics calculated (tSC) (using a hash-
ing method, we do not need to recalculate a local score already computed); the
mean number of variables involved in the statistics (mV); finally, we also display
the value (KL) of the best individual evaluated, which is defined as follows:

KL(G : D) =
n∑

i = 1
Pa(xi) 6= ∅

Dep(xi, Pa(xi)) (5)

where:

Dep(X,Y) =
∑
xi,yj

P (xi, yj)
P (xi, yj)

P (xi)P (yj)
(6)

Note that KL(G : D) is a decreasing monotonic transformation of the Kull-
back distance between the probability distribution associated to the database
and the probability distribution associated to the network G [5] (we use this

236 L.M. de Campos and J.M. Puerta

transformation because it can be calculated very efficiently, whereas the compu-
tation of the Kullback distance has an exponential complexity). The interpreta-
tion of KL(G : D) is: the higher this parameter the better is the network.

So, we have collected five measures of the quality of the learned networks (K2,
KL, A, D and I) and five measures of the complexity of the search methods (nS,
nE, tS, tSC and mV). nE represents the number of dags evaluated in the case of
HCST, and the number of orderings evaluated for HCSO and VNSO. tSC is an
interesting measure because computing a new local score (not previously stored)
requires accessing to the database and it can be a time-consuming process. The
complexity of the calculus of these local scores increases exponentially with the
value of mV. Although the cost of accessing to the value of a stored local score
is much smaller, it is also interesting to know the value tS, because all these
local scores have been actually used to compute the (global) scoring values. The
measures nE, tS and tSC do not include the cost of the initialization step in the
S-PC case (which is quite high).

The results of the experiments are displayed in Tables 1, 2 and 3. For VNSO,
the experiments have been carried out ten times. Table 2 displays the average
value µ and the standard desviation σ of each item.

Table 1. Results for HCSO.

Radius = 36
Empty K2SN PC

K2 -47080.22 -47076.20 -47109.89
KL 9.2740 9.2740 9.2655
A 1 1 1
D 1 1 2
I 0 0 0
nS 1 1 1
nE 17316 3330 3996
tSC 51609 20160 26263
tS 1.39E7 2.52E6 2.96E6
mV 4.83 4.35 4.39

Radius = 7
Empty K2SN PC

K2 -47513.60 -47079.60 -47117.67
KL 9.2687 9.2762 9.2639
A 23 4 2
D 3 1 3
I 11 0 0
nS 1 1 1
nE 7280 1300 3120
tSC 18333 11384 17266
tS 2.88E6 4.27E5 9.73E5
mV 4.67 4.15 4.36

The best result found by the search algorithms is a network with a value
of the K2 metric equal to -47076.20 (VNSO-S-∅, VNSO-S-K2SN and HCSO-S-
K2SN are all able to obtain this network). Note that the K2 and KL values of
the true ALARM network for the database being used are equal to -47086.57
and 9.2744, respectively.

First, we have to note that the initialization method used is quite relevant
from the point of view of the quality of the obtained result (K2, A, D, and I
values) and the efficiency of the search process (nS, nE, tSC and tS values) for
all the methods (Table 4 displays the K2 and KL values for the different initial
networks). The best initialization is always produced by the K2SN algorithm
(particularly, a simple HCSO initialized with K2SN produces the best result).
This is not surprising for VNSO and HCSO because K2SN is explicitly designed
to work with orderings, but is somewhat surprising for HCST. Another interest-

Stochastic Local Algorithms for Learning Belief Networks 237

ing result is that the more informed initialization S-PC is not better than the
‘vacuous’ initialization S-∅ when searching in the space of the orderings (the ex-
ception is HCSO with a small radius). It seems to us that PC directs the process
towards a suboptimal local maximum, which is difficult to offset by the search
process.

Table 2. Results for VNSO.

Empty K2SN PC
µ σ µ σ µ σ

K2 -47087.39 12.26 -47076.49 0.90 -47110.08 0.41
KL 9.2731 0,004 9.2740 0.000 9.2655 0.000
A 4.5 3.03 1.8 0.42 1.9 0.32
D 1.6 0.52 1.0 0.0 2.0 0.0
I 0.8 1.03 0.0 0.0 0.0 0.0
nS 181.0 99.3 96.1 29.02 68.6 17.3
nE 327335 204091 179865 55924 99061 30844
tSC 68087 11680 49902 5664 54670 7832
tS 5.98E7 2.73E7 4.16E7 1.12E7 2.43E7 6.53E6
mV 4,96 0,06 4.79 0,08 4.85 0.1

The results obtained support the conclusion that searching in the space of
the orderings is a good idea: Both VNSO and HCSO outperform HCST in all
the cases (except HCSO-S-∅2).

Table 3. Results for HCST.

Empty K2SN PC
K2 -47267.11 -47081.66 -47133.41
KL 9.2657 9.2761 9.2708
A 11 3 3
D 4 1 1
I 6 0 2
nS 1 1 1
nE 72335 15820 17901
tSC 3280 5384 1804
tS 1.47E5 5.56E4 3.65E4
mV 2.98 3.65 3.21

Focusing on the methods that search in the space of the orderings, restricting
the search process by using a small radius produces results slighty worse than
the unrestricted search, from the point of view of the solution quality, but with
an important gain in efficiency. We conjecture that a radius of about a half of
the maximum radius would be an optimal choice. On the other hand, VNSO
is better than HCSO if we use the same radius, as we could expect. However,
HCSO with maximum radius (r = 36) behaves even a bit better than VNSO
2 remember that this initialization uses the ordering of the variables in the database,

which is a particularly bad ordering.

