@ Machine Learning, 59, 213-235, 2005
=— 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Learning Bayesian Network Classifiers: Searching
in a Space of Partially Directed Acyclic Graphs

SILVIA ACID acid@decsai.ugr.es
LUIS M. DE CAMPOS Ici@decsai.ugr.es
JAVIER G. CASTELLANO fjgc@decsai.ugr.es

Departamento de Ciencias de la Computacion e 1.A., E.T.S.I. Informdtica, Universidad de Granada, 18071,
Granada, Spain

Editors: Pedro Larrafiaga, Jose A. Lozano, Jose M. Pefia and Ifiaki Inza

Abstract. There is a commonly held opinion that the algorithms for learning unrestricted types of Bayesian
networks, especially those based on the score+search paradigm, are not suitable for building competitive Bayesian
network-based classifiers. Several specialized algorithms that carry out the search into different types of directed
acyclic graph (DAG) topologies have since been developed, most of these being extensions (using augmenting
arcs) or modifications of the Naive Bayes basic topology. In this paper, we present a new algorithm to induce
classifiers based on Bayesian networks which obtains excellent results even when standard scoring functions
are used. The method performs a simple local search in a space unlike unrestricted or augmented DAGs. Our
search space consists of a type of partially directed acyclic graph (PDAG) which combines two concepts of DAG
equivalence: classification equivalence and independence equivalence. The results of exhaustive experimentation
indicate that the proposed method can compete with state-of-the-art algorithms for classification.

Keywords: classification, Bayesian networks, learning algorithms, scoring functions, directed acyclic graphs,
partially directed acyclic graphs

1. Introduction

Supervised classification is an important task in data mining, assigning predefined class
labels to data items described by means of a set of features or attributes. A classifier is a
function that maps an instance into a class label. The problem of the automatic induction of
classifiers from data sets of preclassified instances has long received considerable attention
within the machine learning community. Traditional approaches to this problem include
decision trees, neural networks, and classical statistical methods (Hand, 1981). More re-
cently, Bayesian networks have also been successfully applied to classification problems
in many ways by inducing classifiers using different types of Bayesian network learning
algorithms.

One way to do so is to perform unsupervised or unrestricted learning of Bayesian
networks (in the sense that the learning method does not distinguish the class variable from
the attribute variables) and then use the model as the classifier. Within this approach, if
the search method underlying the learning algorithm is guided by a scoring function, the
networks with the best scores do not necessarily give rise to the best classifiers: optimizing
the scoring function in the learning process does not necessarily maximize the accuracy in

214 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

predicting the class label given the evidence over the attributes. Consequently, neither the
scoring functions nor the search procedures used by these unrestricted learning algorithms
take into account the specificity of the classification problem, where there is a distinguished
class variable, and therefore the objective is not to get a good representation of a joint
probability distribution for the class and the attributes, but one for the posterior probability
distribution of the class given the attributes. As a result, several specialized algorithms that
carry out the search into different types of directed acyclic graph (DAG) topologies have
been developed, most of these being extensions (using augmenting arcs) or modifications of
the Naive Bayes basic topology. This approach generally obtains more satisfactory results
in terms of classification accuracy.

In this paper, we present a new algorithm to induce classifiers based on Bayesian networks
which uses standard scoring functions and achieves excellent results. The method performs
a simple local search, focused on the classification task, in a different space to that of
unrestricted or augmented DAGs. Our search space consists of a type of partially directed
acyclic graph (PDAG), which we call C-RPDAG and which combines two concepts of
DAG equivalence: classification equivalence and independence equivalence. This enables
us, on one hand, to focus the search with a classification perspective in mind and, on the
other hand, to explore a more reduced and robust search space.

The rest of the paper is organized as follows. We begin in Section 2 with the preliminaries.
Section 3 describes the kind of graphical structure which comprises the search space of
our algorithm and Section 4 gives details of the method used to search for good solutions
within this space, including the operators selected and the way of evaluating configurations.
Section 5 contains the experimental results of the evaluation of the proposed algorithm on a
wide range of databases and an empirical comparison with other state-of-the-art Bayesian
network classifiers. Section 6 contains the concluding remarks. Finally, the Appendix
includes proof of all the propositions set out in the paper.

2. Preliminaries

We shall begin by giving some background about Bayesian network learning algorithms
and their application to the induction of classifiers.

2.1. Learning Bayesian networks

Let us consider a finite set U = {X1, X5, ..., X, } of discrete random variables, each
variable taking on values from a finite set. We shall use capital letters for variable names,
and lower-case letters to denote specific values taken by those variables. Sets of variables
are denoted by boldface capital letters and assignments of values to the variables in these
sets are denoted by boldface lower-case letters.

A Bayesian Network (BN) is a graphical representation of a joint probability distribution
(Pearl, 1988). It comprises two components: firstly, a directed acyclic graph (DAG) G =
(U, Eg), where U, the set of nodes, represents the system variables, and E, the set of
arcs, represents direct dependence relationships between the variables; and secondly, a
set of parameters is also stored for each variable in U, usually conditional probability

LEARNING BAYESIAN NETWORK CLASSIFIERS 215

distributions. For each variable X € U we have a family of conditional distributions
p(X | pag(X)), one for each configuration, pag(X), from the parent set of X in the graph,
Pag(X)={Y e U|Y — X € Es}. From these conditional distributions we can recover
the joint distribution over U:

pet, X2, x) = [] pli | pag(X) (1)
X, eU

The independence relationships which make this decomposition possible are graphically
encoded (through the d-separation criterion) by means of the presence or absence of direct
connections between pairs of variables in the DAG G. For example, each variable X is
independent of its nondescendants given its parents in G. Another interesting pattern of
independence is the one generated by the Markov blanket: the Markov blanket of a variable
X in G, M Bg(X), is the set of variables comprising X’s parents, X’s children and the
parents of X’s children in G; X is then independent of the remaining variables (those in
U\(MB(X) U {X})) given its Markov blanket.

The problem of learning a BN is that given a training set D = {u', ..., u™} of instances
of U, find the network that, in some sense, best matches D. There are a great many learning
algorithms which may be subdivided into two general approaches: methods based on
conditional independence tests (also called constraint-based methods), and methods based
on a scoring function and a search procedure.!

Constraint-based algorithms (Cheng et al., 2002; de Campos & Huete, 2000; Spirtes,
Glymour, & Scheines, 1993) perform a qualitative study of the dependence and indepen-
dence relationships between the variables in the domain (obtained from the data by means
of conditional independence tests), and attempt to find a network that represents these
relationships as far as possible.

We are more interested in the algorithms based on the score+search paradigm, which
attempt to find a graph that maximizes the selected score. All use a scoring function, usually
defined as a measure of fit between the graph and the data, in combination with a search
method in order to measure the goodness of each explored structure from the space of
feasible solutions. The scoring functions are based on different principles, such as entropy
(Chow & Liu, 1968), Bayesian approaches (Cooper & Herskovits, 1992; Heckerman,
Geiger, & Chickering, 1995), or the Minimum Description Length (Lam & Bacchus,
1994). With respect to the search methods, the algorithms in this category have commonly
used local search methods (Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering,
1995), due to the exponentially large size of the search space. However, there is a growing
interest in other heuristic search methods (for references, see Acid & de Campos, 2003).

