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Abstract. Although we can build a belief network starting from any or-
dering of its variables, its structure depends heavily on the ordering being
selected: the topology of the network, and therefore the number of con-
ditional independence relationships that may be explicitly represented
can vary greatly from one ordering to another. We develop an algorithm
for learning belief networks composed of two main subprocesses: (a) an
algorithm that estimates a causal ordering and (b) an algorithm for learn-
ing a belief network given the previous ordering, each one working over
different search spaces, the ordering and dag space respectively.

1 Introduction

Belief Networks (also called Bayesian Networks or causal networks) are
Knowledge-Based Systems that represent uncertain knowledge by means of both
graphical structures and numerical parameters. In a belief network, the quali-
tative component is a directed acyclic graph (dag), where the nodes represent
the variables in the domain, and the arrows represent dependence or causality
relationships among the variables. The quantitative component is a collection
of conditional probability measures, which measure our uncertainty [15]. The
reasons for the success of belief networks are that they allow: (i) to represent
the available information in a intelligible way (using causal relationships), (ii)
to decompose and store the information efficiently (by means of independence
relationships) and (iii) to perform inference tasks.

One of the most interesting problems when dealing with belief networks is
that of developing methods capable of learning the network directly from data.
As learning belief networks is NP-hard [12], then any kind of previous informa-
tion about the model to be recovered may be quite useful, in order to facilitate
the learning process. This information may be an ordering of the variables in the
network [2,10,13,17] or knowledge about the (possible) presence of some causal
or (in)dependence relationships [16]. Perhaps an expert may provide this kind of
information, but the development of tools capable of obtaining this information
as a first step to the learning process is clearly an interesting task.

In this work we focus on the problem of learning belief networks by first
obtaining a good ordering on the set of variables. In general, if we look for
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an optimal ordering then obtaining it may require as much information as the
learning of the complete structure itself, and the calculus may be quite com-
plex as well [6,14]. So, we propose to use only partial (and easily available)
information about the problem in order to get a ‘good’ approximation of the
ordering. The type of partial information we use will be a subset of the set of de-
pendence/independence relationships that could be represented in the network
(more precisely, marginal and conditional (in)dependence relationships of order
one), and the method to perform the search of the ordering will be simulated
annealing. Once we have obtained an ordering, it will be supplied to an algo-
rithm for learning belief networks that will use the ordering to reduce the search
space. This algorithm, called BENEDICT-step [3], is based on a (hybrid) method-
ology which is a combination of the methods based on independence criteria and
the ones based on scoring metrics.

The rest of the paper is organized as follows: in section 2 we briefly recall some
general ideas about belief networks, and some basic concepts about simulated
annealing. In the next two Sections we describe the components of our method:
in Section 3 we present our algorithm to estimate an ordering and Section 4
describes the algorithm BENEDICT-step. Section 5 shows some experiments with
the proposed method. Finally, Section 6 contains the concluding remarks.

2 Preliminaries

Given a belief network G, we can extract an ordering θ for its variables in the
following way: if there is an arrow xj → xi in the graph then xj precedes xi

in the ordering θ, i.e., θ(xj) < θ(xi). Such an ordering θ is a causal ordering
[6]. It is interesting to note that, given a dag, the causal ordering is not unique;
for example θ1 = {x1, x2, x3, x4, x5, x6} and θ2 = {x1, x4, x2, x3, x5, x6} are two
valid causal orderings for the first network in Figure 1.

Given any ordering θ, the Markov condition provides a systematic (but im-
practical) method to build a belief network [15]: for each node xi, assign, as the
parents of xi in the dag, the minimal subset of predecessors of xi in the ordering
θ which makes xi conditionally independent of the rest of its predecessors.
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Fig. 1. Original dag and those obtained by using orderings θ2 and θ3
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However, different orderings may give rise to different networks. For ex-
ample, let us start from the network in the left hand side of Figure 1.
Let θ1 = {x1, x2, x3, x4, x5, x6}, θ2 = {x4, x2, x1, x3, x5, x6} and θ3 =
{x6, x3, x2, x4, x1, x5} be three different orderings. If we apply the previous pro-
cess, for θ1 we recover the original graph, for θ2 we obtain the second graph, and
for the ordering θ3 we get the much more dense graph on the right hand side of
the same figure.

