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Abstract While the problem of building recommender systems has attracted con-
siderable attention in recent years, most recommender systems are designed for rec-
ommending items to individuals. The aim of this paper is to automatically recommend
a ranked list of new items to a group of users. We will investigate the value of using
Bayesian networks to represent the different uncertainties involved in a group rec-
ommending process, i.e. those uncertainties related to mechanisms that govern the
interactions between group members and the processes leading to the final choice or
recommendation. We will also show how the most common aggregation strategies
might be encoded using a Bayesian network formalism. The proposed model can be
considered as a collaborative Bayesian network-based group recommender system,
where group ratings are computed from the past voting patterns of other users with
similar tastes.
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1 Introduction

Recommender systems (RS) provide specific suggestions about items (or actions)
within a given domain which may be considered of interest to the user (Resnick and
Varian 1997). Depending on the information used when recommending, traditional
RS are mainly classified into content and collaborative-based RS, although hybrid
approaches do exist. The first type recommends a product by considering its content
similarity with those products in which the user has previously expressed an interest.
The second alternative attempts to identify groups of people with similar tastes to the
user and to recommend items that they have liked. Most RS are designed for individual
use, i.e. there is an active user who receives recommendations about certain products
once they have logged on to the system.

In this paper, we will focus on the related problem of group recommending (GR),
where the objective is to obtain recommendations for groups of people (Jameson and
Smyth 2007). This kind of RS is appropriate for domains where a group of people
participate in a single activity such as watching a movie or going on vacation and also
in situations where a single person must make a decision on behalf of the group.

In one way or another, GR involves merging different individual preferences. In
these situations, it is natural that one of the most important issues is the search for
an aggregation mechanism to obtain recommendations for the group. According to
Pennock and Wellman (2005) “... there is nothing close to a single well-accepted
normative basis for group beliefs, group preferences or group decision making.”, and
many aggregation strategies can therefore be found in literature for group decisions
(Masthoff 2004; Masthoff and Gatt 2006; Yu et al. 2006; Jameson and Smyth 2007).
It is typically assumed that member preferences are given using a rating domain (let
us say from 5%, really like, to 1*, really hate). An aggregation strategy is then used to
determine the group rating. For example, let us consider a group with three individuals,
John, Ann and Mary, where John rates a product 5%, Ann rates it 2*, and Mary rates
it 5*. Following an average aggregation criterion, we could then say that the group
rating for this product is 4*.

As in the previous example, the methods proposed in GR literature (see Jameson
and Smyth 2007 for a review) do not deal with uncertainty. They assume that the inputs
of the aggregation functions (i.e. user preferences) are precise and use a merging strat-
egy to compute precise outputs. This assumption is not necessarily true, especially if
we consider that the user’s preferences are normally determined by means of auto-
matic mechanisms. In these cases, a probability distribution over the candidate ratings
might be used to express user likelihoods. For example, Table 1 shows the probability
distributions representing the preferences of three users (A, B, and C). In this case,

Table 1 User ratings for a given

item User 1* 2% 3% 4% 5%
A 0.2 0.2 0.2 0.19 0.21
B 0 0 0 0.1 0.9
C 0.49 0 0 0 0.51
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although 5* might be considered the most probable rating, we will not have the same
confidence about every situation.

Surprisingly, little attention has been paid in GR literature to the problem of man-
aging uncertainty although it has been well established in the general group decision
framework (see Clemen and Winkler 1999; Genest and Zidek 1986 for a review). In
this paper, therefore, we will focus on this particular problem. We maintain that two
different sources of uncertainty can be found in group recommending processes: the
uncertainty shown when user preferences are set, i.e. the user’s personal opinion about
an item or feature; and the uncertainty which is inherent to the merging process.

The purpose of this paper is to investigate the value of using Bayesian networks
(BN) to represent how different individuals in a group interact in order to make a final
choice or recommendation. In our approach, the BN formalism is used to represent
both the interactions between group members and the processes leading to the final
choice or recommendation. We will show how common decision rules in literature
could be managed by adequately designing canonical models with the BN language,
thereby shedding new light on the combination processes. Discussion about subjects
such as how the groups are formed, how long they have existed, relationships between
group members, how the group might interact to reach a consensus, etc. are beyond the
scope of this paper. We shall assume that all the individuals use the same set of labels
to express their preferences for an item, and that these preferences are represented by
means of a probability distribution (probably estimated from a data set).

We consider BNs appropriate because they combine a qualitative representation
of the problem through an explicit representation of the dependence relationships
between items, users and groups, with a quantitative representation by means of a set
of probability distributions to measure the strength of these relationships. Throughout
the process, we must consider the computational aspects of the RS, where the sparse-
ness of the data and the fact that the ranking should be computed in real time represent
two challenges.

The second section of this paper briefly examines group recommender systems
and related work. Section 3 presents the proposed BN-based model which enables the
interaction between individuals to be represented. Section 4 examines how to represent
the strength of the individuals’ interactions (i.e. conditional probability distributions)
and Sect. 5 discusses how inference is performed in order to make recommendations
to the group. Section 6 examines the experimental framework. Section 7 discusses
the experimental results obtained when considering uncertainty in individual ratings
and in Sect. 8 we study those situations where the process behind the group rating is
also uncertain. Finally, our conclusions and comments regarding further research are
discussed in Sect. 9.

2 Classification of group recommender systems and related work
Although GR is quite a new research topic, many papers on this problem have already
been published. The specific objectives of recommender systems in the research pub-

lished so far are determined by the characteristics of the domain for which the system
has been developed. These characteristics significantly affect the choice of design and
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Fig. 1 Classification of Group Recommending Systems

each publication therefore focuses on a specific issue (from how to acquire information
about group preferences or how the system generates and explains the recommenda-
tions to studying the mechanism used to reach a consensus (Jameson and Smyth
2007)). As a result, relating the different approaches is a difficult task.

In this section, we will present a new classification taxonomy for group recom-
mending systems. This classification is based on three independent components of
primary importance in the design of a group recommending system and not on the
particular techniques used to solve each problem: the information source, the aggre-
gation criterion used to make the recommendations, and the user’s interaction with
the system. Figure 1 shows a graphical representation of the proposed classification.

— Source of information: This classification criterion, which has been borrowed from
classical RS literature (Adomavicius and Tuzhilin 2005), distinguishes between
content-based (CB) and collaborative filtering (CF). In the first case, the recom-
mended items are those which are similar to the ones that individuals have found
interesting in the past. As a result, it is necessary to analyze the content’s features
for recommending.

The second alternative considers that the recommendations for a target product have
been obtained by considering how people with similar tastes rated a product in the
past. These systems are based on the idea that people will agree in future evalua-
tions if they have also agreed in their past evaluations. The information sources are
therefore the preference ratings given by similar users.

A new category can obviously be obtained if we consider hybrid approaches that
combine both (collaborative and content-based) methods.

— Recommendation strategies:

Once we have the information to hand, the strategy used for aggregating this infor-
mation is a central point in group recommending, and generally in any group deci-
sion process. In this case, two different approaches can be distinguished. The first

! Without loss of generality, we have decided not to include this category in our taxonomy since, to the best
of our knowledge, no study has tried to combine both techniques in the group recommending framework.
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approach, aggregating recommendations (AR), is a two-step strategy, where an indi-
vidual recommendation is first obtained for each group member, and then a common
recommendation is obtained by merging these individual recommendations. In the
second approach, aggregating profiles (AP), the objective is to obtain a common
profile by representing group preferences. This can be done explicitly, where the
individuals use a common group account to give their preferences, or implicitly,
by means of an aggregation mechanism for the different individuals’ profiles or
preferences.
— Individual interactions

Finally, a group recommending system can also be categorized by considering the
way in which the users interact with the system. The individuals can be dichoto-
mized into passive members (PM) and active members (AM). Focusing on the active
members, the final purpose is to reach a consensus between the group members and,
like many decision support system approaches, it is necessary for the users to eval-
uate the system recommendations. In contrast, when the members are passive, the
final purpose is only to provide a recommendation to the group, as might be the
case when using an RS in a marketing campaign. In this situation, the individuals
do not interact with the system in order to evaluate the proposed recommendations.

Since we use three non-overlapping criteria for classification purposes, a given GRS
can be classified using three labels, one for each category. For instance, a GRS can
be classified as CB4+AP+PM if the group profile is obtained by combining the infor-
mation about the content of the items which have been previously evaluated by each
user. This profile will be used to send the final recommendations to the group.

2.1 Related work

Once the taxonomy has been presented, we will then go on to classify previously
published GR systems.

— CB+AP+PM: most published GRSs might be included in this category. For exam-

ple, let us consider MusicFX (McCarthy and Anagnost 2000). Given a database of
member preferences for musical genres (each user rates each of the 91 genres on a
five-point scale), the group profile is computed by summing the squared individual
preferences. Using a weighted random selection operator, the next music station
to be played is then selected. No interaction with the system is possible except by
changing user preferences.
The inputs in the case of group modeling (Masthoff 2004) are user preferences (rat-
ings) for a series of programs, and in this paper we study the performance of several
aggregation strategies. The article (Yu et al. 2006) presents various TV program
recommendations for multiple viewers by merging individual user preferences on
features (e.g. genre, actor, etc.) to construct a group profile. The aim of the aggrega-
tion strategy is to minimize the total distance in such a way that the merged profile
is close to most user preferences, thereby satisfying most of the group.

— CB+AP+AM: The Travel Decision Forum (Jameson 2004) was developed to help
a group of users agree on the desired attributes of a vacation. This system allows
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group members to collaboratively specify their preferences and to reach an agree-
ment about an overall solution. In this case, a group profile is obtained through the
interaction of the members, taking into account the system’s current recommenda-
tion which is obtained by aggregating individual preferences for each dimension.
In the article (Kudenko et al. 2003), a system is presented to help a group of users
reach a joint decision based on individual user preferences.