2.2. Learning Bayesian network classifiers

In this section, we shall review previous work on the application of Bayesian networks in the
field of classification. In this context, the set of variables considered willbe V=U U {C}.
C is a distinguished variable, called the class variable, and the variables in U will play

216 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

Figure 1. Different models for representing dependencies among the attributes: (a) Naive Bayesian network clas-
sifier (NB). (b) Tree-augmented Naive Bayesian network classifier (TAN). (c) Forest-augmented Naive Bayesian
network classifier (FAN). (d) Bayesian network augmented Naive Bayesian classifier (BAN).

the role of the attributes used to predict the value of C. The objective is to compute the
posterior probability of the class given any configuration of the attributes, p(C | u).

Any algorithm for learning BNs can be used to induce a classifier. In this case, the resulting
graph structure G may be a general, unrestricted DAG. If the sample to be classified has
no missing data, the classification process does not require the use of complicated BN
inference algorithms: as C is independent of all the variables given its Markov blanket,
plc | w) « p(c | pag(C))]_[Xecmdren(c)p(x | pag(X)), and the computation of the
posterior probability is quite simple. The results obtained using this approach are not
encouraging when the learning algorithms considered are score+search-based (Friedman,
Geiger, & Goldszmidt, 1997). Using constraint-based algorithms instead seems to produce
better results (Cheng & Greiner, 1999).

At the other extreme, the simplest classifier which can be considered as a Bayesian
network classifier, although coming from the pattern recognition field, is the famous Naive
Bayesian (NB) classifier (Langley, Iba, & Thompson, 1992) (Figure 1(a) depicts its DAG
structure). Its success is mainly due to its simplicity: firstly, no structure learning is required
(the network structure is fixed), and the parameters need only be estimated from the data set;
secondly, the required parameters may be reliably computed using only the bi-dimensional
statistics for the class and each attribute; and thirdly, the classification process is very
efficient: p(c | u) o< p(c) [[yey P(x | ©).

The NB model exhibits a surprisingly competitive predictive accuracy, considering its
clearly unrealistic assumptions (each attribute is conditionally independent from the other
attributes given the class and all the attributes have a bearing on the class), and outperforms
many more sophisticated classifiers over a large number of datasets, especially when the
attributes are not strongly correlated (Langley, Iba, & Thompson, 1992; Domingos &
Pazzani, 1997; Friedman, Geiger, & Goldszmidt, 1997).

The relative success of the NB classifier has motivated the development of many methods
which attempt to improve it by relaxing some of its basic assumptions.

LEARNING BAYESIAN NETWORK CLASSIFIERS 217

One way to relax the independence assumption of the NB classifier is to use restricted
DAG topologies which starting from the NB structure, complete it by adding augmenting
arcs between attributes. The resulting structures are augmented naive Bayesian networks
(ABNSs) (Friedman, Geiger, & Goldszmidt, 1997). Several ways to include augmenting
arcs have been proposed. Borrowing the terminology introduced by Sahami (1996), a k-
dependence Bayesian classifier is a Bayesian network whose associated DAG contains
the structure of the naive Bayes classifier and allows each attribute to have a maximum
of k attribute nodes as parents. Within this approach, tree-augmented naive Bayesian
network (TAN) (Friedman, Geiger, & Goldszmidt, 1997) is a 1-dependence Bayesian
classifier (see Figure 1(b)). In TAN the attributes are linked together as a directed tree.
This algorithm generates an optimal 1-dependence structure by extending Chow and
Liu’s method for learning trees (1968), using the conditional mutual information mea-
sure between attributes given the class variable. A variant of TAN is forest-augmented
naive Bayesian network (FAN) (Lucas, 2002), the difference being that in FAN the de-
pendencies between attributes are restricted to form a forest (see Figure 1(c)). Another
type of TAN classifier (Keogh & Pazzani, 2002) performs hill-climbing searches of
TAN structures, using leaving-one-out cross validation to estimate the accuracy of the
classifier.

At the other extreme of the range of k-dependence ABNs we have the so-called Bayesian
network augmented naive Bayesian classifier (BAN), an n-dependence ABN (see Figure
1(d)). In this case, the NB structure is fixed and the search of the augmenting arcs is carried
out using an algorithm for learning Bayesian networks. Examples of this approach which
use a scoring-based search algorithm can be found in the work by Friedman, Geiger, and
Goldszmidt (1997), which use an MDL scoring metric and local search, or Ezawa, Singh,
and Norton (1996), based on the K2 learning algorithm. On the other hand, constraint-based
learning algorithms instead of scoring-based ones are used by Cheng and Greiner (1999).

In between TAN and BAN there is the KDB algorithm (Sahami, 1996), which builds
k-dependence Bayesian classifiers, for fixed k, using greedy search and mutual information.

There are also other methods to relax the independence assumption of the NB model
that are not strictly based on ABNs. This is the case of the semi-naive Bayesian classi-
fier (Kononenko, 1991) and the model proposed by Pazzani (1995). They share the idea
of merging several correlated attributes into new compound attributes. These compound
attributes are considered independent among each other given the class, but no assumption
of independence is made about the attributes within a group. Thus, the resulting model
is an NB model where the new attributes can be either groups or individual attributes.
Another proposal within this category (Zhang, Nielsen, & Jensen, 2004), is to introduce
latent variables to model violations of the independence between attributes given the class.
This model uses hierarchical naive Bayes (HNB) structures, which are tree-shaped BNs
with latent variables between the class node (the root) and the attributes (the leaves).

Finally, another method, which is closer to our proposal, is based on the concept of the
Markov blanket (Sierra & Larrafiaga, 1998). This method, called MB-GA, searches in a
space of DAGs where all the attributes must belong to the Markov blanket of the class
variable. The search is carried out by means of genetic algorithms and each candidate
network is evaluated using its accuracy as the classifier. Another variant of this method,

218 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

RMB-GA, uses a modified search space, where not all the attributes must belong to the
Markov blanket and some structural restrictions are imposed in order to obtain simpler
models (if an attribute is a parent of the class, it cannot be a parent of a class’ child;
moreover, any attribute may be a parent of at most one class’ child).

The other basic assumption of the NB classifier (i.e. that all the attributes have some
influence on the class variable) can also create some problems: firstly, if two attributes
are strongly correlated, their influence on the class variable may be overamplified by the
NB classifier; and secondly, if an attribute is truly irrelevant, its use only contributes to
adding noise to the classification. In either case, the solution may be to remove some of the
attributes by using feature subset selection (FSS). The selective naive Bayesian classifier
(Langley & Sage, 1994; John & Kohavi, 1994) searches for a good subset of attributes,
starting from an empty set and iteratively introducing the attribute that most improves
the predictive accuracy, using cross-validation. Another selective Bayesian classifier was
proposed by Singh and Provan (1996), and this combines several FSS strategies with an
unrestricted BN learning algorithm over the previously selected attribute subset. FSS is
also used by Ezawa, Singh, & Norton (1996) and Pazzani (1995). Other algorithms for FSS
are based on the idea of identifying Markov blankets (Aliferis, Tsamardinos, & Statnikov,
2003; Frey et al., 2003; Koller & Sahami, 1996).