After assigning the corresponding conditional probabilities to the nodes, the
three models represent the same joint probability distribution. However, the set
of independence relationships represented in these dags is not the same. In the
graph associated to θ3 only a few independences are preserved, whereas using θ2
we get the same set of dependence/independence relationships as in the origi-
nal model (the dags corresponding to θ1 and θ2 are equivalent according to [18]).

2.1 Learning belief networks
There are a big number of algorithms for learning belief networks from data.
However, they can be grouped in two main approaches: methods based on con-
ditional independence tests, and methods based on a scoring metric.

The algorithms based on independence tests (also called constraint-based)
carry out a qualitative study on the dependence and independence properties
among the variables in the domain, and then they try to find a network repre-
senting most of these properties. The number and complexity of the tests are
critical for the efficiency and reliability of these methods. Some of the algorithms
based on this approach can be found in [10,11,16].

The algorithms based on scoring metrics try to find a graph which has the
minimum number of links that ‘best’ represents the data according to their own
metric. They all use a function (the scoring metric) that measures the quality
of each candidate structure and an heuristic search method to explore the space
of possible solutions. The algorithms that use this approach when the search is
in the space of general dags almost invariably use greedy searches. The scoring
metrics are based on different principles, such as entropy, Bayesian approaches
or Minimum Description Length [7].

2.2 Simulated Annealing
In this section we briefly recall some basic ideas about simulated annealing, the
search method we shall use to find a good ordering for the variables in a belief
network.

The idea behind simulated annealing [4] is to model numerically the physical
annealing process of solids in order to solve optimization problems:

Consider a system composed of N variables and a function E to optimize
(called the energy function). Our purpose is to find a configuration c of the N
variables that minimizes (or maximizes) the function E. Starting from a random
configuration (ci), representing the current state, we can compute the energy
E(ci) which measures the ‘quality’ of this configuration. A new configuration
cj can be obtained by applying a perturbation mechanism on ci. Let E(cj)
be the energy of this state, and ∆E be the difference of energy, i.e., ∆E =
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E(cj) − E(ci). If the energy decreases, ∆E ≤ 0, we accept cj as the new current
state, otherwise cj is only accepted with a probability given by exp

(−∆E
T

)
, being

T the temperature, a control parameter that decreases with time. This criterion
allows a ‘uphill climb’ from a configuration with a lower energy to another with
higher energy, thus preventing the process from being trapped at local minima.
The procedure continues the search until a stopping criterion is satisfied. This
criterion may be based on considering the final temperature (close to zero), the
value of the energy function or using a fixed number of iterations.

3 Approximating a Causal Ordering

We seek to find a good causal ordering for the variables in a (unknown) belief
network. Given any ordering, it is possible to build a belief network representing
the joint probability distribution, this network being an Independence map [15]
of the underlying probabilistic model. However, the density of the resultant dag
may change drastically depending on the selected ordering. Our goal is to find an
ordering able to represent as much true independence relationships as possible.
Given this ordering, the search space to find an optimal belief network reduces
considerably.

Taking into account that for a network with n nodes, the size of the set
of candidate orderings is n!, the task of finding an optimal ordering may be
quite complex. Several approaches to deal with this problem can be found in the
literature:

– Singh and Valtorta [17] use conditional independence tests to learn a draft
of the network, which is then used to get an ordering. Next, they utilize the
K2 algorithm [13] to learn the network.

– Bouckaert [6] proposes an algorithm which takes as the input a complete
dependence model and an initial ordering, and gives as the output an optimal
causal ordering.

– Larrañaga et al. [14] use a genetic algorithm to search for the best order-
ing. Each element of the population is a possible ordering, and their fitness
function is the K2 metric.

Our approach is situated between the works of Singh and Valtorta and those
of Larrañaga et al. The basic idea is to use only a subset of the (in)dependence
relationships of the model to learn a draft of the network and next apply a
combinatorial optimization tool to search for the ordering which preserves as
much of these dependences and independences as possible.