— CB+4AR+PM: Intrigue (Ardissono et al. 2003) recommends tourist attractions for
heterogeneous groups that include homogeneous subgroups where the members
have similar preferences. In this system, the users record their preferences for a
series of tourist attractions, and recommendations (obtained using a fuzzy AND)
are then merged using a weighted scheme where each weight represents the rele-
vance of the corresponding subgroup (for instance, a subgroup could be particularly
influential since it represents a large portion of the group). Although the system
explains their recommendations, it has no means of interacting with the user.

— CF+AR+PM: Polylens (O’Connor et al. 2001), an extension of MovieLens (Her-
locker et al. 2004), recommends movies to groups of users. This system uses a
nearest neighbor-based algorithm to find the individuals with the most similar tastes
to those of each group member and to obtain recommendations for every user. The
voting preferences of these individuals are then merged according to the principle
of least misery (minimum criterion). Under the same classification, (Chen et al.
2008) uses genetic algorithms to learn the group rating for an item that best fits the
existing ratings for the item given by the individuals and the subgroups. The idea
is that it is possible to learn how the user interacts from the known group ratings.
The proposed algorithm therefore recommends items based on the group’s previous
ratings for similar items.

2.1.1 The role of uncertainty

As far as the authors are aware, the role of uncertainty in group recommending pro-
cesses has not been considered. Nevertheless, many papers have been published which
tackle this problem when recommendations are made to individual users (Zuker-
man and Albrecht 2001; Albrecht and Zukerman 2007). Focusing on probabilistic
approaches, those relating to the one presented in this paper include content-based
RSs (Mooney and Roy 2000; de Campos et al. 2005), collaborative filtering RSs
(Breese et al. 1998; Schiaffino and Amandi 2000; Butz 2002; Lekakos and Giaglis
2007; Miyahara and Pazzani 2000; Heckerman et al. 2001) and iybrid methods (Pope-
scu et al. 2001; de Campos et al. 2006).

In terms of the group’s process, the treatment of uncertainty is, however, a well-
known problem in other disciplines and so in this section we will review those papers
which focus on the combination of probabilistic information from a purely statistical
approach (see Clemen and Winkler 1999; Genest and Zidek 1986). In general, we
might consider these methods as analytical models operating on the individual prob-
ability distributions to produce a single “combined” probability distribution. These
approaches can generally be further distinguished into axiomatic approaches (by con-
sidering a set of assumptions that the combination criteria might satisfy) and Bayesian
approaches:
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— Axiomatic approach: the following common functions deal with belief aggregation:
(i) Linear Opinion Pool where the group probability, Pr(G), is obtained as the
weighted arithmetic average over the individual probabilities, Pr(V;),i =
1,...,n,ie. Pr(G) = Z?:[ w; Pr(V;), with w; being the weights totaling
one.
(i1) Logarithmic Opinion Pool (weighted geometric average) defined as Pr(G) =
o H?:l Pr(V;)¥i, with o being a normalization constant and the weights w;
(called expert weights) are typically restricted to total one. If the weights are
equal to 1/n, then the combined distribution is proportional to the geometric
average.

— Bayesian Approach (Genest and Zidek 1986; Clemen and Winkler 1999): this has
been used to combine expert information by taking into account the so-called Naive
Bayes assumption. In our context, in order to obtain efficient combinations, indi-
vidual opinions are assumed to be conditionally independent given the group vote.

3 Modeling group decision networks

The purpose of this paper is to develop a general methodology based on the Bayes-
ian network (BN) formalism for modeling those uncertainties that appear in both the
interactions between group members and the processes leading to the final choice
or recommendation. For example, let us imagine that we want to advise a group of
tourists to visit a particular monument or not. In such a situation, we should assume
that the individuals in the group are unfamiliar with the monument (or item to be
recommended). Each group member might speculate about their possible preference
for visiting this monument and this is necessarily uncertain. Nevertheless, the group
recommendations must be obtained by aggregating these preferences.

Individual preferences can be computed by considering two alternatives: the first
considers content information (such as a description of the monument, location, etc.)
and the second considers how people with similar tastes rated this monument in the
past (for instance, dislike or 1ike). This is the approach followed in this paper
where the similarity between users will be computed by considering how common
items have been rated. Following the classification presented in Sect. 2, our GRS can
therefore be categorized as CF+AR+PM.

As a collaborative approach, our model will inherit most of the disadvantages of
classical collaborative filtering approaches. For example, the system cannot draw any
inferences about items for which it has not yet gathered sufficient information, i.e. we
also have the First-Rater problem. Similarly, we also inherit the Cold-Start problem
since it is difficult to recommend items to new users who have not submitted any
ratings. Without any information about the user, the system is unable to guess user
preferences and generate recommendations until a few items have been rated.

For our information sources, we will consider a database of ratings R (which is
usually extremely sparse) to store user ratings for the observed items. For example,
Table 2 shows the ratings given by each user U; for an item [; using the values 1 =
dislike and 2 = 1ike (the value '—’' represents the fact that the user has not seen
the item).
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214 L. M. de Campos et al.

Table 2 Database of user

ratings Yo Ui U2 Us Us Us
I 1 1 2 2 1 1
I 1 - 2 - 2 2
I3 1 1 2 1 1 2
Iy 2 - 1 - 1 2
I5 2 2 1 1 1 1
Ig 2 2 - 2 2 2
Iy 2 - - - 1 2

In order to achieve this objective, our aim is to build a BN where two compo-
nents might be considered. The first, described in Sect. 3.1 relates to the collaborative
component of the recommender system. Both the topology of this component and the
probability values will be learned from a set of past user ratings, and this will be used to
compute a probability distribution representing the preferences of each group member
for a given item. The second component will be used to merge these preferences in
order to reach the final group opinion. This component is modeled using a BN with a
fixed structure given the group members, and the weights will be computed based on
the ratings provided by the group members (see Sect. 3.2).

3.1 BN-based collaborative component

In this section, we will briefly describe this component (those readers interested in
further details can consult (de Campos et al. 2008)). Our objective is to model how
each user should rate an item. In order to represent relationships between users, we
shall include a node, U;, for each user in the system. We use U/ to denote the set of
user nodes, i.e. Y = {Uy, ..., U,}. The user variable U; will therefore represent the
probability distribution associated to its rating pattern. For instance, using the data in
Table 2, each node will store two probability values representing the probability of U;
liking (Pr(U; = 2)) or disliking (Pr(U; = 1)) an item.

In order to facilitate the presence of dependence relationships between individuals
in the model (to avoid a possibly complex network topology), we propose that a new
set of nodes V be included to denote collaborative ratings. There is one collaborative
node for each user in the system, i.e. V = {Vq, Va, ..., V;;}. These nodes will represent
a probability distribution over ratings, and they will therefore take their values in the
same domain as .

3.1.1 Learning stage

Given an active user, the parent set of the variable V,, in the graph, Pa(V,), will be
learnt from the database of votes, R. This set will contain those user variables, U, € U,
where U, and U, are most similar in taste, i.e. the best neighbors for the active user.
Given a similarity measure, the set Pa(V,) can therefore be obtained by using a thresh-
old or by only considering the first p variables in the ranking (see Fig. 2). It should be

@ Springer



Uncertainty in group recommending 215

Fig. 2 Collaborative
Recommending System
Topology

noted that we do not include the links between U; — V;, Vi, since we are modeling
a collaborative rating scheme where (assuming that the item being recommended has
not been observed by the active user) the predicted rating will only depend on those
ratings given by its neighbors.

The similarity measure proposed in this paper is a combination of two different,
but complementary, criteria: vote correlation between common items and the overlap
degree, i.e.

sim(Uq, Up) = abs(PCC(Ua, Up)) x D(Uq, Up) ey
The first criterion, which is normally used as the basis for calculating the weights in

different collaborative systems, attempts to capture those similar users, i.e. those with
the highest absolute value of Pearson’s correlation coefficient defined as

> (aj = Fa) (b, —Tp)

s = T2 X = F)?

PCCU,, Up) = 2)

where the summations over j are over those items for which users U, and U, have
recorded votes and 7, is the mean vote for user U,,. It should be noted that P C C ranges
from 41 to —1: +1 means that there is a perfect positive linear relationship between
users; —1 means that there is a perfect negative linear relationship; a correlation of
0 means that there is no relationship. Therefore, when there are no common items in
U, and U, voting records, then PCC(U,, Up) = 0 by default. In our approach, by
using the absolute value of PCC, abs(PCC), we consider that both positively (those
with similar ratings) and negatively correlated users (those with opposite tastes) might
help? to predict an active user’s final rating.

The second criterion tries to penalize those highly correlated neighbors which are
based on very few co-rated items, which have proved to be bad predictors (Herlocker
et al. 1999). We might therefore take into account the number of items that both U,
and U, rated simultaneously, i.e. their overlap degree. In particular, we consider that
the quality of U}, as the parent of variable U, is directly related with the probability
of a user U, rating an item which has been also rated by Up. This criterion can be
defined by the following expression:

2 For instance, if whenever Uy, rates as 1ike U, rates with dislike, then knowing that U had rated an
item with 1ike provides information about U, ’s possible rating.
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Fig. 3 Modeling groups

11 (Ua) N 1 (Up)
DWU,,Up) = ——F——.
‘ |11 (Up)]
where I (U) is the set of items rated by user U in the data set. It should be noted that
we are not considering the particular votes, merely whether the users rated an item or
not.

3.2 Modeling the group component

As mentioned previously, since groups are usually created by their members, we shall
not consider how groups are formed or how they are managed. We shall therefore
assume that we know the composition of the groups, and our problem is to study
how this information can be represented in the BN and also how to predict ratings for
groups.