3. The C-RPDAG search space

In this section, we shall describe the elements that comprise the search space of our
algorithm for learning Bayesian network classifiers.

3.1. Class-focused DAGs

The first important fact to be taken into consideration when designing our search space
is that from a classification point of view, many different DAGs are equivalent, in the
sense that they will produce the same posterior probabilities for the class variable.? Let us
formalize this idea:

Definition 1 (Classification equivalence). Let G = (V,Eg) and G’ = (V, Eg') be
two DAGs. Let p be any joint probability distribution on V, and ps and pg be the
probability distributions that factorize according to G and G’, respectively, defined as
p6(X | pag(X)) = p(X | pag(X)) and pe/(X | pag(X)) = p(X | pag(X)),VX € V. If
pc(C | u) = pg/(C | u) Vu, we say that G and G’ are classification-equivalent.

Proposition 1. Given any DAG G = (V, Eg), let G. = (V, E,) be the subgraph of G
defined as follows:
1. Pag.(C) = Pag(C),
2.VX eV, X #C,ifC € Pag(X) then Pag,(X) = Pag(X),
3.¥9X eV, X #C,ifC & Pag(X) then Pag (X) = 0.

Then G and G are classification-equivalent. Moreover, for any other subgraph H =
(V, Ep) of G such that G and H are classification-equivalent, G . is also a subgraph of H.

LEARNING BAYESIAN NETWORK CLASSIFIERS 219

R QR QO
%)GD g / \@; o /@ ©

@

Figure 2. (a) A DAG G; (b) subgraph of G induced by the Markov blanket of C; (c) subgraph G..

It should be noted that G. is not equal to the subgraph of G induced by C and the
Markov blanket of C, as the first contains fewer arcs than the second. Figure 2 illustrates
the differences between these two subgraphs.

Proposition 1 identifies the minimum subgraph of any DAG G that performs exactly as G
as a classifier for the variable C. This suggests that we could try to find good BN classifiers
by focusing the search in the set of DAGs of this kind, instead of searching in the whole
space of DAGs. First, we shall formally define this type of structure.

Definition 2 (Class-focused DAG). A DAG G = (V, Eg) is a class-focused DAG (C-
DAG) with respect to the variable C if and only if it satisfies the following condition:

VX,Y eV, if X > Y € Eg theneither Y =CorX=CorC - Y € E;. 2)

C-DAGs may therefore contain only arcs linking the class with any attribute (in either
direction) and arcs between attributes only in the case that the class is a parent of some of
them.

A class-focused DAG can be seen as the canonical representative of a class of DAGs, all
of which are equivalent as classifiers for C. The following result formalizes this idea:

Proposition 2. Given any C-DAG H = (V, Ey), let Cy be the set
Cyu={G|GisaDAGonVand G, = H}.

Then

1. G € Cy if and only if Pag(X) = Pay(X) VX € V such that C € Pag(X), and
Pag(C) = Pay(C).

2. The family of sets {Cy | H is a C-DAG on V} is a partition of the set of DAGs on V.

3.2. Class-focused RPDAGs

Although the use of C-DAGs instead of general DAGs helps to reduce the search space,
further reductions are possible if we also consider the concept of independent-equivalence
classes of DAGs (Pearl & Verma, 1990), i.e. classes of DAGs where each represents a
different set of conditional independence assertions.?

220 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

The graphical objects used to represent independent-equivalence classes of DAGs are
PDAGs (partially directed acyclic graphs). These graphs may contain both directed (arcs)
and undirected (links) edges, but no directed cycles. In the context of learning general,
unrestricted Bayesian networks, a number of algorithms which carry out the search in
a space of independent-equivalence classes of DAGs have been developed. This feature
reduces the size of the search space, which has a smoother landscape, and avoids some
early decisions on arc directions. The price that these algorithms must pay for this reduction,
namely that the evaluation of candidate structures does not take advantage of the property of
decomposability of many scoring functions (thus rendering these algorithms less efficient),
has recently been overcome (Acid & de Campos, 2003; Chickering, 2002).

Our proposal is to apply these ideas about independence equivalence of DAGs to the
case of class-focused DAGs. Although there is a kind of PDAG that can be used to
canonically represent independent-equivalence classes of DAGs (called completed PDAGs
by Chickering, 1996), the non-canonical scheme of representation that we shall use is that
of restricted PDAGs (RPDAGs)(Acid & de Campos, 2003), which are considerably simpler
than completed PDAGs. Let us introduce some additional notation and then the concept
of RPDAG. The skeleton of a DAG is the undirected graph that results from ignoring the
directionality of every arc. A h-h pattern (head-to-head pattern) in a DAG G is an ordered
triplet of nodes, (X, Y, Z), such that G contains the arcs X — Y and ¥ <« Z. Given a
PDAG G = (V, Eg), the following subsets of nodes are defined for each node X € V:

— Cheg(X)={Y e V| X - Y € Eg}, the set of children of X.
— Sibg(X) ={Y € V| X—Y € Eg}, the set of siblings of X.
— Adg(X) = Pag(X)U Chg(X) U Sibg(X), the set of adjacents to X.

Definition 3 (Restricted PDAG). (Acid & de Campos, 2003). A PDAG G = (V, Eg) is
arestricted PDAG (RPDAG) if and only if it satisfies the following conditions:

1. VX e V,if Pag(X) # @ then Sibg(X) = 0.

2. G does not contain any directed cycle.

3. G does not contain any completely undirected cycle, i.e. a cycle containing only links.
4. If X —> Y € Eg theneither |Pag(Y)| = 2 or Pag(X) # 0.

As RPDAGSs are intended as representations of sets of independent-equivalent DAGs,
the set of DAGs which is represented by a given RPDAG G must be defined:

Definition 4 (Extension of an RPDAG) (Acid & de Campos, 2003). Given an RPDAG
G = (V, Eg), we say that a DAG H = (V, Ep) is an extension of G if and only if:

1. G and H have the same skeleton.
2. If X > Y € Egthen X — Y € Ey (no arc is redirected).
3. G and H have the same h-h patterns.

We shall use Ext(G) to denote the set of DAGs that are extensions of a given RPDAG
G. It can be proved (Acid & de Campos, 2003) that (1) Ext(G) # @, (2)VH, H' € Ext(G)

LEARNING BAYESIAN NETWORK CLASSIFIERS 221

@ @ @ @ @ @ @ @ @® @

0 S ® S &

o, ® © ® © ® @ o o0
0 (@ e (b) ° (c) o (¢} ° (e)

Figure 3. Examples of C-RPDAGs.