When dealing with conditional independence relationships whose true values
have to be estimated from a database by means of conditional independence
tests, two problems appear: the number of tests and their order (i.e., the num-
ber of variables involved in the conditioning set). On one hand, the number of
conditional independence tests that may be necessary to perform can increase
exponentially with the number of variables; on the other hand, computing the
truth value of a conditional independence test requires a number of calculations
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which grows exponentially with the order of the test. Moreover, another prob-
lem is not related with efficiency but reliability: conditional independence tests
of high order are not reliable except if the size of the database is enormous. So,
it may be interesting to restrict the kind of conditional independence tests that
we are going to carry out to tests of low order.

We propose using only conditional independence tests of order zero and one
(i.e. I(xi, xj |∅) and I(xi, xj |xk), respectively) for several reasons: i) these tests
are quite reliable even for moderate datasets, ii) the number of tests is poly-
nomial O(n3), and iii) this set of independences is quite expressive for sparse
structures, as those we usually find in real applications. These independences
are sufficient even for characterizing and learning some specific kinds of belief
networks [8,9]. We shall call 0-1 Independences to the set of conditional inde-
pendence relationships of order zero and one which are true for a given model,
also denoted as IM

0−1.
Our algorithm will take the set IM

0−1 obtained from the data set as the in-
put. In an initialization step, we build a undirected graph (denoted G0−1) as
a basic skeleton of the network: starting from the complete undirected graph,
we remove those links xi − xj such that there is a 0-1 independence between
xi and xj in IM

0−1. For example, let us suppose that the underlying model is
isomorphic to the graph I) in Figure 2. In this case the set of 0-1 Independences
is IM

0−1 = {I(x2, x3|x1)}. The initialization step produces the undirected graph
II) in Figure 2. In a second step we shall execute the search process, which tries
to find an optimal ordering. For any ordering θ being considered, we direct the
skeleton G0−1 as follows: if xi − xj ∈ G0−1, and θ(xj) < θ(xi) then we direct
the link as xj → xi. For the example in Figure 2, let us consider the following
orderings: θ1 = {x1, x2, x3, x4}; θ2 = {x2, x3, x4, x1}; θ3 = {x1, x2, x4, x3} and
θ4 = {x3, x1, x2, x4}. Using these orderings we obtain the dags III), IV), V) and
VI) respectively in Figure 2.
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Now, let us describe the different components of the search process:
• Energy function: For each configuration (ordering) θ we try to measure

the degree g(θ) in which, after directing G0−1 according to the ordering θ (thus
obtaining a dag Gθ

0−1), the dependence and independence relationships in IM
0−1

are preserved in the dag Gθ
0−1. Let us denote IGθ

0−1 to the set of independence
relationships of order zero and one that are valid in Gθ

0−1 (using d-separation)
and 〈., .|.〉 to any d-separation statement in a dag. So, we count the number of
dependence and independence relationships that are true in IM

0−1 but are not in
IGθ

0−1. Therefore, our energy function is:

g(θ) =
∑

xi,xj∧xi 6=xj

(I(xi, xj |∅) ⊗〈xi, xj |∅〉)+
∑

xi,xj ,xk∧xi 6=xj 6=xk

(I(xi, xj |xk) ⊗〈xi, xj |xk〉) (1)

where we assume that an independence relationship takes on a binary value
(1 for dependence, 0 for independence) and ⊗ corresponds to the exclusive-or
operator1. A value g(θ) = 0 represents that IM

0−1 and IGθ

0−1 are equivalent, and the
greater the value of g(θ) is, the greater number of dependence and independence
relationships are not preserved. Obviously, we shall prefer those orderings giving
a value of g as low as possible. For the example in Figure 2, we have g(θ1) = 0,
g(θ2) = 2, g(θ3) = 1 and g(θ4) = 0, thus θ1 and θ4 are the preferred orderings.

• Perturbation mechanism: Each configuration representing an ordering θ is
codified as a chain of variables, when xj appears before xi then xj precedes
xi in θ. Given a configuration, the new configuration is obtained by modifying
a randomly selected segment s in the current configuration. Two mechanisms
(randomly selected with 0.5 probability) have been implemented. The first one,
a transportation function that moves the segment toward a new random position
p (interchanging the elements); the second one is the inverse function that inverts
the ordering of the variables within the segment.

• Temperature function: A proportional decreasing function has been imple-
mented, i.e., Tk = αTk−1, where α ∈ (0, 1) and T0 is a fixed initial temperature.