We propose to identify a group G as a new node in the BN. Since the recommen-
dations are made by considering the preferences of its members, we propose that the
parents (Pa(G)) of the group node (G) will be the set of nodes in V representing its
individuals. In this case, we are modeling that the predictions of the group’s ratings
will depend on the collaborative predictions obtained for each of its members. Figure 3
illustrates a group G, with three members: Vi, Va, and V3. We use dashed lines to
represent user-group relations since we assume that the composition of the group is
known.

In this paper, we will focus on how different aggregation strategies can be repre-
sented in our BN-based model. In order to maintain generality (so that the proposed
aggregation mechanisms can be applied in more general situations®), we will use the
following independence assumption: given that we know the opinion (ratings) of all
the group members, group opinion does not change (it is independent) if the state of
any other variable in system X; is known, i.e. [ (G, X;|Pa(G)),VX; ¢ Pa(G;).Itis
important to remember that in certain domains this restriction might be very restric-
tive. For example, it might also be possible to consider other factors that would affect
the group rating such as the context. Nevertheless, the study of how to include these
factors in the model is beyond the scope of this paper.

3 For example, it might be used to combine multiple classifiers (Kittler et al. 1998; Abelldn and Masegosa
2007) where the new cases will be classified by considering all the results obtained by each classifier.
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Table 3 Stored probability values

P(Uy), P(Uy), P(U), P(U3), P(Uyg), P(Us)

P(V1|Uy, Uz) P 111, 1) P(v1,111,2) P(v1,112,1) P(v1,112,2)
P(Wh Uy, Uz, Uy) P(Wh1,1,1) P(W|1,1,2) P(Wh|1,2,1) P(W]1,2,2)
P(vy112,1,1) P(vy112,1,2) P(vy,112,2,1) P(v2,112,2,2)
P(V3|Uz, Us, Us) P(v3 11,1, 1) P(v3111,1,2) P(v3 11,2, 1) P(v3111,2,2)
P(v3112,1, 1) P(v3,112,1,2) P(v3,112,2,1) P(v3,112,2,2)
P(GalVy, V2, V3) P(gq,111,1,1) P(ga,111,1,2) P(ga,111,2,1) P(ga,111,2,2)
P(ga,112,1,1) P(ga,112,1,2) P(ga,112,2,1) P(ga,112,2,2)

In order to complete the BN-based model, it is necessary to estimate the local
probabilities that must be stored in the nodes. In particular, each node X; has a set of
conditional probability distributions, P (x;|pa(X;)) (except root nodes that store mar-
ginal probability distributions).* For each possible configuration pa(X;) of the parent
set Pa(X;), these distributions quantify the effect that the parents have on the node
X;.In our case, these probabilities are used to encode both the strength of the user-user
interactions and the processes leading to the final choice or recommendation for the
group. In Table 3, we show those probability distributions stored in the example of
Fig. 3, where for instance P (V»|1, 1, 2) represents P (V2 |u1,1, u3,1, u4,2). The method
of assessing the particular values will be discussed in Sect. 4.

3.3 How to predict the group rating: inference

Once the BN is completed, it can be used to perform inference tasks. In our case, we
are interested in the prediction of the group’s rating for an unobserved item, /. As evi-
dence, we will consider how this product was rated in the past.> The problem therefore
comes down to computing the conditional (posterior) probability distribution for the
target group G, given the evidence, i.e. Pr(G,|ev). For instance, let us assume that
we want to predict the rating given by G, in Fig. 3 to item I7. If we look at Table 2,
the evidences are ev = {Uy = 2, Us = 1, Us = 2} and the problem is to compute
Pr(Gg = 1| uop, ug,1, usp).

Since the BN is a concise representation of a joint distribution, we could propagate
the observed evidence through the network towards group variables. This propaga-
tion implies a marginalization process (summing out over uninstantiated variables).

4 Throughout this paper we will use upper-case letters to denote variables and lower-case letters to denote
the particular instantiation. More specifically, we use v; to denote a general value of variable V; and v; ;
to indicate that V; takes the jth-value.

5 1t should be noted that we consider that no member of the group has observed the items beforehand and
therefore the evidences are over the values taken by variables in /. In the case of a group member (let us
say U;) having also previously rated /, we shall instantiate both node U; and V; to the value of the given
ratings. The instantiation of V; will imply that there is no uncertainty about its rating when the information
is combined at a group level. Nevertheless, the computations are more complex in this situation.
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A general scheme might be:

Pr(Gq =slev) = D> Pr(Gy =slvi.....v) Pr(vi. ..., vlev) 3)
%

where vy, . .., vg represents a given configuration of the collaborative variables (parent
set) Pa(G,) and the sum is over the exponential number of possible configurations,
and this requires an exponential time O (r/F¢(¢a)l) with r being the number of candi-
date ratings. Considering that the evidence belongs to U/, the joint probability over the
collaborative variables might be computed as

k
Pr(vy, ..., vilev) =ZHPr(Vi =vilu”,ev)Pr(u™) 4
U-i=1

where the sum is over all the possible configurations, u~, of the set of uninstantiated
user variables, denoted by /™, also requiring an exponential time, O (ry,

These computations should be performed for each group variable when there is an
item to be recommended. As there is usually a large set of groups in the system, this
process becomes computationally expensive and reducing computational complex-
ity becomes a key design parameter, especially if the objective is to obtain scalable
strategies which can be implemented in real-time applications.

In order to tackle this problem, we propose the use of canonical models to repre-
sent conditional probability distributions. By means of these models, we can reduce
the number of probability values stored and develop specific inference algorithms.
In those cases where the computation of Pr(Vy, ..., Vik|ev) is complicated, we also
propose to approximate these values by using extra independence assumptions (see
Sect. 5).

4 Estimating the strength of the users’ interactions

In terms of assessing the probability values, we must distinguish between roots in the
graph, nodes in U/, and the remaining nodes. In particular, for every user node Uy, we
need to assess the prior probability distribution over the user’s rating pattern, i.e. the
probability of user Uy, rating with a given value s, 1 < s < r. For example, considering
the relative frequency and the data in Table 2, we will obtain Pr(U3z = 1) =2/4 = 0.5
and Pr(Us = 1) =2/7 = 0.286.

For each non-root variable, we must store an exponential number of conditional
probability distributions: one probability distribution for each possible configuration
of its parent set. The assessment, storage, and manipulation of these probability val-
ues can be quite complex, especially if we consider that the number of similar users
(parents of the nodes in V) and the size of the groups might be large when real group
recommending applications are considered. We therefore propose the use of different
canonical models to represent these conditional probabilities. By using this representa-
tion, it might be possible to reduce the problem of data sparsity (it is quite probable that
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many configurations lack data), leading to important savings in storage (we only need
to store a linear number of probability values) and more efficient inference algorithms
(see Sect. 5).

4.1 Probabilities of the collaborative component

The probabilities in the collaborative component (nodes in V) might be estimated from
the data set of past user ratings. For a given node V;, we must define the conditional
probability distribution Pr(v; j|pa(V;)) for each configuration pa(V;). We propose
the use of the following canonical model (studied in detail in de Campos et al. 2008)
where an additive behavior of the collaborative nodes is assumed, thereby enabling
the data sparsity problem to be tackled:

Definition 1 (Canonical weighted sum) Let X; be a node in a BN, let Pa(X;) be the
parent set of X;, and let Y be the kth parent of X; in the BN. By using a canonical
weighted sum, the set of conditional probability distributions stored at node X; are
then represented by means of

Pr(xijlpa(X) = D ws xi) )
YrePa(X;)

where yy ; is the value that variable Y takes in the configuration pa(X;), and w(yx ,
x;,j) are weights (effects) measuring how this /th value of variable Y} describes the
Jjth state of node X;. The only restriction that we must impose is that the weights are
a set of non-negative values verifying that

,
> D whknxip) =1 VpaX)

Jj=1 YrePa(X;)

It is interesting to note that by defining how to compute the weights w(yx s, x; ), we
can control individual bias® and the relative quality (importance) of the parents for the
predicting variable, X;.

The problem now is how to estimate those weights given by similar users, i.e.
Uy € Pa(V,). Following (de Campos et al. 2008), we consider that w(up ;, Vg s) (i.e.
the effect of user Uj, rating with value # when it comes to predicting the rating of V,))
can be computed by means of

N*(up, uq,s) +1/r
B = - - ) 1< 1, =r 6
w(Up,i, Va,s) = Wha N* ) T 1 <t, s<r (6)

where the value N*(up. ¢, v4 ) is the number of items from the set 7 (U,) N 1 (Up) that
having been voted with value ¢ by user U} have also been voted with value s by user

6 Bias refers to a user’s preference for a particular vote (some users tend to rate with high values whereas
others prefer to use lower ones) and ability to predict X; judgments.
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U,, and N*(up ) is the number of items in 1 (U,) N I (Up) rated with value 7 by user
Up. In this expression, wp,, represents the relative importance of the parent. In this
paper, we assume that all the users are equally important, i.e. wp , = 1/|Pa(V,)|.

In our example, and focusing on node V5, we must estimate 23 conditional prob-
ability distributions. Using Eq. 5, the probability Pr(vy2|u1,1, 43,1, u42) is equal to
w(uy, 1, v2,2) +wus 1, v2,2) +w(ug 2, v2,2). Using the data in Table 2, these weights
are w(uy,1, v2,2) = 0.278, w(u3z,1, v2,2) = 0.167 and w(us4 2, v2,2) = 0.25 and there-
fore Pr(va 2|1, 1,2) = 0.695.

4.2 Modeling social value functions

The objective of this section is to consider how conditional probability distributions
for group nodes can be estimated. These distributions might be considered a “social
value function”, describing how member opinions affect the group’s recommenda-
tion. For instance, let G; be a group with six individuals rating with 1, 5, 5, 4, 5 and 4,
respectively, using a rating domain from 1 to 5. In this case, the related configuration
is pa(G;) = (v1,1, V2,5, V3,5, V4.4, U5 5, V6 4)-

Since we must assess the probability of G; voting with a value k for each possible
configuration pa(G;) (i.e. P(G;|pa(G;))) and taking into account that the size of
the group might be large, we again propose the use of canonical models. By means
of these models, the probability values needed will be computed as a deterministic
function of the particular values of the configuration, thereby entailing an important
saving in storage.