238 L.M. de Campos and J.M. Puerta

with small radius (r = 7). We also conjecture that VNSO equipped with a radius
of about one third of the maximum radius would produce excellent results.

Table 4. K2 and KL values for the three initial networks.

Empty K2SN PC
K2 -86822 -47515 -51083
KL 0.0 9.2205 8.3170

With respect to the complexity of the search methods, although HCSO eval-
uates less individuals than HCST3, the cost of evaluating each individual for
HCSO is greater than for HCST. Overall, although HCSO gives results better
than HCST, the latter is more efficient than the former. Obviously, the complex-
ity of VNSO increases considerably. Nevertheless, we have observed that VNSO
always finds the best individual in the first iteration (of step (a)), and due to
the stopping criterion selected, it needs to perform another complete iteration
to halt. So, the complexity of VNSO could be considerably reduced without
compromising the quality of the result by performing only one iteration.

7 Concluding Remarks

In this work we have proposed a new strategy for learning belief networks based
on searching for good orderings and searching for good networks compatible
with a given ordering. Moreover, a new search method has been adapted to this
problem. The proposed methods have improved the results obtained by other
classical search methods that explore the space of dags. Nevertheless, a more
systematic experimentation has to be done in order to confirm this conclusion.
We also plan to study in the future other variants of VNS, as well as other
operators for defining local changes in the space of the orderings.

Acknowledgements. This work has been supported by the Spanish Comisión
Interministerial de Ciencia y Tecnoloǵıa (CICYT), under project TIC 2000-1351.

References
1. Acid, S., Campos, L.M. de: BENEDICT: An algorithm for learning probabilistic

belief networks. In: Proceedings of the Sixth International Conference of Infor-
mation Processing and Management of Uncertainty in Knowledge-Based Systems
(1996) 979–984

2. Acid, S., Campos, L.M. de: A hybrid methodology for learning belief networks:
BENEDICT. Int. J. Approx. Reason., to appear

3. Beinlich,I.A., Suermondt, H.J., Chavez, R., Cooper, G.: The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks.
In: Proceedings of the Second European Conference on Artificial Intelligence in
Medicine (1989) 247–256

3 This suggests that the space of the orderings is more ‘smoother’ than the space of
dags.

Stochastic Local Algorithms for Learning Belief Networks 239

4. Buntine, W.: A guide to the literature on learning probabilistic networks from
data. IEEE T. Knowl. Data En. 8 (1996) 195–210

5. Campos, L.M. de: Independency relationships and learning algorithms for singly
connected networks. J. Exp. Theor. Artif. In. 10 (1998) 511–549

6. Campos, L.M. de, Huete, J.F.: On the use of independence relationships for learn-
ing simplified belief networks. Int. J. Intell. Syst. 12 (1997) 495–522

7. Campos, L.M. de, Huete, J.F.: A new approach for learning belief networks using
independence criteria. Int. J. Approx. Reason. 24 (2000) 11–37

8. Campos, L.M. de, Huete, J.F.: Approximating causal orderings for Bayesian net-
works using genetic algorithms and simulated annealing. In: Proceedings of the
Eighth International Conference of Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Vol. I (2000) 333–340

9. Campos, L.M. de, Puerta, J.M.: Stochastic local and distributed search algorithms
for learning belief networks. In: Proceedings of the Third International Sympo-
sium on Adaptive Systems (ISAS): Evolutionary Computation and Probabilistic
Graphical Models (2001) 109–115

10. Cheng, J., Bell, D.A., Liu, W.: An algorithm for Bayesian belief network construc-
tion from data. In: Proceedings of AI and STAT’97 (1997) 83–90

11. Chickering, D.M.: Learning Bayesian networks is NP-complete. In: Fisher, D.,
Lenz, H.J. (eds): Learning from Data. Lectures Notes in Statistics, Vol. 112.
Springer-Verlag (1996) 121–130

12. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Mach. Learn. 9 (1992) 309–347

13. Dash, D., Druzdzel, M.: A hybrid anytime algorithm for the construction of causal
models from sparse data. In: Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence (1999) 142–149

14. Friedman, N., Koller, D.: Being Bayesian about network structure. In: Proceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelligence (2000) 201–210

15. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. Eur. J. Oper. Res. 130 (2001) 449–467

16. Heckemann, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Mach. Learn. 20 (1995) 197–244

17. Lam, W., Bacchus, F.: Learning Bayesian belief networks. An approach based on
the MDL principle. Comput. Intell. 10 (1994) 269–293

18. Larrañaga, P., Kuijpers, C.M., Murga, R.H., Yurramendi. Y.: Learning Bayesian
network structure by searching for the best ordering with genetic algorithms. IEEE
T. Syst. Man Cy. A 26 (1996) 487–493

19. Mladenović, N., Hansen, P.: Variable neighborhood search. Computer Oper. Res.
24 (1997) 1097–1100

20. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan and Kaufman
(1988)

21. Singh, M., Valtorta, M.: Construction of Bayesian network structures from data: A
brief survey and an efficient algorithm. Int. J. Approx. Reason. 12 (1995) 111–131

22. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Lectures
Notes in Statistics, Vol. 81. Springer-Verlag (1993)

23. Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Uncertainty
in Artificial Intelligence, Vol. 6. North-Holland (1991) 255–268

	Introduction
	Preliminaries
	Searching in the Space of the Orderings
	Variable Neighborhood Search
	Learning Algorithms Based on Orderings
	Experimental Evaluation of the Algorithms
	Experimental Results

	Concluding Remarks