• Stopping criterion: The algorithm stops when: i) all the 0-1 independences
have been captured by the current configuration θ, ii) the fitness is not modified
after two consecutive iterations or iii) the process has been iterated 10 times.

4 Learning Belief Networks with a Given Ordering

The algorithm we are going to describe, BENEDICT-step, utilizes a hybrid method-
ology: it uses a specific metric and a search procedure (so, it belongs to the group
of methods based on scoring metrics), although it also explicitly makes use of the
conditional independences embodied in the topology of the network to elaborate
the scoring metric and carries out independence tests to limit the search effort
1 We also tried more quantitative ways of evaluating the goodness of the ordering. The

idea is that a link may actually represent a very weak correlation, so its absence may
not be so important as the absence of other links representing strong correlations.
However, the best results were obtained by using the qualitative measure of eq.(1).
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(hence it has also strong similarities with the algorithms based on independence
tests). It is part of a family of algorithms [2,3] that share a common methodology
for learning belief networks, which we have called BENEDICT.

Let us briefly describe the BENEDICT methodology. The basic idea is to
measure the discrepancies between the conditional independences (d-separation
statements) represented in any given candidate network G and the ones displayed
by the database D. The lesser these discrepancies are, the better the network
fits the data. The aggregation of all these (local) discrepancies will result in a
measure g(G, D) of global discrepancy between the network and the database.

To measure the discrepancy of each one of the independences in the graphical
model and the numerical model (the database), BENEDICT uses the Kullback-
Leibler cross entropy:

Dep(X, Y |Z) =
∑

x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z) ,

where x, y, z denote instantiations of the sets of variables X, Y and Z respec-
tively, and P is a probability estimated from the database.

As the number and complexity of the d-separation statements in a dag G may
grow exponentially with the number of nodes, we cannot use all the d-separations
displayed by G, but some selected subset of ‘representative’ d-separation state-
ments. Given any candidate network G, BENEDICT will take into account the
conditional independencies for every two non-adjacent single variables, xi and
xj given the set of minimum size, SG(xi, xj), that d-separates xi and xj [1].
Finding this set takes some additional effort, but it is compensated by a de-
creasing computing time of the corresponding dependence degree. Moreover, it
also increases the reliability of the results, because less data is needed to re-
liably compute a conditional dependence measure of lower order. The method
BENEDICT uses for efficiently finding the sets SG(xi, xj) is described in [1].

In order to give a score to a specific network structure G given a database
D, BENEDICT uses the aggregation (the sum) of the local discrepancies, as the
measure of global discrepancy g(G, D) (which has to be minimized). Finally, the
type of search method used by BENEDICT is a simple greedy search that allows to
insert into the structure the candidate arc that produces a greater improvement
of the score (removal of arcs is not permitted).

Let us describe more specifically the algorithm BENEDICT-step. It works under
the assumption that the total ordering of the variables is known (this ordering
θ is just the one obtained by the simulated annealing algorithm). BENEDICT-
step consists in a process composed of n steps, where each step i represents the
inclusion of a new node xi (the i-th node in the ordering θ) in the (initially
empty) structure and the inclusion of the necessary arcs to construct the best
graph with i nodes, Gi.

At each step i only the d-separation relationships between xi, the node just
introduced, and the previous ones are considered, hence the metric used by
BENEDICT-step is

g(Gi, D) =
∑

xj , xj<θxi∧xj 6∈πGi
(xi)

Dep(xi, xj |SGi(xi, xj)) (2)
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Every step i is composed of a series of substeps. Each substep looks for the
arc whose addition to the current graph results in a greater decrease of the
discrepancy measure between the new graph (that one with the added arc) and
the data. The process continues in this way, adding at each substep the single
arc xj → xi, xj <θ xi, which most decreases the discrepancy, until the stopping
condition holds.

This condition is related with the fact that the algorithm also uses indepen-
dence tests to remove candidate arcs; in this way, the process stops naturally
when there is no more candidate arcs to consider (either because they are al-
ready inserted into the structure or because their extreme nodes are found to
be independent). At the end of the algorithm a pruning process (also based
on independence tests) is triggered (see [3] for details). This pruning partially
overcomes some of the problems due to the use of an irrevocable search strategy.