Definition 2 (Canonical gate) A group node G; is said to represent a canonical com-
bination criterion if given a configuration of its parents pa(G;) the conditional prob-
ability distributions can be defined as

P(G; = k|pa(Gi)) = f(k, pa(Gi))

Following the ideas in (O’Connor et al. 2001; Masthoff 2004), in this paper we will
consider four alternatives:

4.2.1 MAX and MIN gates

In terms of (O’Connor et al. 2001), Maximum (Minimum) gates can be used to model
those situations where the group vote is equal to the vote of the most satisfied (or
least satisfied, respectively) group member. Thus, considering the example configu-
ration, the group rating is equal to 5 and 1 for the MAX and MIN gate, respectively.
Although these gates correspond to extreme situations, it is quite common for small
groups to take into account these criteria when making decisions (Masthoff 2004).
More formally, these gates can be defined as

1 ifk = ®(pa(Gy))
0 otherwise

Sk, pa(Gi)) = [ (N
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Table 4 Using canonical models to define the conditional probabilities for the node G, in Fig. 3

pa(G) AVG MAJ MAX MIN
Vi1, V2,15 V3,1 (1,0) (1,0) (1,0) (1,0)
V11,021,032 (0.67,0.33) (1,0) 0,1) (1,0)
V1,1, 12,2, V3,1 (0.67,0.33) (1,0) 0,1) (1,0)
V1,1,2,2,V32 (0,33,0.67) 0,1) 0,1) (1,0)
V1,2, V2,1, V3,1 (0.67,0.33) (1,0) 0,1) (1,0)
V1,2, 2,1, V32 (0.33,0.67) 0,1) 0,1) (1,0)
V1,2, 12,2, V3,1 (0.33,0.67) (0,1) 0,1) (1,0)
V1,2, 12,2, V3,2 0,1) 0,1) (1)) 0,1

The pairs (x, x2) represent the probabilities Pr(gy,1|pa(G)) and Pr(gy 2|pa(G)), respectively

where @ (pa(G;)) is the max{pa(G;)} and min{pa(G;)} for the MAX and MIN gates,
respectively. For example, Table 4 shows the probability distribution obtained using
these canonical gates for the node G, in Fig. 3.

4.2.2 MAJority gates

Our objective in this section is to model the Majority criterion where the final decision
depends on a simple counting of the votes received for each rating from the individ-
uals. The rating which receives the largest number of votes is then selected as the
consensus (majority) decision, i.e.

L itk = arg maxg count (s, pa(Gj))

fk, pa(Gi)) = I " ®)

0 otherwise

where count (s, pa(G;)) is a function returning the number of occurrences of the state
s in the configuration pa(G;), and m is the number of states where count (s, pa(G;))
reaches the maximum value. It should be noted that we are assuming that all members
have the same power (i.e. one-person-one-vote). In the previous configuration, the
group rating will be 5 because this was the rating given by 3 out of 6 individuals. See
Table 4 for an example.

4.2.3 AVeraGe gates

Our objective with this gate is to model those situations where the group rating can
be considered as the average of individual ratings. This criterion can be modeled in a
similar way to before, i.e.

1 ifk = AVG(pa(G)))

[k, pa(Gy)) = 0 otherwise.

©))

@ Springer



222 L. M. de Campos et al.

where AVG(pa(G;)) = round (m Zj vj), and where v; is the rating of
the jth-parent of G;. Thus, in the above example, the group rating is defined as
AVG(1,5,5,4,5,4) =4.

We should mention that although this might be the formal definition of the aver-
age gate, in this paper we use a canonical weighted sum-based representation which
eventually attempts to recommend the same rating to the group but using much more
efficient inference mechanisms. In particular, the weights w(v; «, g s) are defined as
1/|Pa(G;)| if k = s and O otherwise. An example is shown in the first column in
Table 4.

One important fact is that under this representation, the predicted rating must be the
group’s posterior expected (mean) value which is defined as the sum of the posterior
probability of each rating multiplied by the rating value, i.e. >t _, s X Pr(G; = s|ev)
(see Appendix A for more details). The predicted rating for the example configuration
is therefore computed as I x 1/6 +2 x 043 x 044 x2/6 +5 x 3/6 = 4. At this
point, we should mention that whenever we talk about the AVG gate in this paper we
are considering this representation.

5 Inference with canonical models

In this section, we will present the specially designed propagation algorithms to ensure
efficient computations. Since we consider past user ratings as evidence, a top-down
propagation mechanism can be designed, starting with those nodes at the user layer
where Pr(U;|ev) is computed. These probabilities are then used to compute the pos-
terior probabilities at the ) layer (see Eq. 4) which are eventually used to compute
the posterior probabilities for the group layer, i.e Pr(G,lev) (see Eq. 3). Our GRS
therefore follows the typical performance of a collaborative RS since these probability
values depend on how similar users rated the item.

We will distinguish between the different canonical models used. When using
canonical weighted sums, we can compute exact probability values in polynomial
time (see Sect. 5.1). When aggregating individual preferences by means of any other
canonical model, it is necessary to use the independence assumptions below in order
to reduce the computations needed (see Sects. 5.2 and 5.3).

Independence Assumption: The collaborative ratings are independent given the
evidence, i.e.

Pr(Vi, ..., Vilev) = [ | Pr(Vilev). (10)

In view of this assumption, and considering that we use a canonical weighted sum
model at the nodes in V), the joint probabilities in Eq. 4 are computed in linear time.
Although this assumption might be very restrictive, in our experimentation (see Sect. 7)
it has proved to be fruitful and has also been used successfully when combining infor-
mation for other practical purposes (Clemen and Winkler 1999; Kittler et al. 1998).
This performance leads us to believe that it does not matter how accurate the esti-
mates of the posterior probabilities are as long as they help to predict the correct
ratings.
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5.1 Propagating with the canonical weighted sum

When the canonical weighted sum is used to represent the interaction between vari-
ables, the posterior probabilities can be obtained simply by applying the following
theorem (see de Campos et al. 2008) which explains how to compute the exact prob-
ability values:

Theorem 1 Let X, be a node in a BN network, let mx, be the number of parents of
Xa, Yj be anode in Pa(X,), and ly; the number of states taken by Y ;. If the condi-
tional probability distributions can be expressed under the conditions given by Eq. 5
and the evidence is only on the ancestors of X 4, then the exact posterior probabilities
can be computed using the following formula:

ly,
mx, YI

Pr(xaslev) = D D w(jk: Yas) - Pr(yjilev).

j=1k=1

It should be noted that propagation can be performed in linear time with the number
of parents. We consider this theorem to be important because it expresses the fact that
exact propagation can be performed without imposing any independence restriction
between the parents of variable X, (see de Campos et al. 2008). Because the evidences
are in nodes in I/ in our recommender system, we will therefore obtain the exact pos-
terior probabilities in all the nodes where the conditional probabilities are represented
by means of a canonical weighted sum, as will be the case of the nodes in V and also
when modeling the average criterion in the group nodes.

For example, when we want to predict the rating given by G, in Fig. 3 to item /7, and
considering the pastratings in Table 2, we mustcompute Pr(G, = 1|uo2, u4,1, us5.2).
In this situation, the exact posterior probabilities at the V layer are: Pr(vy lev) =
w(uo,2, v1,1) + Pr(uz1) - w(uz i, vi,1) + Pr(uzn) - w(uzz, vi,1) = 0.277; Pr(va 1]
ev) = 0.341 and Pr(v3,1]ev) = 0.36. Similarly, if the group uses an AVG criterion to
combine information (represented by a weighted sum gate), the exact posterior values
at group nodes are Pr(g,,1lev) = 0.326 and Pr (g, 2|ev) = 0.674 and the predicted
rating is round (1 x 0.326 + 2 x 0.674) = 2.

5.2 Propagating with majority gates

One key idea behind the majority criterion is that the order in which the individ-
uals are considered does not matter, and therefore there are many different con-
figurations collapsing to the same situation. For example, let us consider that four
individuals vote with 1 and one individual votes with 2. In this case, there are five
different configurations representing the same situation, i.e. pa;(G;) = {2, 1,1, 1, 1},
pax(G;) = {1,2,1,1,1}, pa3(G;) = {1,1,2,1,1}, pas(G;) = {1,1,1,2, 1} and
pas(G;) = {1, 1, 1, 1, 2}. It should be noted that since order is not a factor, we might
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talk about combinations with repetition,” denoted by 8. Therefore, the above config-
urations should be represented by §(G;) =< 1,1,1,1,2 >.

In this situation, all the probabilities Pr(G; = s|pa;(G;)), such that pa; can be
matched to the same combination §, have the same values (in our case, Pr(G; =
1lpa;j(G;)) = 1,V1 < j < 5). This can be exploited in order to efficiently perform
the propagation processes in Eq. 3. In particular, the following theorem shows that
we need only take into account those probabilities associated with combinations with
repetition in order to propagate individual rating probabilities:

Theorem 2 Let G; be a group node in a BN whose conditional probability distribu-
tions are represented using a majority gate, let A(G;) be the set of possible combina-
tions repeating the values in its parent set, Pa(G;), then

Pr(G; = slev) = Z Pr(G; = s5|6(G;))Pr(8(G;)lev) an
8(GHEA(G))

The proof of this theorem can be found in Appendix B. Although this theorem reduces
the number of necessary computations in Eq. 3, an exponential number of computa-
tions will be needed in order to obtain the joint probabilities Pr(5(G;)|ev).