H and H’ are independence equivalent, and (3) H, H' € Ext(G) if and only if H and H’
have the same skeleton and the same h-h patterns.

Returning to our problem of searching for BN classifiers, our proposal is to define the
search space as the set of RPDAGs which are different from a classification point of view.
More formally, we define:

Definition 5 (Class-focused RPDAG). A class-focused RPDAG or C-RPDAG is an
RPDAG whose extensions are class-focused DAGs.

The following proposition gives a useful characterization of the concept of C-RPDAG.

Proposition3. A PDAG G isacclass-focused RPDAG if and only if the following conditions

hold:

1. G does not contain any directed cycle.

2. If Pag(C) # @ then |Pag(C)| > 2 and Sibg(C) = 0.

3.VX € V, X # C, if Pag(X) # @ then C € Pag(X) and either |Pag(X)| > 2 or
|Pag(C)] = 2.

4. VX eV, X #C,if Sibg(X) # @ then Sibg(X) = {C} and Pag(X) = 0.

Some examples of C-RPDAGs are displayed in Figure 3. Another interesting result
concerning C-RPDAG:s is:

Proposition 4. Let G = (V, Eg) be a C-RPDAG. Then, VH, H' € Ext(G), H and H'
are classification-equivalent.

In this way, the elements in our search space of C-RPDAGs represent sets of classification-
equivalent C-DAGs, each in turn representing a set of classification-equivalent DAGs. It
should be noted that C-RPDAGs are not always canonical representations of the classes of
classification-equivalent DAGs: two classification-equivalent DAGs may be associated to
different C-RPDAGs. Anyway, a useful reduction in the search space with respect to that
of DAGs is obtained.

We believe that this is not the only advantage of using C-RPDAGs. On one hand, a search
process in the space of DAGs may lose its way, in the sense that the inclusion of some arcs,
irrelevant for the classification task, may prevent or hinder the inclusion of other relevant
arcs. We do not expect this problem to occur in a classification-oriented search process,
such as the one based on C-RPDAGs. On the other hand, with respect to search methods
based on augmented DAGs, those where C € Pag(X) VX € V\{C} (such as TAN, FAN

222 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

and BAN), our search space does not impose the naive Bayes substructure, although this
can be obtained if it is really appropriate (it should be observed that augmented DAGs are
always C-DAGs). We can also obtain more general structures, such as those where a node
is a parent of a class’ child, but this node is not connected to the class. It should be noted
that feature selection is also an integral part of our approach, since all the variables that
remain isolated at the end of the search process will not be considered by the classifier.
Moreover, the structures obtained by other classification methods can also be reproduced
using C-RPDAGs. This is the case, for example, of the semi-naive Bayesian classifier and
the selective naive Bayesian classifier in their different formulations.

4. The search method

We shall use a local method to explore the search space of C-RPDAGs. The starting point
of the search process will be an empty C-RPDAG (corresponding to an empty DAG). We
must then define the operators to move from one configuration to another neighboring
configuration.

Our basic operators essentially are the same as those used by Acid and de Campos
(2003) for RPDAG:ES, i.e. the inclusion of an edge between a pair of non-adjacent nodes
and the removal of an existing edge between a pair of adjacent nodes. These edges may be
either directed or undirected.

4.1. The operators

The five operators used by Acid and de Campos to move in the space of RPDAGs were:
A_arc(X,Y), addition of anarc X — Y; A_link(X, Y), addition of alink X-Y; D_arc(X, Y),
deletion of an arc X — Y; D_link(X, Y), deletion of a link X-Y; A_hh(X, Y, Z), addition
of an arc X — Y and creation of the h-h pattern X — Y <« Z by transforming the link
Y—Z into the arc Y <« Z. However, taking into account the special character of the class
variable C in our case, these operators will be reformulated in terms of C’s parents, C’s
children and the parents of C’s children, in order to make their meaning clearer from the
perspective of the class variable:

A_ParentOfC(X), addition of the arc X — C.

A _ChildOfC(X), addition of the arc C — X.

A_SiblingOfC(X), addition of the link X—C.

A_HHOfC(X, Y), creation of the h-h pattern X — C < Y by adding the arc X — C

and transforming the link Y—C into the arc Y — C.

A_ParentOfChild(X, Y), addition of the arc X — Y.

A_HHOfChild(X, Y), creation of the h-h pattern X — Y < C by addingthearc X — Y

and transforming the link C-Y into the arc C — Y.

D_ParentOfC(X), deletion of the arc X — C.

— D_ChildOfC(X), deletion of the arc C — X, together with all the other arcs pointing to
X.

— D_SiblingOfC(X), deletion of the link X—C.

LEARNING BAYESIAN NETWORK CLASSIFIERS 223

LR Y
A_ParentOfCx) O acniorcr)

® :6‘: ® mjj

A_ParentOfChild(X,Y) A_HHOAChild(X,Y)

Figure 4. Examples of the six operators of addition.

— D_HHOSC(X, Y), destruction of the h-h pattern X — C < Y by deleting the arc X — C
and transforming the arc ¥ — C into the link Y-C.

— D_ParentOfChild(X, Y), deletion of the arc X — Y.

— D_HHOfChild(X, Y), destruction of the h-h pattern X — Y <« C by deleting the arc
X — Y and transforming the arc C — Y into the link Y-C.

The conditions that the current C-RPDAG G must verify so that each of these operators
can be applied in order to obtain a valid neighboring C-RPDAG, G’, are shown in Table
1. These conditions can be easily derived from the result in Proposition 3. Table 1 also
shows the actions required to transform G into the corresponding neighbor G’, including
those necessary to ensure that G’ is a C-RPDAG. Figures 4 and 5 show an example for
each one of the operators. It should be observed that as each operator for insertion has a
corresponding operator for deletion, we can obtain any C-RPDAG starting from any other
C-RPDAG.

4.2. Evaluation of candidate structures

The search method we have described may be applied in combination with any function
which is capable of measuring the fitness between each explored C-RPDAG and the data
available to induce the classifier (the training set). Several options could be considered.
One is to use the degree of accuracy of the resulting classifier (i.e. the percentage of
well-classified samples) for the assessment of each candidate network. This is a wrapper
approach, commonly used in many algorithms for inducing classifiers or performing feature

224 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

Table 1.

The operators, their conditions of applicability and the required actions.