5 Experimental Results

We will consider the performance of the proposed methodology to recover the
so-called Alarm belief network (see Figure 3), which has been considered as a
benchmark for evaluating learning algorithms. This network contains 37 variables
and 46 arcs. The input data commonly used are subsets of the Alarm database
which contains 20,000 cases, specifically we used the first 3,000 cases in our
experiments.
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Fig. 3. The Alarm network

As we explained, the learning process is divided in two main processes. Let
us first analyze the results of each one separately, and then the final results of
the whole process.

The first subprocess consists on searching the ‘best’ ordering, θ, of the vari-
ables using a simulated annealing algorithm. The fitness value used was the
number (in percentage) of 0-1 (in)dependences preserved by the current order-
ing. In order to measure the quality of the ordering we will compare with the
Alarm ‘correct’ ordering. Due to the stochastic nature of the simulated anneal-
ing algorithm, we run several times the algorithm with the same training set.
In every case the final fitness was 97.0%, resulting different indistinguishable
orderings (one of these orderings is the ’correct’ ordering). After analyzing the
orderings obtained in our experiments we can extract some conclusions:
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1. The degree in which the database reflects the set of 0-1 (in)dependences in
the true model is important for getting a good output ordering.

2. For those subsets W of variables in the model with no 0-1 independence
relationships, we do not have enough information to discriminate which par-
tial orderings, involving the variables in W , are the correct ones. We found
different orderings, involving changes in the relative ordering of variables in
the set {35, 15, 34}, with the same fitness value. As we will see, the study of
these orderings will be relevant in order to get a better network.

3. There are several orderings with the same fitness value that are indistinguish-
able even with more information. For example, considering the variables 4
and 19, regardless of the relative ordering used, we get equivalent structures.

The second subprocess consists on, using an ordering θ, let the algorithm
BENEDICT-step to learn the structure of the network. In order to analyze its
behaviour, we supply the BENEDICT-step algorithm with the ‘correct’ ordering
and the same training data. From the topology of the learned network we observe:
a) There are three missing edges, 11 → 27, 12 → 32 and 21 → 31. The last
two arcs are not strongly supported by the data, as it was reported by several
authors. b) There is one extra arc between variables 31 and 27 which has not
been determined as independent by the independence tests; this arc is set while
trying to compensate the loss of the arc 11 → 27 (a total of 4 different arcs from
the original model). We have also computed several other measures to evaluate
the quality of the learned network from different points of view. These measures
are: 1.- the Kullback2 distance between the probability distribution associated to
the database and the probability distribution associated to the learned network.
2.- The K2 metric [13] (log version) and 3.- the BIC metric (Bayesian Information
Criterion) which includes a penalty term. Finally we compare all these collected
measures with those obtained by the K2 algorithm [13], running both algorithms
on the same conditions. The results shown in the first row of Table 1 allow us
to conclude that our algorithm is competitive and recovers a good model.

Now we are going to analyze the results obtained in the whole process. Usu-
ally when no ordering is known, the learning algorithm has to cope with the
entire dag space to learn the network. We can make a comparison3 between the
two steps method proposed and the single searching process. For that purpose we
have used a constraint based algorithm, BN Power Constructor (BNPC) [11] (we
use the software package available at http://www.cs.ualberta.ca/˜jcheng
/bnsoft.htm ). In Table 2 we show the results obtained by the BNPC algo-
rithm which are worse than those obtained by any of the different orderings θ,
used as entry to the algorithms BENEDICT-step and K2. All these orderings were
score-equivalent for the simulated annealing process.

2 Actually, we have calculated a decreasing monotonic transformation of the Kullback
distance computed in a very efficient form [8]. The interpretation is: the higher this
parameter the better is the network.