In order to ensure the scalability of the approach, we will approximate these values
by considering that collaborative ratings are independent given the evidence (Eq. 10).
In Appendix B, we show how to compute the required probabilities in a running time
on the order of O(rn"). Taking into account that in many situations r << n, this
entails important savings with respect to the O (r") needed by the classical approach.

Following on with the previous example, we will have four possible combina-
tions for Vi, V2 and V3 where (assuming independence) the posterior probabilities
are Pr(< 1,1,1 > |ev) = 0.034, Pr(< 1,1,2 > |ev) = 0.215, Pr(< 1,2,2 >
lev) = 0.446 and Pr(< 2,2,2 > |ev) = 0.305. Then, following a majority strategy,
Pr(G, = llev) = 0.03440.215 = 0.249 and Pr(G, = 2|ev) = 0.751. Once
again, the recommended rating is 2 as this is the most likely posterior probability.

5.3 Propagation with MIN and MAX gates

When propagating with MAX and MIN gates, we will also assume that a posterior
probability for the collaborative nodes is independent given the evidence. Once these
values have been computed, we still need to combine them with Pr(g,.s|pa(G,))
in order to obtain the final probability distributions. It can be proved that under the
above independence assumption (Eq. 10), the probability distribution Pr(G4|ev) can
be computed easily and efficiently (in a linear order to the number of group members).

Min-Gate Assume 1l <2 < --- <r
- Pr(Gq, =rlev) =[[/L, Pr(V; =rlev) = [[/L, Pr(vi,lev)

7 Since the number of parents in G; is n and each parent has r different states, we find that the number of
possible combinations with repetition is CR), = (n +r — 1)!/(n!(r — )!).
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- Pr(G, =klev),fork=1,...,r —1,is equal to

(H Pr(V; > k|ev)) — Pr(Gy > klev).

i=1

where Pr(X > k) = > Pr(X = j).
Max-Gate Assume 1l <2 < --- <r
- Pr(Gq = llev) = Hz"n:l Pr(V; = llev) = Hinzl Pr(vi1lev)

— Pr(G, = klev),fork =2,...,r,is equal to

(H Pr(V; < k|ev)) — Pr(Gq < klev)
i=1

where Pr(X <k) = ZI;':] Pr(X = j).

If we consider our example, the posterior probabilities for the MIN gate are
Pr(G, = 2lev) = H?:l Pr(vialev) = 0.305; Pr(G, = llev) = 0.695 and the
recommended rating is 1, whereas if we consider the MAX gate Pr(G, = l|ev) =
H?:l Pr(vi1lev) = 0.034; Pr(G, = 2lev) = 0.966 and the decision is to recom-
mend the rating 2.

6 Experimental framework

There are various reasons why GRSs are difficult to evaluate. The first is that the eval-
uation criterion differs according to the goals for which the RS has been developed.
We can find situations where the criteria used to measure system performance are user
satisfaction or participation (O’Connor et al. 2001; Masthoff 2004; McCarthy and
Anagnost 2000) whereas in other GRSs the objective is to explore the ability of the
system to merge user profiles or reach a consensus (Jameson 2004; Yu et al. 2006).
The second reason why evaluation is difficult is the absence of public data sets
for performing the evaluation. Most work into GRS evaluation has focused on live
user experiments. In this case, we can distinguish between the work using controlled
groups that have been (directly or indirectly) asked about the aggregation strategies
they might use (Masthoff 2004; Masthoff and Gatt 2006) and those systems, such as
Polylens (O’Connor et al. 2001) and MusicFX (McCarthy and Anagnost 2000), which
have made the system available to a community of users. In this case, field studies
were performed to evaluate system performance. The combination of these two factors
makes it extremely difficult to compare the performance between different GRSs.
This situation clearly differs from that of recommending for a single user. In this
context, the evaluation of system accuracy, i.e. the system’s ability to predict indi-
vidual ratings, has become a standard approach (Herlocker et al. 2004). Surprisingly,
little attention has been paid in GRS literature to evaluating system accuracy. We
believe that one of the main reasons for this is that it is difficult to access real group
ratings since in many cases group composition is ephemeral, and, to the best of our
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Fig. 4 Building the group data
sets MOVIELENS DATASET
TRAINING TEST

GROUP
SELECTION

C§%> Group Test Sets
Group ID, Mv ID, Rate

knowledge, no data sets exist with this kind of information. On the other hand, we
can consider that in real scenarios each group might rate using different aggregation
strategies. For instance, some groups might use a least misery strategy whereas others
might use an average strategy. In these situations, a blind algorithm, which does not
take into account how the group rates an item, may be inappropriate for predicting
group ratings.

Our goal in this experimentation is to discover how the use of the different uncertain-
ties emerging in a group recommending process might affect system performance. We
believe the best alternative for measuring system performance is to take into account
accuracy criteria in an automatic evaluation over a semi-simulated data set (see below).
We believe that by means of this evaluation, we can conduct large experiments that
should validate our conclusions.

6.1 The data sets

We decided to use the MovieLens® data set. With the idea of using 5-fold cross vali-
dation, we have used 5 different data subsets, each obtained by splitting MovieLens
into two disjoint sets, the first for training (with 80% of the data) and the second for
testing (with 20% of the data).

Training data has been used for two different purposes. Firstly, we have used this
data to learn the collaborative component of the system. Following (Herlocker et al.
1999), we have considered a fixed number of 10 parents (similar users) for each node
in V (see Sect. 3.1). Using this component independently, we might compute for each
member of a group, Vi, a probability distribution representing how this individual
might rate an unseen movie, i.e. Pr(V; = s|ev). Training data has also been used
to determine group composition, i.e. which individuals form a group (see Fig. 4).

8 MovieLens was collected by the GroupLens Research Project at the University of Minnesota. The data
set contains 1682 movies and 943 users, containing 100,000 transactions where a user rates a movie using
a scale from 1 to 5.
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We have used two different criteria in an attempt to capture different processes behind
the creation of a group:

C1 Implementing the idea of the group of my buddies, we set each user as the group
administrator and look for similar users (those who are positively correlated with
the administrator in the training data set). We then select those groups for a fixed
number of individuals (let us say n) with the only restriction being that they have
at least rated (seen) one common movie (considering the experimental data, the
members of the groups have rated a mean of 13.63 common movies). It should be
noted that since similarities are not transitive, this criterion does not necessarily
imply that groups have highly correlated members.

C2 Secondly, we have decided to fix a group (also with n individuals) with the only
restriction being that all group members must rate at least four common movies in
the training sets, independently of the given ratings. This alternative can be used
to represent circumstantial groups such as those obtained by randomly select-
ing people as they leave a cinema. With this criterion, it is plausible that while
individuals might watch a movie together, they might have different preferences.

The group test sets are obtained from each of the original MovieLens test sets, thereby
ensuring that no data in the test sets has been used for learning purposes. Whenever
we find a movie in an original MovieLens test set that has been rated by every group
member, we include the tuple (group ID, movie ID, group-rating) in the respective
group test data set. Since we know the real user ratings for this movie, the “true” group-
rating will be obtained by considering the mechanism used by the group to aggregate
the individuals ratings. This mechanism might be implemented by means of a deter-
ministic function CombineRate (ry, ..., r,).” For example, given a group of five
individuals and the ratings r; = 5,70 = 5,13 = 2,r4 = 3,rs = 4, then depending
on the aggregation function used, the “true” group rating will be: 5 for the majority
function, 2 for the minimum criterion, 4 if we consider an average strategy, etc.

By combining the strategy used by a group to rate a movie, i.e. average (AVG),
majority (MAJ), maximum (MAX) and minimum (MIN), and the criterion used to
form a group (C1 and C2), we therefore obtain 8 different data sets. More specif-
ically, by fixing the group size to 5, we have found a mean of 108 (406) different
groups and 115 (1752) group-movie pairs in the test set for C1 criterion (C2 criterion,
respectively).

7 Experimentation: predicting a group’s rating

The aim of this experimentation is to measure the effect of individual uncertainties
on each different aggregation criterion. In order to focus on this aim, we shall assume
that we know how the group combines individual ratings, i.e. we know whether the
group rating is obtained by means of the AVG, MAJ, MAX or MIN of a set of individual
ratings (what happens when this information is unknown will be discussed in Sect. 8).

9 A similar mechanism for building the group rating has been used in Chen et al. (2008) to measure the
effect of sparsity on the recommendations.
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Table 5 Baseline and BN-based group aggregation mechanisms

Baseline Using group layer

For each V; € G do Pr(Glev) = CombineProb(Pry,..., Pry)
rr = RateSelection(Pry) G_rate = RateSelection(Pr(Glev))

G_rate = CombineRate(ry,..., )

The following method is proposed: for each group-item pair in the group test set,
the first step is to instantiate those users who had rated the movie with the given rating
(these ratings will be considered as the evidence, see Sect. 3.3). This evidence will
be then propagated to the collaborative nodes, V), representing the group’s members.
This information must finally be combined in order to obtain the predicted rating. At
this point, it should be remembered that we assume that no member of the group has
seen the movie and it is not possible to know how a node V; might rate the movie. We
will consider two different alternatives to combine this uncertain information:

— This alternative, which could be considered the Baseline (see left-hand side of
Table 5), is a two-step approach: firstly, each group member makes a decision about
the score that he or she might use to rate the movie (RateSelection process).
Thesery, ..., r, precise ratings are then combined using the particular combination
strategy (AVG, MAJ, MAX or MIN) used by the group when making decisions.

— The second method consists in first using canonical models to combine individual
probability distributions into a single group distribution. This probability distribu-
tion ideally represents the group voting pattern. In the algorithm (see right-hand
side of Table 5) this process is denoted as CombineProb. The group probabil-
ity distribution is then used to select the final group rating (once again using the
RateSelection process).