Operator

Conditions

Actions

A_ParentOfC(X)

X & Adg(C); Pag(C) # 9

insert(X — C)

A_ChildOfC(X)

X & Adg(C); Pag(C) #10

insert(C — X)

A_SiblingOfC(X)

X € Adg(C); Pag(C) =10

insert(X—C)

A_HHOfC(X,Y) X & Adg(C); Pag(C)=0 insert(X — C)
Y € Sibg(C) delete(Y —C); insert(Y — C)
VZ € Sibg(CO\{Y} {
delete(C—Z); insert(C — Z)}
A _ParentOfChild(X,Y) X & Adg(Y);Y € Chg(C) insert(X — Y)

There is no directed path
from Y to Xin G

A_HHOfChild(X, Y)

X & Adg(Y); Y € Sibg(C)
There is no directed path
fromYtoXin G

insert(X — Y)
delete(C—Y)
insert(C — Y)

D_ParentOfC(X)

X € Pag(C); | Pag(C) |23

delete(X — C)

D_ChildOfC(X)

X e Chg(C)

VZ € Pag(X) delete(Z — X)

D_SiblingOfC(X)

X € Sibg(C)

delete(X—C)

D_HHOfC(X,Y)

X € Pag(C); Y € Pag(C)
| Pag(C) |=2

delete(X — C)

delete(Y — C); insert(Y —C)
VZ € Chg(C)

if Pag(Z) = {C} {

delete(Z — C)}; insert(Z—C)

D_ParentOfChild(X, Y)

X € Pag(Y); Y € Chg(C)
| Pag(Y) |= 3 or Pag(C) # ¥

delete(X — Y)

D_HHOfChild(X, Y)

X € Pag(Y); Y € Chg(C)
| Pag(Y) |< 3; Pag(C) =0

delete(X — Y)
delete(C — Y); insert(C—Y)

selection, as we mentioned earlier (John & Kohavi, 1994; Keogh & Pazzani, 2002; Langley,
Iba & Thompson, 1992; Langley & Sage, 1994; Pazzani, 1995; Sierra & Larrafiaga, 1998).
As this kind of measure tends to cause problems of overfitting, the usual solution is to use
an estimation scheme, such as cross-validation, to repeatedly evaluate the predictive accu-
racy of the candidate classifier on various data subsets. This approach is computationally
expensive, unless the selected model is simple, such as the naive Bayesian classifier.

LEARNING BAYESIAN NETWORK CLASSIFIERS 225

op ooy @\% i/j

D_SiblingOfC(X) D_HHOfC(X,Y)

OO0 OO0 QO 5
° —g

D_ParentOfChild(X;Y) D_HHOfChild(X,Y)

Figure 5. Examples of the six operators of deletion.

A second option would be to develop a specialized scoring metric that could account
how well a network describes the probability distribution of the class variable given the
attributes. Unfortunately, attempts in this direction have so far resulted computationally
intractable (Friedman, Geiger, & Goldszmidt, 1997).

Although we do not discard the possibility of pursuing these approaches in the future,
in this paper we shall consider a simpler and more efficient approach: a non-specialized
scoring function, such as those commonly used by the algorithms for learning unrestricted
Bayesian networks. Examples of these functions are BIC, BDe (Heckerman, Geiger, &
Chickering, 1995) K2 (Cooper & Herskovits, 1992) and MDL (Lam & Bacchus, 1994).
It has been argued that these scoring functions measure the fitness between the joint
distribution associated to the network and the data, but do not measure the fitness between
the conditional distribution of the class given the attributes and the data. Consequently, their
use may result in poor classifiers. While the first of these assertions is undoubtedly true,
the second is more controversial. The results of our experiments in Section 5 indicate that
some non-specialized scoring functions, such as BDe, in combination with our C-RPDAG
search space, also perform very well for the classification task.

In principle, a scoring function, g, evaluates DAGs. However, the elements in our search
space are not DAGs but classes of equivalent DAGs. A simple way to use our method
would be to select an extension H of the candidate C-RPDAG G to be evaluated, and
compute g(H : D). In order to do so, it is reasonable to use a score-equivalent function®*
in order to ensure that the same result is obtained regardless of the selected DAG H.
Moreover, for the sake of efficiency in the evaluation process, the scoring function should
be decomposable’; in this way the DAG obtained by adding or removing an arc from the

226 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

current DAG H can be evaluated by modifying only one local score. For the operators
being considered in our C-RPDAG space, a similar property can be obtained: by using
a score equivalent and decomposable function, firstly, it is not necessary to transform
the C-RPDAG into a DAG—it can be evaluated directly; and secondly, the score of any
neighboring C-RPDAG can be obtained by computing at most two local scores. In this
way, all the advantages of the search methods on the space of DAGs are preserved, but
a more reduced and robust search space is used. The following proposition proves these
assertions.

Proposition 5. Let G be a C-RPDAG and G’ be any C-RPDAG obtained by applying one
of the operators described in Table I to G. Let g be a score equivalent and decomposable
function.

(a) If the operator is A_ParentOfC(X) then

§(G': D) =g(G : D) — gp(C, Pag(C)) + gn(C, Pag(C) U {X})

(b) If the operator is A_ChildOfC(X) then

8(G": D) =g(G : D) — gp(X, D) + gn(X, {C})

(c) If the operator is A_SiblingOfC(X) then
g(G': D)= g(G : D) — gp(C, %) + gp(C,{X})
(d) If the operator is ALHHOfC(X,Y) then

8(G": D) =g(G : D) — gp(C. {Y}) + gn(C.{X.Y})

(e) If the operator is A_ParentOfChild(X,Y) then

8(G": D) =g(G : D) — gp(¥, Pag(Y)) + gp(Y, Pag(Y) U {X})

(f) If the operator is ALHHOfChild(X,Y) then
8(G':D)=¢(G : D) — gp(Y. {CH + gp (Y. {C. X}
(g) If the operator is D_ParentOfC(X) then

8(G": D) =g(G : D) — gp(C, Pag(C)) + gp(C, Pag(C)\{X})

LEARNING BAYESIAN NETWORK CLASSIFIERS 227

(h) If the operator is D_ChildOfC(X) then

8(G': D) =g(G : D) — gp(X, Pag(X)) + gp(X. ¥)

(i) If the operator is D_SiblingOfC(X) then

8(G': D) =g(G : D) — gp(C.{X}) +¢gp(C.,9)

(j) If the operator is D_.HHOfC(X,Y) then

8(G": D) =g(G : D) — gp(C, Pag(C)) + gp(C. Pag(C)\{X})

(k) If the operator is D_ParentOfChild(X, Y) then
g(G": D) =g(G : D) — gp(Y, Pag(Y)) + gp(Y, Pag(Y)\{X})
(1) If the operator is D_HHOfChild(X, Y) then

g(G':D)=g(G : D) —gp(Y,{C,X}) + gp(Y,{C})

5. Experimental results

In this section we shall describe the experiments carried out with the proposed C-RPDAG-
based classifier, the obtained results, and a comparative study with other Bayesian network
classifiers. We have selected 31 well-known data sets, obtained from the UCI repository
of machine learning databases (Blake & Merz, 1998), except “mofn-3-7-10" and “corral”,
that were designed by Kohavi and John (1997). All these data sets have been widely used
in specialist literature for comparative purposes in classification.

Table 2 gives a brief description of the characteristics of each data-base, including the
number of instances, attributes and states for the class variable. These data sets have been
preprocessed in the following way: the continuous variables have been discretized using the
procedure proposed by Fayyad and Irani (1993), and the instances with undefined/missing
values were eliminated. For this preprocessing stage, we have used the MLC++ System
(Kohavi et al., 1994).