3 We do not compare the running times because the three algorithms considered, run
on different platforms and are implemented using different programming languages.
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In order to focus on how some local misplacements in the ordering can modify
the resulting learned network, we have studied the possible cases found by sim-
ulated annealing involving the relative orderings between 34, 35 and 15. As we
said, simulated annealing is not capable to discriminate among these orderings,
thus any configuration would be a possible input to the BENEDICT-step algorithm.
As we could expect, they give rise to different networks. Table 1 presents the
results obtained when we consider three orderings that differ only in the relative
ordering of the variables 34, 35 and 15. As we can observe, some of the order-
ings are worse than others, and the output belief network structure depends on
how lucky we were, in the first subprocess. As the ordering is obtained by using
only partial information (0-1 Independences), its quality might be questioned.
Hopefully, we do not have to reconsider the global ordering. In the general case,
the set of 0-1 Independences is quite significant, so the learned structure is a
‘good’ representation of the model. Anyway, we thought about that BENEDICT-
step with more information could detect some misplacements between variables
in θ and could discriminate among indistinguishable orderings. Note that a ‘bad’
ordering (as for example the order θ3 in Figure 1) tends to create cliques (we
consider cliques having at least three nodes) among the variables involved.

Table 1. Comparison between the algorithms BENEDICT-step and K2

BENEDICT-step K2 Relative
Ordering Kullback Hamming BIC K2 Kullback Hamming BIC K2 ordering
’correct’ 9.20 4 -33919 -14425 9.23 2 -34351 -14424

θ1 9.11 14 -34830 -14624 9.21 12 -35697 -14520 34≺15≺35
θ2 9.18 12 -34606 -14533 9.23 8 -36205 -14494 34≺35≺15
θ3 9.21 8 -34358 -14479 9.23 5 -35203 -14450 35≺34≺15

Table 2. Performance measures for the network learned by BNPC

Kullback Hamming BIC K2
9.12 7 -35197 -14541

We have developed a heuristic rule that, using the information stored in the
output network, allows us to obtain a sparser representation of the same model.
This refinement is carried out by determining local rearrangements in θ, giving
rise to also local changes in the structure, but improving the quality of the
output network. Basically the heuristics consists on selecting a variable xi in a
clique and generating a new ordering θ∗, where this variable changes its relative
position with respect to some variables in the clique.

In Table 1, from the ordering θ1 to θ3, we can follow the steps of our heuristic
focused on variables 34, 35 and 15. We make the comparisons taking as refer-
ence the structure obtained by BENEDICT-step when it uses the Alarm ‘correct’
ordering as the input (the initial erroneous arcs remain). Thus, taking the worst
ordering, 34 ≺ 15 ≺ 35, as the input, our first change involves the variables 15
and 35 (the last two variables in the clique), giving rise to a sparser network
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and also with a better fitness, which is accepted as the current one. Then, using
the same reasoning, the change between variables 35 and 34 is performed. Note
that the resulting ordering is the correct relative ordering. The algorithm stops
at this point.

6 Concluding Remarks

We have addressed the problem of learning belief networks from data by means
of a two steps process: estimating a good ordering of the variables (thus reduc-
ing the search space for the belief network learning algorithm) and then using
a learning algorithm that exploits this ordering. The search for a good ordering
is carried out by means of a simulated annealing method, which uses a func-
tion based on independence tests of order zero and one to measure the fitness.
The algorithm that uses this ordering to learn the network is a member of the
BENEDICT family, whose main characteristics are its hybrid nature and the use
of d-separating sets of minimum size.

In addition to the specific algorithms that we use to develop our method,
the main methodological difference with respect to other approaches [14,17] is
that the two subprocesses are run independently on each other (this means
that we carry out two ‘simple’ different search processes (over different spaces)
instead of a single search process which intermingles the orderings and the graph
structures).

In general, to obtain an optimal solution to the problem of finding a causal
ordering, it would be necessary to learn the network (i.e., to have information
about the complete set of valid conditional independence statements). Our ex-
periments show that our approximate method (based on conditional indepen-
dence tests of low order, for reasons of reliability, expressiveness and efficiency)
is quite successful. Its combination with BENEDICT-step gives a very general and
competitive algorithm for learning belief networks. However, a thorough exper-
imental work, using networks of different complexity, is necessary in order to
obtain definitive conclusions.

In future works we plan to continue the development of heuristic rules
allowing the algorithm BENEDICT-step (or any other learning algorithm that
requires an ordering) to make local rearrangements in the ordering to improve
the quality of the learned network. We will also study methods that refine a
given ordering (e.g., the output ordering provided by our algorithms) to obtain
an optimal solution. These methods could be based on the idea of the reliability
about the particular position of any given variable xi in the ordering, which in
turn is directly related to the number of 0-1 independences where this variable
xi is involved.
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