Finally, we will consider how the predicted rating might be selected, i.e. how
RateSelection works. In this paper, we will explore two different alternatives:

— The first uses the raw probability values at group nodes (or collaborative nodes for
the baseline approach). In particular, the group rating is defined as the posterior aver-
age rate, i.e. rate = Z,’(:] k x Pr(G = k|ev), for the AVG canonical model (see
Sect. 4.2.3) and the maximum posterior probability, i.e. rate = arg max {Pr(G =
slev)}, for MAX, MIN and MAJ canonical models.

— The idea behind the second alternative is to only take into account the new piece
of evidence that each candidate rating receives. This criterion can be computed
by taking into account the difference between the posterior and prior probability
values,'V i.e. PD(G,) = Pr(Gglev) — Pr(G,). We consider only those ratings
where the difference is positive, i.e. the evidence favors these ratings. We have to
notice that P D is not a probability measure since ) PD(G, = 5) < 1.

10 1t is worth remembering that posterior probabilities are obtained by instantiating the ratings previously
given by similar users (the evidence belongs to the nodes in f) and that prior probabilities are obtained by
propagating in the network without evidence.
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Table 6 Effect of user uncertainty on the combination strategies

Grouprate RS Cl1 C2
Baseline BN-Group Baseline BN-Group
%S MAE %S MAE %S MAE %S MAE
AVG 62.111  0.387 44.945+ 0.596+ 63.730  0.369 59.037+ 0.420+
PD 62.500 0.385 62.060— 0.396— 64.045  0.365 64.355— 0.363—
MAJ 59.127  0.464 59.543+ 0.430— 56.548  0.484 58.621+ 0.441+
PD 59.044 0.464 59.745+ 0.428— 57.447 0472 58.926+ 0.437+
MAX 77397  0.226 73.748— 0.285+ 68.740 0.319 75.353+ 0.263+
PD 77.538 0.225 78.991+ 0.211- 69.501  0.311 70.272+ 0.300+
MIN 44964  0.674 13.739+ 1.648+ 46.987  0.681 29.509+ 1.032+

PD 46.195 0.666 42.876+ 0.6624+ 46.539  0.684 49.780+ 0.578+

For example, let us consider that the prior probability values (in a rating domain
from 1 to 3) are P(gs1) = 0.1, P(gs2) = 0.2 and P(g,3) = 0.7 and let us
consider the following posterior values P(gq 1lev) = 0.30, P(gs2lev) = 0.25
and P(g,3lev) = 0.45. Thus, if we were to select the maximum posterior rating
we would recommend the rating 3 whereas evidence seems to favor the rating 1.
Therefore, considering P D, the new measure assigns a mass 0.20, 0.05 and 0 to
ratings 1, 2 and 3, respectively. In order to standardize the recommending process,
this new measure might be transformed into a probability by means of a proportional
normalization process.

The effect of using uncertainty will be measured by considering the accuracy of the
recommendations in the two previous situations. We have considered two different
metrics (Herlocker et al. 2004): the percentage of success (%S), which measures the
frequency with which the system makes correct predictions; and the mean absolute
error (MAE), which measures the average absolute deviation between a predicted rate
and the group’s true rate.

Table 6 shows the results obtained for the different experiments. The first column
represents the criterion used by the group to determine the group rate. Each row rep-
resents the results obtained when using this criterion to combine the information with
the baseline model and when using the group layer in the BN, denoted by the BN-
Group. The rows labeled PD in the second column represent the results obtained when
considering the difference between prior and posterior probability distributions. We
have highlighted in bold the best alternatives for each particular situation. We use the
signs + and — throughout this paper to represent the fact that the results are signifi-
cantly relevant or irrelevant, respectively, in relation to the baseline model, by using
the paired Student’s #-test (confidence level 0.05).

From this table, we can conclude that when combining uncertain information using
BN at a group layer the best option is to use PD to correct the prior bias, particularly
in those situations where the minimum and the average gates are used to merge indi-
vidual ratings. The exception is the use of MAX gate (using the C2 data set) where
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Table 7 Using a classical collaborative filtering algorithm

Group rate Cl Cc2 Group rate Cl Cc2

%S MAE %S MAE %S MAE %S MAE
AVG 49.080+ 0.538+ 57.986+ 0.422+ MAIJ 52.713+ 0.526+ 56.562+ 0.478+
MAX 74.655+ 0.258+ 67.920+ 0.3284+ MIN 38.255+ 0.761+ 39.258+ 0.760+

the baseline model performs better. In terms of the use of PD in the baseline model, it
seems that the results have not been affected significantly. We can also conclude that
taking individual uncertainties into account helps to improve the recommendations
(we obtain better MAE (%S) values in 7 out of 8 (6 out of 8) experiments). Addition-
ally, the results in Table 6 show that it is possible to order the different aggregation
strategies in relation to their accuracy: MAX < AVG < MAJ < MIN, where
X < Y means that X obtains better predictions than Y. We believe that this is due
to the bias that MovieLens has towards high rating values (approximately 75% of the
ratings have a value which is greater than or equal to 3) and that, in some respects,
our collaborative model inherits this bias in the parameters’ learning phase. Finally,
we can conclude that the way groups are formed is relevant for prediction purposes.
Therefore, MIN and AVG canonical models obtain better results when considering cir-
cumstantial groups (C2 group set) whereas MAX and MAJ canonical models obtain
better results in the case of groups with related individuals (C1 group set).

Finally, and in order to validate our approach, we will compare our predictions
with those obtained with a classical collaborative filtering algorithm (Herlocker et al.
1999) under the same conditions.!! Following our baseline scheme, we first use the
classical model to predict how individual users will rate specific items. These predic-
tions are then aggregated by using the corresponding functions. Table 7 presents the
obtained results for each execution. From this table, we can conclude that our model
is an improvement on those obtained using a classical approach for recommending.

7.1 Effect of the group’s size

We will now explore the effect of group size on the recommendations. The experi-
ments were repeated but this time with groups comprising 3, 4, 5 and 6 individuals,
except under criterion C1, groups of my buddies, where no groups with 6 members
could be found. Table 8 presents the MAE metrics obtained after evaluating our models
in the same conditions as before using C1 and C2 data sets, respectively. We only show
the MAE values obtained using PD for each pair ‘XXX#s’, where XXX represents
the aggregation strategy and #s the group’s size, respectively.

1 In this classical model, the similarity between users is computed using Pearson’s correlation measure
(Eq. 2). Once similarities are ready, predicting how user U, will rate an item /; can be calculated as

’
S simUa,Up) (i j=7n)
> IsimUa,Up)|

/

rate = rq + where m’ is the number of related users who have also rated

item /;.
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Table 8 MAE results for different sized groups

C1 datasets

AVG3 AVG4 AVGS5 AVG6 MAIJ3 MAJ4 MAIJS MAJ6

Base 0.490 0.454 0.385 0.482 0.488 0.464
BNPD 0.481 0.424 0.396 0.412 0.431 0.428
MAX3 MAX4 MAXS MAX6 MIN3 MIN4 MINS MIN6
Base 0.407 0.310 0.225 0.738 0.742 0.666
BNPD 0.389 0.308 0.211 0.663 0.649 0.662

C2 datasets

AVG3 AVG4 AVGS5 AVG6 MAIJ3 MAJ4 MAIJS MAJ6

Base 0.469 0.417 0.365 0.327 0.477 0.497 0.472 0.427
BNPD 0.470 0.398 0.363 0.334 0.417 0.450 0.437 0.378

MAX3 MAX4 MAXS MAX6 MIN3 MIN4 MINS MIN6
Base 0.425 0.362 0.311 0.203 0.724 0.693 0.684 0.716
BNPD 0.398 0.341 0.300 0.199 0.644 0.607 0.578 0.604

It is possible to draw certain conclusions from this data. Firstly, we can say that
the relative performance between both the baseline and the proposed BN-based group
aggregation model is stable for almost all the experiments (27 out of 30). We can
therefore say that it is preferable to combine uncertain information using BN, inde-
pendently of the size of the group. Nevertheless, group size has an important impact
on the quality of the model’s predictions. This impact seems to be independent of the
criteria used to create the group, C1 or C2, but not on the aggregation strategy used by
the group to recommend the final rating. Accordingly, AVG and MAX obtain signifi-
cantly better predictions (lower MAEs) as the group size increases (this also seems to
be the case of MAJ when using C2 data sets) whereas the MIN criterion seems to be
more or less stable. For AVG and MAJ combination criteria, this situation might be
explained by the fact that as the number of members increases, there is a reduction in
the impact of each member on the group prediction. In terms of the performance of
extreme rating criteria such as MAX and MIN, this can be explained by considering
the bias for rating with higher values in MovieLens, with it being easier to predict
high rating values.

8 Uncertainties in the group’s rating processes

In the previous section, we assumed that we know how a group combines the informa-
tion and focused on the effect of uncertainty on user preferences when predicting the
group’s rating. In this section, we will consider that the process used by the group to
rate a given product is also uncertain. In order to tackle this problem we will consider
two different situations:

— The first is a situation of total ignorance, i.e. we do not know anything about how
the group should combine the information.
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Table 9 Predicting without information

Group Cl1 C2

at

e AVG+PD MAIJ+PD LinOP AVG+PD MAIJ+PD LinOP
Base BN-G Base BN-G - Base BN-G Base BN-G -

AVG 0385 0.396— 0486 0.385+ 0.386 0.365 0.363— 0.486 0.389+ 0.388
MAJ 0472 0.458— 0.464 0.428— 0.439 0.453 0.440+ 0472 0437+ 0.439
MAX 0.799 0.727+ 0.740 0.709+ 0.718 0.854 0.808+ 0.793 0.788—  0.796
MIN 1.140 1.1624+ 1.192 1.167+ 1.175 1.186 1.220+ 1.283 1.2434+  1.236
Mean 0.699 0.686 0.721  0.672 0.680 0.715 0.708 0.759 0.714 0.715
Dev 0.344  0.348 0.338  0.360 0.361  0.380 0.393 0.380 0.395 0.392

— The second considers that although we do not know exactly how a group combines
the information, we have a database of previous group ratings. In this case, it might
be possible to discover the mechanism used by a group to rate an item from the
database of past ratings.