The other classifiers being considered are Naive Bayes (NB), Tree augmented naive Bayes
(TAN), Bayesian network augmented naive Bayes (BAN), and two unrestricted Bayesian
network learning algorithms (UBN and RPDAG). All the algorithms are implemented in
the Elvira System (Elvira Consortium, 2002) a Java tool to construct probabilistic decision
support systems, which works with Bayesian networks.

Both BAN and UBN algorithms search locally in the space of augmented DAGs and
unrestricted DAGs, respectively (with the classical operators of arc addition, arc deletion,

228 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

Table 2. Description of the data sets used in our experiments.

Data set Instances Attributes Classes
1 Adult 45222 14 2
2 Australian 690 14 2
3 Breast 682 10 2
4 Car 1728 6 4
5 Chess 3196 36 2
6 Cleve 296 13 2
7 Corral 128 6 2
8 crx 653 15 2
9 Diabetes 768 8 2

10 DNA-nominal 3186 60 3

11 Flare 1066 10 2

12 German 1000 20 2

13 Glass 214 7

14 Glass2 163 2

15 Heart 270 13 2

16 Hepatitis 80 19 2

17 Iris 150 4 3

18 Letter 20000 16 26

19 Lymphography 148 18 4

20 mofn-3-7-10 1324 10 2

21 Mushroom 8124 22 2

22 Nursery 12960 8 5

23 Pima 768 8 2

24 Satimage 6435 36 6

25 Segment 2310 19 7

26 Shuttle-small 5800 9 7

27 Soybean-large 562 35 19

28 Splice 3190 60 3

29 Vehicle 846 18 4

30 Vote 435 16 2

31 Waveform-21 5000 21 3

and arc reversal), and are scoring-based. RPDAG, which is also scoring-based, searches
locally in the RPDAG space using its specific operators. In these three methods, and also
in C-RPDAG, the selected scoring function is the same: BDeu (Heckerman, Geiger, &
Chickering, 1995), with the parameter representing the equivalent sample size set to 1
and a uniform structure prior. The starting point of the local search in UBN, RPDAG and
C-RPDAG was the empty graph.

LEARNING BAYESIAN NETWORK CLASSIFIERS 229

Table 3. Experimental results. Predictive accuracy.

NB TAN BAN UBN RPDAG CRPDAG
1 83.13(~) 8523 85.54 85.43 85.47 85.29
2 85.22 84.98 85.94 85.75 86.09 86.04
3 97.56 95.60 97.56 97.65 97.56 97.56
4 8540(-) 93.86 93.09 92.98 93.87 93.07
5 87.84 () 9234(-) 96.88 97.02 97.53 96.53
6 83.24 80.89 82.57 83.57 84.03 81.78
7 86.82(=) 99.49 100.00 100.00 100.00 100.00
8 86.97 86.36 86.56 86.71 86.66 87.02
9 78.17 79.00 78.65 79.09 79.39 78.78
10 9540 (<) 94.82(=) 9531(-) 9595 95.96 96.15
11 80.40 82.90 82.93 82.27 82.36 83.27
12 75.27 72.80 74.67 73.80 74.57 74.30
13 72.78 69.05 71.83 69.06 73.84 73.10
14 83.38 85.04 85.04 84.82 84.61 85.86
15 83.46 82.84 82.10 83.33 83.46 82.22
16 85.00 90.42 88.75 89.58 94.58 88.75
17 94.22 93.56 94.44 94.89 94.00 94.67
18 7401 (-) 8583 (+) 8435(-) 8443(0) 84.69 85.08
19 84.41 81.94 84.43 79.08 82.43 81.54
20 8540(-) 9071(>) 8729(9) 99.17 100.00 99.50
21 9538(=) 99.98 100.00 100.00 100.00 100.00
22 9026 () 9227(-) 91.82(0) 93.12 93.51 93.52
23 77.91 78.78 78.03 78.78 79.29 78.03
24 8243(-) 8847 88.29 8349 (-) 83.15(0) 88.19
25 9216 (=) 95.09 94.34 94.56 94.46 94.34
26 99.01 (=) 99.66 99.72 99.69 99.69 99.60
27 91.70 86.05 92.53 88.55 89.85 90.33
28 9545(-) 94.89(-) 95.28 95.73 95.78 96.27
29 62.85(=) 71.05 71.56 65.13(0) 6497(0) 7191
30 90.04 94.42 94.34 94.57 94.49 93.49
31 81.82 82.89 82.36 79.81 (<) 7996 (-) 82.45
Average 85.39 87.46 87.94 87.68 88.19 88.34
B 2 4 6 5 12 9

w 18 10 1 2 0 0

Once the graphical structure of each algorithm has been determined, the required marginal
and conditional probabilities must be estimated from the data set. In all cases, we have used
the same smoothed estimator, based on the Laplace law of succession (Good, 1965) (we

230 S. ACID, L.M. DE CAMPOS, AND J.G. CASTELLANO

Table 4. Number of times that the algorithm in row i is better/significantly better than the algorithm in column
J-

NB TAN BAN UBN RPDAG CRPDAG Tot. better
NB - 12/1 7/0 7/2 6/1 5/0 37/4
TAN 19/12 - 12/2 10/4 7/4 12/1 60/23
BAN 23/11 18/3 - 13/4 11/4 10/0 75/22
UBN 24/10 20/2 16/1 - 8/0 12/0 80/13
RPDAG 23/11 24/3 17/2 20/0 - 16/0 100/16
CRPDAG 25/14 19/5 15/4 17/4 12/3 - 88/30
Tot. worse 114/58 93/14 67/9 67/14 44/12 551

try to avoid problems of unreliability and overfitting of the maximum likelihood estimator
in small data sets).

The results of this comparative study are displayed in Table 3. For each classifier and
data set we show the predictive accuracy (the percentage of successful predictions on a test
set different from the training set). This accuracy was measured as the average of three
runs, the accuracy of each run being estimated using 10-fold cross-validation. Within each
run, the cross-validation folds were the same for all the classifiers on each data set. We used
repeated runs and 10-fold cross-validation to get a good balance between bias and variance
of the estimation (Kohavi, 1995). The best and worst results obtained for each problem are
emphasized using bold and italic fonts, respectively. Also, at the bottom of the table we
show the average accuracy and how many times each algorithm has been the best (B) and
the worst (W).

We can observe that no algorithm is always better than another for all the datasets, and
the different approximations can obtain the best result depending on the problem. However,
in general C-RPDAG and RPDAG obtain a greater number of best results and there is no
case where they were the worst classifier. In order to confirm the good behavior of our
algorithm, we have used a non-parametric statistical significance test: the Wilcoxon paired
signed Rank Test. In Table 3 we also indicate whether an algorithm is significantly worse
(-) or better (+) than C-RPDAG, on each data set. In Table 4 we compare each classifier
with the others. The entry in row i column j represents the number of times that classifier
i is better/significantly better (using the Wilcoxon test) than classifier j. Each row displays
the times that the corresponding classifier is better, whereas each column says how many
times the classifier is worse. These numbers clearly indicate that our algorithm does indeed
behave generally better than the others.