8.1 Total ignorance

Our objective is to study which of these proposed aggregation models is best if we
do not know how the group combines the information. This situation, which might
be related with the Cold-Start problem, is common when a new group is incorporated
into the system and therefore the decision processes are blind. Nevertheless, we have
tried to study whether the use of the proposed canonical model might be helpful or
not under these circumstances.

Thus, given a new group, it might not be appropriate to determine the group rating by
means of extreme canonical models such as MIN, MAX (as confirmed by preliminary
experimental results). We will therefore attempt to determine the best option between
combining the results using an average or a majority criterion (which in some respects
relates to recommending the mean or mode value, respectively). We will also compare
our results with those obtained using the classical linear opinion pool (LinOP) where
all the users have been considered equivalent for prediction purposes.'? In this case,
the recommended rating is the one that obtains the maximum posterior probability.

In order to study the performance of MAJ and AVG in this situation, we have
decided to measure the accuracy of MAJ+PD and AVG+PD when predicting group
ratings under the four different combination mechanisms. As in Sect. 7, the experi-
mentation has been conducted by considering the two criteria for forming the groups
(groups of buddies and circumstantial users). Table 9 presents the results (we only

12 1t should be noted that this model is equivalent to considering a weighted sum canonical model using
an unbiased uniform weighting scheme, i.e. the weights are defined as w(vj;, ;) = w; if t = s, and 0
otherwise). The linear opinion pool can therefore be considered a particular case of the canonical weighted
sum gate.
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show the MAE metrics'?). The last two rows of this table contains the mean values
and standard deviation for the experiments.

From this table, we can conclude that it is safer to use the canonical models to
combine information, and for majority gates, in particular, the MAE values are 6%
better for both C1 and C2. Taking into account the uncertainties at an individual level
therefore helps to improve the prediction. As before, the model performs differently
when consideration is taken of how the groups are formed. On average, all the mod-
els obtain better results when groups of buddies (C1) are used than when groups of
circumstantial members (C2) are considered. When using C1, the use of MAJ+PD
criterion seems preferable to AVG+PD (statistical significance were found) and this
might imply that in the case of groups with similar users it is better to use the mode
value. When using C2, however, although it was better to use AVG+PD, there is no
statistical significance with respect to MAJ+PD. Finally, we would like to mention
that we have also studied the performance of the LinOP model when attempting to
reduce the effect of the prior probabilities, but in this case no significant differences
were obtained (the same mean results were obtained).

8.2 Learning how the groups rate

The aim of this section is to study the use of automatic learning algorithms to repre-
sent the group’s profiles and their effect on the group’s recommendations. There are
two main points which must be considered: the first is that we are not imposing any
restriction on how a group rates an item, and therefore the learning models might be
general; and the second is related to efficiency and scalability since, as we have seen,
these are both important in group recommending.

This paper will therefore explore the following two alternatives:

NB The first method uses a Naive Bayes (NB) classifier (Duda and Hart 1973)
since it performs well on many data sets, and is simple and efficient. This
modeling might be related to the classical Bayesian approach for combining
probability distributions. In our context, predicting the group rating can be
viewed as a classification problem where the group rating is the class variable
and the individual ratings would be the attributes. NB assumes that individual
ratings are independent given the group rating and has the advantage that no
structural learning is required. In this case, the rating prediction comes down
to finding the rate such that

rate = argmax P(G = s) H Pr(v;|G =5)
s .

1

where v; is the rating selected for the ith member of the group, V;, by means of
aRateSelection (Pr(Vi|ev)) process as in the previous baseline model
(see left-hand side of Table 5).

13 We have decided not to include the percentage of success in order to reduce the size of the tables. It
should be noted that it appears to be correlated with the MAE values, as previously seen in the experiments.
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The only parameters that must be estimated from the data sets of past group
ratings are the group’s prior probability, P(G), and each member’s rating
conditional probability given that the group has rated with a certain value,
Pr(V;|G = r). These probabilities can easily be estimated from the data sets
using Add-1/r smoothing such that

N a,s +1
o il

where N (g,.s) is the number of times that the group rating is s and N (G,) is
the number of times that the group has rated.
For the nodes in V), the conditional probabilities are estimated using

Niys, gas) + 1/r

Pr(V, =t|G =5s) = N(2ao) +1
a,s

where N (v; ¢, g4.5) 1s the number of times that the user rate is  when the group
rating is s .

WSG The second alternative consists in using the canonical weighted sum model

presented in this paper (see Definition 1) to represent the combination process.
In this case, we are assuming that the group rating is determined by aggre-
gating the preferences of the group’s members and the only independence
restriction that we impose is that since we know how the group’s members
rate an item, the group rating is independent of the other information sources.
As with NB, no structural learning is required in this model.
We must therefore determine each individual’s effect on the group rating. In
particular, looking at Eq. 5, we must estimate w(v; k, ga4.5)- i.€. the effect that
user V; rating with the value k has on the group G, rating with the value s.
These weights might be defined as the ratio

N(Ui,k, gu,s) + l/r
N(v[,k) + 1

w(vi,ks ga,s) =

The main advantages of both models rest on the assumptions used, which reduce the
number of parameters to be estimated in several orders of magnitude and also facilitate
the inference processes. Both assumptions are, however, the main drawbacks of the
models since they are not realistic in this domain.

8.2.1 Experimentation: learning group rating pattern

In this experiment, we will focus on the ability of the proposed models to learn how
the groups rate. We have therefore conducted the same experiments as before, but con-
sidering the learned group profiles. Table 10 presents the results obtained with both
models when considering different combination mechanisms of the group. More spe-
cifically, we only show the results obtained using WSG with PD strategy (WSG+PD).
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Table 10 Learning parameters from the database of cases

Grouprate  Cl C2

Naive Bayes WSG+PD Naive Bayes WSG+PD

%S MAE %S MAE %S MAE %S MAE
AVG 55.995  0.574 57.456— 0.442+ 57.727  0.471 62.2224 0.387+
MAJ 52.588  0.637 56.037— 0.488+ 51.477  0.583 56.180+ 0.487+
MAX 72.171  0.449 77.702+ 0.244+ 67.300  0.407 72.689+ 0.284+
MIN 38.738  0.804 42.829+ 0.710+ 39955  0.781 45.213+ 0.663+
Mean 54.873  0.616 58.506 0.471 54.115  0.561 59.076 0.455
Dev 13736 0.148 14.393 0.191 11.465 0.164 11.486 0.161

In addition, in terms of rate selection for WSG+PD, the average rating over the group
probabilities is recommended,'* i.e. rate = round (3 }_, k x Pr(G = klev)).

From this table, we can conclude that WSG+PD outperforms the Naive Bayes
model in all the experiments. Finally, we will compare the results with those obtained
in Table 6, which could be considered our goal since in this case we are using the same
aggregation strategy as that used by the group. Although we always obtain better results
as Table 6 shows, we can conclude that by learning the group rating pattern, we might
make predictions which are almost ideal. For instance, the difference between the
best MAE values are 0.046, 0.06, 0.033 and 0.048 (0.024, 0.05, 0.021 and 0.086) for
AVG, MAJ, MAX and MIN for C1 data sets (C2 data sets, respectively). Although
these differences are statistically significant, they give some idea of the ability of the
WSG to map different aggregation criteria. This is important because it implies that
WSG can be applied safely in those situations where the aggregation criterion used
by the group is not known.

9 Conclusions

In this paper, we have proposed a general BN-based model for group recommending
and this is an intuitive representation of the relationships between users and groups. The
topology of the BN represents those dependence and independence relations consid-
ered relevant for modeling the group recommending processes. We should emphasize
that only in situations where the required computation is quite complicated have we
considered assumptions to reduce computational complexity. Although these assump-
tions might not be realistic in a given domain, they are necessary if we want to apply
the proposed methodology in real applications. The experimental results show the
viability of our approach.

With the proposed model we can therefore represent both uncertainty relating
to the user’s personal views about the relevance of an item, and also uncertainty

14 The other alternatives were the combination of WSG without PD and the use of the most probable
criterion to decide the predicted rating, but worse results were obtained.
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relating to the mechanisms used by the group to aggregate individual preferences,
mechanisms which are encoded by means of conditional probability distributions
stored at the group nodes. In terms of efficiency, these distributions have been assessed
by means of canonical models. The use of these models also allows the posterior prob-
abilities to be computed in linear time and this is something which is necessary for
deciding the recommended rate. Guidelines have been given for how to estimate the
probability values from a data set and how the users interact with the RS. Experimen-
tal results demonstrate that by taking uncertainty into account at the individual level
when aggregating, better prediction for the groups can be obtained. In addition, the
results obtained determine other factors which affect system performance such as how
the group is created, the number of individuals in the group, the aggregation function
used, etc. It should be noted that the proposed model is quite general since it can be
applied to different recommendation tasks (such as find good items or predict ratings)
for a single item or for a set of items. Moreover, although this paper is set within
the framework of the group recommending problem, the results presented can easily
be extended to those disciplines where aggregating information represents an impor-
tant component, and these disciplines include statistics, decision theory, economics,
political science, psychology, etc.

By way of future work, we will attempt to incorporate mechanisms to enable con-
sensus to be reached between group members. In this respect, we can say that selecting
the rating r; with probability 0.55 is not the same as selecting the rating ; with proba-
bility 0.95. It seems clear that the use of these uncertainties will be helpful for reaching
consensus in group decisions. We also plan to encode different strategies such as ensur-
ing some degree of fairness (Masthoff 2004; Jameson and Smyth 2007) by means of a
BN, for instance to ensure that at least 75% of users were satisfied. Another problem
worthy of study is to determine in what circumstances it is possible to discover how
a group rates a given item, such as for example how to consider the effect of context
in the group rating pattern.