Another important aspect to be taken into account, in addition to effectiveness, is that of
efficiency. Although running time is only a rough measure of efficiency, we have therefore
collected information about timing results of all the algorithms, excluding NB, which is
obviously much faster than the others. In Table 5 we show the ratio of the time spent by
each algorithm to the time spent by C-RPDAG, averaged across all the data sets and across
the larger data sets (those including at least 20 attributes). As expected, C-RPDAG is faster
than BAN and UBN (the difference increases when we consider only the largest data sets,

LEARNING BAYESIAN NETWORK CLASSIFIERS 231

Table 5. Average ratios of running times spent by each algorithm to the time spent by C-RPDAG.

TAN BAN UBN RPDAG

Across all the data sets 0.539 1.081 1.192 0.546
Across selected data sets 1.155 1.306 1.383 0.567

and in this case C-RPDAG runs even faster than TAN). Surprisingly, however, RPDAG is
about twice as fast as C-RPDAG (although we believe that this is mainly due to a finer
implementation of RPDAG).

6. Concluding remarks

Until recently, it was thought that a score-based learning algorithm could build Bayesian
networks which maximize the scoring function but which may behave poorly as classifiers.
This is only partially true, however, as the use of search algorithms specialized for clas-
sifications tasks permits us to obtain better results than search algorithms which are not
oriented to classification, even within a score-based approach. In fact, what we have devel-
oped in this paper is a new score—+search-based algorithm for learning Bayesian network
classifiers from databases. It is based on the use of C-RPDAGs, a kind of partially directed
acyclic graph, as the elements of the search space. These graphs combine the ideas of clas-
sification equivalence and independence equivalence to produce a more reduced, focused
and robust search space. The experimental results show that our method can efficiently
induce classifiers that compete favorably with several state-of-the-art Bayesian network
classifiers. For future work we plan to use other search algorithms, more powerful than
local search algorithms, in combination with our C-RPDAG space, in order to test whether
the possible increase in predictive accuracy may compensate the extra cost of inducing the
classifier. Candidate algorithms may be any of the search methods already used for learning
unrestricted Bayesian networks.

Acknowledgments

This work has been supported by the Junta de Comunidades de Castilla-La Mancha and
Fondo de Investigacion Sanitaria, under Projects PBC-02-002 and FIS-P1021147, respec-
tively.

Appendix.

Proof of Proposition 1: The conditional probability ps(C | x1, ..., x,) can be expressed
in terms of the probabilities p(C | pag(C))and p(X | pag(X)),VX suchthatC € Pag(X).
As the parent sets Pag(C) and Pag(X) are the same in the subgraph G, the first assertion
follows immediately. Moreover, these parent sets must also be the same for any other
classification-equivalent subgraph of G. As Pag, (Y) = @ for any other node Y, it follows
that G is a subgraph of H. O

232 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

Proof of Proposition 2: The first assertion is obvious. For the second, it is clear that
given any DAG, G, we can find a C-DAG H such that G € Cy: H = G.. Moreover, if
G €CyNCy,then H=G.= H’,and {Cy} is a partition. O

Proof of Proposition 3: Necessary condition: we assume that G is a C-RPDAG and we
shall prove the four conditions 1—4 in Proposition 3. O

Condition I: this is obvious from Condition 2 in Definition 3.

Condition 2: if Pag(C) # @, then Sibg(C) =) by using Condition 1 in Definition 3.
Moreover, there is at least one arc X — C in G. Using Condition 4 in Definition 3 we
obtain |Pag(C)| = 2 or Pag(X) # 0. If Pag(X) # @, then we have an arc Y — X such
that Y # C, X # C and the arc C — X does not exist, which contradicts the fact that the
extensions of G are C-DAGs. Hence, |Pag(C)| > 2.

Condition 3: if Pag(X) # @, X # C, then there is an arc Y — X in G and in any
extension of G. As these extensions are C-DAGs, then either Y = C or 3C — X. In either
case C € Pag(X). Using Condition 4 in Definition 3 |Pag(X)| > 2 or Pag(C) # #. In
this last case, the previous Condition 2 ensures that | Pag(C)| > 2.

Condition 4: if Sibg(X) # @, X # C, then we obtain Pas(X) = @, using Condition 1 in
Definition 3. Moreover, a link Y —X exists in G. This link will be an arc in the extensions
of G. As these extensions are C-DAGs, the only possible options are that either Y = C or
the h-h pattern C — Y <« X exists in some extension of G. The last option would imply
that the h-h pattern also exists in G, and this contradicts the fact that Y —X is a link and
not an arc in G. Therefore, C € Sibg(X) and C is the single sibling of X.

Sufficient condition: we assume the four conditions in Proposition 3, and we shall prove
the four conditions in Definition 3 and that the extensions of G are C-DAGs.

Condition I: assume that Pag(X) # @. If X = C then Condition 2 in Proposition 3
guarantees that Sibg(X) = @; if X # C, then Condition 3 in Proposition 3 asserts that
C € Pag(X), hence C ¢ Sibg(X). From Condition 4 in Proposition 3 we can now obtain
Sibg(X) =0.

Condition 2: It follows immediately from Condition 1 in Proposition 3.

Condition 3: if a completely undirected cycle exists in G, then at least three nodes have
more than one sibling node. However, from Condition 4 in Proposition 3 we know that all
the nodes except the class have at most one sibling.

Condition 4: assume that the arc X — Y exists in G. If Y = C then Pag(C) # 0,
and Condition 2 in Proposition 3 ensures that |Pag(Y)| = |Pag(C)| = 2. If X = C then
Pag(Y) # ¢ and Condition 3 in Proposition 3 ensures that |[Pag(Y)| > 2 or |Pag(X)| =
|[Pag(C)| = 2.If X £ C and Y s C then from Condition 3 in Proposition 3 we know that
C € Pag(Y), hence |Pag(Y)| = 2.

Therefore, G is an RPDAG. In order to prove that it is also a C-RPDAG, let us consider
that its extensions are C-DAGs. Let H be an extension of G and assume that X — Y is
an arc in H and X # C. This arc may correspond with either the arc X — Y or the link
X—Y in G. In the first case Pag(Y) # @, and from Condition 3 in Proposition 3 we obtain
C € Pag(Y), hence the arc C — Y exists in G. In the second case, as Sibg(X) # @, from
Condition 4 in Proposition 3 we obtain Sibg(X) = {C}, hence Y = C. Therefore, G is a
C-DAG.