Acknowledgements This work has been jointly supported by the Spanish Ministerio de Educacién y
Ciencia, Junta de Andalucia and the research program Consolider Ingenio 2010, under projects TIN2005-
02516, TIC-276 and CSD2007-00018, respectively.

Appendix

This appendix will include any technical results that are not necessary to understand
the insights of the model but which are necessary to follow the mainstream of the

paper.
A Modeling the average rating with canonical weighted sum gates

The average gate models those situations where the group rating can be considered as
the average rating of its members. Although representing this combination criterion

using this gate implies important savings in storage, a huge number of computations
are required in the inference processes. In this appendix, we will illustrate how the
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Table 11 Probability values for average gate and CWS-based criteria for configurations ¢

1,1,

2,1,1,2),c0=(1,2,2,3,3,5) and c3 = (1,5,5,4,5,4).

AVG gate: Pr(G = klc;) CWS-based: Pr(G = k|c;)

1 2 3 4 5 1 2 3 4 5
cl 1 0 0 0 0 0.666 0.333 0 0 0
c2 0.166 0.333 0.333 0 0.166
c2 0 1 0 0.166 0 0 0.333 0.5

same recommended rating might be computed efficiently by considering a canonical
weighted sum-based representation of the average rating in a two-step approach:

Firstly, for a given configuration pa(G;), define the probability of the group rating
with the value k as the ratio of the number of its members which would rate with &,
ie.
> v epacy) R(pa(G), V. k)

|Pa(Gi)]

Pr(G; = klpa(Gi)) =

with R(pa(G;), V;, k) equal to 1 if user V; rates with value k in the configuration
pa(G;) and O otherwise. This definition is equivalent to aggregating individual
ratings by means of a canonical weighted sum approach (see Definition 1) where
all users are assumed to be equal for prediction purposes!® with no bias in the user
ratings. These weights might therefore be defined as follows

ifk =1t,
otherwise.

1
[Pa(Gy)l

0 12)

w(vji, 8ik) = [

In Table 11, we present both the probability values for the AVG gate using Eq. 9 and
those obtained using Eq. 12 (column labeled with CWS-based) for three example
configurations.

Secondly, determine the group rating as the one obtained by averaging over the
group probabilities as

.
rate = round Zk x Pr(G; = k|pa(G;))
k=1

13)

Thus, continuing with our example, for configuration ¢ the group rate is round
{1.333} = 1, for configuration ¢y round{2.6666} = 3, and for configuration c3
round{4} = 4, which are the same rating values as those that will be recommended
using the average over individual ratings.

15

It should be noted that in this case we do not consider situations where there are users with high quality

opinions (experts). Nevertheless, these could easily be taken into account by adequately modifying the
weights.
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We should mention that by using a canonical weighted sum representation, we
inherit the computational advantages of the canonical weighted sum models in the
inference processes (see Sect. 3.3). When we refer to the average canonical model in
this paper, denoted by AVG, we are therefore referring to the fact that the group rating
is obtained using the conditional probabilities presented in Eq. 12 and that the selected
rating is the one obtained using Eq. 13.

B Propagating with majority gates

In this section we will present the computations necessary to understand how the new
evidences can be propagated efficiently using majority gates.

Since order is not a factor in the majority criterion, we might speak of combinations
with repetition. We will use A(G;) to denote the set of combinations with repetition
from the individual votes in Pa(G;), and we use § (G;) or < > to denote a single com-
bination. We will say that a configuration pa belongs to the combination §, denoted
by pa € §, if the combination § can be obtained from configuration pa by removing
the order constraints.

The following theorem shows that in order to combine the different individual rat-
ings we only need to take into account the probability distributions associated to the
set of combinations with repetition:

Theorem 2 Let G; be a group node in a BN whose conditional probability distribu-
tions are represented using a majority gate, let A(G;) be the set of possible combina-
tions with repetition of the values in its parent set, Pa(G;), then

Pr(Gi =slev)= > Pr(G; =s|8(G))Pr(8(Gi)lev)
3(Gi)eA(Gy)

Proof Considering the independences in the model (see Sect. 3.2) we have that

Pr(gislev) = D> Pr(gis|pa(G)Pr(pa(Gj)lev)
pa(Gy)

If we consider the set of configurations that can be mapped to the combination §(G;),
i.e. pa(G;) € §(G;), then

Pr(gislevy= > > Pr(gislpa(G)Pr(pa(G))lev).

8(Gi) pa(Gi)ed(Gi)

Since for the majority gate all configurations mapping to the combination §(G;) have
the same conditional probability distribution, Pr(g; |6(G;)), the right-hand side of
the above equality becomes

> PrgislsG) D Pr(pa(Gi)lev)

8(Gi) pa(G;)€d(Gi)
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and finally

Z Pr(gis|6(G;))Pr(3(Gi)lev). o
3(Gj)

This theorem shows that if we know Pr(5(G;)|ev), the information could be com-
bined with a majority gate in a time which is proportional to the size of CR}, i.e.
O(n”~1). Taking into account that in many situations r << n, this implies important
savings in terms of considering the number of possible configurations, O (r"). For
instance, if n = 20 and r = 2 then CR;, = 21 whereas the number of configurations
(permutations) is more than a million.

B.1 Assuming independence to approximate Pr(5(G;)lev):

In order to compute Pr(5(G;)|ev), however, we must sum over all the possible con-
figurations in the combination, i.e. Zpa(G,-)ea(G,-) Pr(pa(Gj)lev). We will see how
by assuming that collaborative ratings are independent given the evidence these com-
putations can be considerably reduced.

Firstly, and with the idea of being general, we will introduce some notation: let
X1,...X, be a set of n independent variables and let 7, represent any configura-
tion of these variables. As these variables are independent Pr(r,) = ]_[?:i Pr(x; ),
where x; ; is the value that variable X; takes in the configuration 77,10 Let 8¢ be a
combination with repetition of a subset of k variables and let s € & represent the
fact that the value s belongs to the combination ;. Additionally, we say that §x_1 is
a s-reduction of &, denoted by 8,& *, if 8x_1 can be obtained by removing a value s
from the combination §;. The following theorem shows how Pr(§,) can be computed
recursively:

Theorem 3 Let §,, be any combination with repetition from the set of X1, ..., X,. If
X is independent of X ;, Vi # j, the probability associated with the combination 8,
can then be computed as

Pr(x1,) ifn=1andt € 8

Zseén Pr(aiil)Pr(xn,s) ifn>1 (14)

Pr(é,) = [

Proof We know that Pr(5,) = Znn cs, Pr (7). Assuming independence between the
variables, we have that Pr(;,) = Pr(m,—1) Pr(x, ) where m,_ is the configuration
of the first n — 1 variables in m, and x, ; is the value of X, in m,. Grouping all the
configurations with the same value for variable X,, we have that

Pr(8) =D Pr(tas) . Prim—) = D Pr(8;  )Prx.;).

SES, TTn—1€8p—1 SES,

16 ¢ should be noted that in the case that all Pr(X,) = Pr(Xp),Ya # b, we will have a multinomial
distribution of ratings, simplifying the estimation processes. Nevertheless, this situation should imply that
all the collaborative nodes have the same rating probabilities, which is not a valid assumption in this domain.
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Fig. 5 Recursion graph for computing Pr(< 1,1,1,2,2 >)

Table 12 Algorithm for computing Pr(A)

Computing Pr(A)

Pr(8y) = Pr(Xy)
for (k=1L k<nmk++)
for each §; € CR;; do // each combination of size k
for(s=1;s<=r;s++) // values of Xx4+1
Pr(érus)+ = Pr(ér) x Pr(xg+1,s)

A firstidea would be to apply this result directly in order to compute Pr(5(G;)|ev).
For instance, Fig. 5 shows the recursion graph for the computation of Pr(< 1, 1, 1,
2,2 >), where each different combination obtained after a reduction has been dis-
played only once. The key observation is that the number of (sub)combinations
obtained after applying a reduction process is relatively small. A recursive algorithm
may therefore encounter each one many times in different branches of its recursion
graph. For example, Fig. 5 shows that the (sub)combination Pr(< 1, 1, 2 >) should be
computed twice and the (sub)combination Pr(< 1, 1 >) three times. Moreover, some
of these subproblems might also appear when computing different joint probabilities,
such as Pr(< 1,1, 2,2,2 >). Applying Theorem 3 directly therefore involves more
work than necessary.

We propose that every probability for a given subcombination be computed just
once and its values saved in a table, thereby avoiding the work of recomputing this
probability every time the subcombination is encountered.

The following algorithm (see Table 12) shows how to compute the joint proba-
bility distributions for all the possible combinations with replacement in the set A.
We follow a bottom-up approach where we first compute the probabilities associated
with the smallest (sub)combinations in terms of the number of variables used to form
the combinations with repetition, and these probabilities will be used as the basis for
calculating the largest combinations. Initially, when considering the first variable X1,
we have r different combinations with replacement, one for each possible value of
the variable X1. In a general stage, we then found that the probabilities associated
with each combination §; of the first k& variables are used in the computation of the
probabilities of r different combinations with size k + 1, one for each possible value of
the variable X 1. Each of these combinations will be denoted by §xus with 1 <5 < r.

An inspection of the algorithm yields a running time of T'(n) = >/, rCR!, i..
T (n) € O(rn"), which is much more efficient than applying the recursive algorithm
from Theorem 3 directly. For example, in the case of bivaluated variables (as is usual
in decision problems), we have a quadratic algorithm for combining the output of the

@ Springer



Uncertainty in group recommending 241

different individuals. With respect to the memory needed to store the intermediate
results, we find that the values in stage k are only used in stage k — 1, and therefore
the memory used is on the order of O(CRy).
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