LEARNING BAYESIAN NETWORK CLASSIFIERS 233

Proof of Proposition4: As H and H' are extensions of an RPDAG, they are independence
equivalent, so that py(c, x1, ..., x,) = pp/(c, x1,...,%n), Yc, X1, ..., X,, and therefore
prclxy, ... xp) = prr(clxr, ... xp). O

Proof of Proposition 5: The twelve operators defined in the space of C-RPDAGs, except
D_ChildOfC(X), are merely particularizations of the five operators defined by Acid and de
Campos for RPDAGs. In effect, A_ParentOfC(X) =A _arc(X,C), A_ChildOfC(X) = A_arc(C,
X), A_ParentOfChild(X, Y) = A_arc(X, ¥), A_SiblingOfC(X) = A_link(C, X), A_LHHOfC(X,
Y) = A_hh(X, C,Y), A HHOfChild(X, ¥) = A_hh(X, ¥, C), D_ParentOfC(X) = D_arc(X, C),
D_ParentOfChild(X, Y) = D_arc(X,Y), D_.HHOfC(X, Y) = D_arc(X, C), D_.HHOfChild(X,
Y) = D_arc(X, Y) and D_SiblingOfC(X) = D_link(C, X). Therefore, we can apply directly
the corresponding results stated in Acid and de Campos (2003).

With respect to the operator D_ChildOfC(X), this involves removing not only the arc
C — X but all the arcs in G pointing to X. Only the local score corresponding to the
variable X must therefore be modified in order to reflect that the current parent set of X,
Pag(X) is transformed into Pag (X) = . This transformation gives the result stated in
(h). O

Notes

1. There are also hybrid algorithms that use a combination of constraint-based and scoring-based methods (Acid
& de Campos, 2001).

2. Although they are not equivalent in the usual sense, i.e. independence or distribution equivalence. See the next
section.

3. If all the variables are discrete, as in our case, independence equivalence coincides with the concept of
distribution equivalence, in the sense that each class represents a different set of (unrestricted multinomial)
probability distributions.

4. A function that gives the same score to independent-equivalent DAGs.

5. A scoring function g is decomposable if the score of any Bayesian network structure may be expressed as a
product (or a sum in the log-space) of local scores involving only one node and its parents, i.e. g(G : D) =

> xev &p(X, Pag(X)).
References

Acid, S., & de Campos, L. M. (2001). A hybrid methodology for learning belief networks: Benedict. International
Journal of Approximate Reasoning, 27, 235-262.

Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic
partially directed graphs. Journal of Artificial Intelligence Research, 18, 445-490.

Aliferis, C. F., Tsamardinos, ., & Statnikov, A. (2003). HITON: A novel Markov blanket algorithm for optimal
variable selection. In Proceedings of the 2003 American Medical Informatics Association (pp. 21-25).

Blake, C. L., & Merz, C. J. (1998). UCI Repository of machine learning databases. http://www.ics.uci.
edu/~mlearn/MLRepository.html, University of California, Irvine, Dept. of Information and Computer Sci-
ences.

Cheng, J., & Greiner, R. (1999). Comparing Bayesian network classifiers. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence (pp. 101-108).

Cheng, J., Greiner, R., Kelly, J., Bell, D. A., & Liu, W. (2002). Learning Bayesian networks from data: An
information-theory based approach. Artificial Intelligence, 137, 43-90.

Chickering, D. M. (1996). Learning equivalence classes of Bayesian network structures. In Proceedings of the
Twelfth Conference on Uncertainty in Artificial Intelligence (pp. 150-157).

234 S. ACID, LM. DE CAMPOS, AND J.G. CASTELLANO

Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures. Journal of Machine
Learning Research, 2, 445-498.

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. /[EEE
Transactions on Information Theory, 14, 462-467.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.
Machine Learning, 9, 309-348.

de Campos, L. M., & Huete, J.F. (2000). A new approach for learning belief networks using independence criteria.
International Journal of Approximate Reasoning, 24, 11-37.

Domingos, P., & Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier under zero-one loss.
Machine Learning, 29, 103—-130.

Elvira Consortium. (2002). Elvira: An environment for probabilistic graphical models. In Proceedings of the First
European Workshop on Probabilistic Graphical Models (pp. 222-230).

Ezawa, K., Singh, M., & Norton, S. (1996). Learning goal oriented Bayesian networks for telecommunications
risk management. In Proceedings of the Thirteenth International Conference on Machine Learning (pp. 139—
147).

Fayyad, U. M., & Irani, K. B. (1993). Multi-valued interval discretization of continuous-valued attributes for
classification learning. In Proceedings of the Thirteenth International Joint Conference on Artificial Inteligence
(pp. 1022-1027).

Frey, L., Fisher, D., Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003). Identifying Markov blankets with
decision tree induction. In Proceedings of the Third IEEE International Conference on Data Mining (pp. 59-66).

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning,29, 131-163.

Good, 1. J. (1965). The estimation of probabilities. Cambridge: The MIT Press.

Hand, D. J. (1981). Discrimination and classification. Wiley.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20, 197-243.

John, G. H., & Kohavi, R. (1994). TIrrelevant features and the subset selection problem. In Proceedings of the
Eleventh International Conference on Machine Learning (pp. 121-129).

Keogh, E., & Pazzani, M. (2002). Learning augmented Bayesian classifiers. International Journal on Artificial
Intelligence Tools, 11, 587-601.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1137-1143).

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273-324.

Kohavi, R., John, G. H., Long, R., Manley, D., & Pfleger, K. (1994). MLC++: A machine learning library in C++.
In Proceedings of the Sixth International Conference on Tools with Artificial Intelligence (pp. 740-743).

Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In Proceedings of the Thirteenth International
Conference on Machine Learning (pp. 284-292).

Kononenko, I. (1991). Semi-naive Bayesian classifier. In Proceedings of the Second International Conference on
Knowledge Discovery in Databases (pp. 206-219).

Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on the MDL principle.
Computational Intelligence, 10, 269-293.

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the National
Conference on Artificial Intelligence (pp. 223-228).

Langley, P., & Sage, S. (1994). Induction of selective Bayesian classifiers. In Proceedings of the Tenth Conference
on Uncertainty in Artificial Intelligence (pp. 399—-406).

Lucas, P. (2002). Restricted Bayesian network structure learning. In Proceedings of the First European Workshop
on Probabilistic Graphical Models (pp. 117-126).

Pazzani, M. J. (1995). Searching for dependencies in Bayesian classifiers. Lecture Notes in Statistics, 112, 239—
248.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann.

Pearl, J., & Verma, T.S. (1990). Equivalence and synthesis of causal models. In Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence (pp. 220-227).

Sahami, M. (1996). Learning limited dependence Bayesian classifiers. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (pp. 335-338).

LEARNING BAYESIAN NETWORK CLASSIFIERS 235

Sierra, B. & Larrafiaga, P. (1998). Predicting survival in malignant skin melanoma using Bayesian networks
automatically induced by genetic algorithms. An empirical comparison between different approaches. Artificial
Intelligence in Medicine, 14, 215-230.

Singh, M., & Provan, G. M. (1996). Efficient learning of selective Bayesian network classifiers. In Proceedings
of the Thirteenth International Conference on Machine Learning (pp. 453—461).

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction and Search. Lecture Notes in Statistics 81.
New York: Springer Verlag.

Zhang, N. L., Nielsen, T. D., & Jensen, F. V. (2004). Latent variable discovery in classification models. Artificial
Intelligence in Medicine, 30, 283-299.

Accepted November 26, 2004

