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Departamento de Informática, Escuela Politécnica Superior, Universidad de Jaén, 23071, Jaén, Spain.
E-mail: jmfluna@ujaen.es

Juan F. Huete
Departamento de Ciencias de la Computación e I.A., E.T.S.I. Informática, Universidad de Granada,
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Relevance Feedback consists in automatically formulat-
ing a new query according to the relevance judgments
provided by the user after evaluating a set of retrieved
documents. In this article, we introduce several rele-
vance feedback methods for the Bayesian Network Re-
trieval Model. The theoretical frame on which our meth-
ods are based uses the concept of partial evidences,
which summarize the new pieces of information gath-
ered after evaluating the results obtained by the original
query. These partial evidences are inserted into the un-
derlying Bayesian network and a new inference process
(probabilities propagation) is run to compute the poste-
rior relevance probabilities of the documents in the col-
lection given the new query. The quality of the proposed
methods is tested using a preliminary experimentation
with different standard document collections.

Introduction

Relevance Feedback is one of the most useful Query
Modification techniques in the field of Information Retrieval
(IR). This method is put into practice when the user needs
to improve the query formulated to the IR system, because
the documents initially retrieved do not completely fulfill
the user’s information need. Relevance feedback works in
the following way: a user submits a query representing
his/her information need to the IR system, which then ranks
the documents according to their corresponding degrees of
relevance to the query (with the documents most closely
matching the query ranked first). The user then inspects this

list,1 and determines which documents are relevant and
which are not relevant to his/her information need (the
relevance judgments). Using this information, the IR system
updates the initial query, modifying the importance of the
terms it contains2 (term reweighting), and adding new terms
that are considered useful to retrieve more relevant docu-
ments (query expansion). This process is repeated until the
user is completely satisfied with the set of retrieved relevant
documents. Relevance feedback has been successfully ap-
plied in a great variety of IR models. A good review of this
technique can be found in (Spink & Losee, 1996).

Probabilistic models constitute an important kind of IR
models, which have been widely used for a long time
(Jones, Walker, & Robertson, 2000a, 2002b; Maron &
Kuhns, 1960; Robertson & Jones, 1976). They offer a
principled way of managing the uncertainty that naturally
appears in many elements within this field. For example,
queries are only approximate representations of the user’s
internal information needs, and document representations,
in the form of term-weight vectors or whatever, cannot
completely capture the contents of documents. Nowadays,
the dominant approach to managing probability within the
field of Artificial Intelligence is based on the use of Bayes-
ian networks (Pearl, 1988). They have also been success-
fully applied in the IR environment as an extension/modi-
fication of probabilistic IR models, giving rise to the Infer-
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1 Actually he/she only inspects the top b documents in this list, for a
given value of b.

2 Giving more importance to the terms appearing in relevant docu-
ments, and weakening the strength of those that belong to nonrelevant
documents.
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ence Network (Turtle, 1990; Turtle & Croft, 1990, 1991),
Belief Network (Silva, 2000; Ribeiro-Neto & Muntz, 1996),
and Bayesian Network Retrieval (de Campos, Fernández-
Luna, & Huete, 2000, 2002a, 2002b; Fernández-Luna,
2001) models, as well as other approaches (Fung & Favero,
1995; Ghazfan, Indrawan, & Srinivasan, 1996).

In this article, we will introduce an approach for rele-
vance feedback in the Bayesian Network Retrieval (BNR)
model. Our proposal is based on the propagation of partial
evidences in the Bayesian network, representing the new
information obtained from the user’s relevance judgments
to compute the posterior relevance probabilities of the doc-
uments.

The remainder of the article is organized as follows: The
next section describes the BNR model, showing its most
important features. Then we deal with a theoretical over-
view of the proposed relevance feedback method for the
BNR model. Next, we explain how we have put the ideas
developed in the previous section into practice, which have
resulted in several feedback techniques, followed by show-
ing the experimental results obtained by our methods when
they were applied to several well-known standard test col-
lections. Finally, we discuss the conclusions of this work
and introduce new research lines in this area.

Description of the Bayesian Network Retrieval
Model

In this section, we will briefly describe the Bayesian
network retrieval model to have the knowledge needed to
understand the relevance feedback methods that will be
proposed later. This model is explained in more detail in
Fernández-Luna (2001), and de Campos et al. (2002a).

Bayesian networks are graphical models that are capable
of efficiently representing and manipulating n-dimensional
probability distributions (Pearl, 1988). A Bayesian network
uses two components to codify qualitative and quantitative
knowledge: (a) A Directed Acyclic Graph (DAG), G � (V,
E), where the nodes in V represent the random variables
from the problem we want to solve, and the topology of the
graph (the arcs in E) encodes conditional (in)dependence
relationships among the variables (by means of the presence
or absence of direct connections between pairs of variables);
(b) a set of conditional probability distributions drawn from
the graph structure: For each variable Xi � V we have a
family of conditional probability distributions
P(Xi�pa(Xi)), where pa(Xi) represents any combination of
the values of the variables in Pa(Xi), and Pa(Xi) is the
parent set of Xi in G. From these conditional distributions
we can recover the joint distribution over V:

P�X1, X2, . . . , Xn� � �
i�1

n

�P�Xi�pa�Xi�� (1)

This decomposition of the joint distribution results in
important savings in storage requirements. It also allows

probabilistic inference (propagation) to be performed in
many cases, i.e., the posterior probability to be computed
for any variable given some evidence about the values of
other variables in the graph (Jensen, 1996; Pearl, 1988).

The set V in the Bayesian Network Retrieval model is
composed of two different sets of variables, V � � � �:
The set � � {T1, . . . , TM} of the M terms in the glossary
from a given collection, and the set � � {D1, . . . , DN} of
the N documents that comprise the collection.3 Each docu-
ment variable, Dj, is a binary random variable taking values
in the set {d� j, dj}, where d� j stands for “the document Dj is
not relevant for a given query,” and dj represents “the
document Dj is relevant for a given query.” We say that a
document is relevant for a given query if it satisfies the
user’s information need expressed using this query. Simi-
larly, a variable referring to a term Ti has its domain in the
set {t�i, ti}, where in this case, t�i and ti respectively mean
“the term Ti is not relevant,” and “the term Ti is relevant.”
In this case, we talk about the relevance of a term in the
sense that the user believes that this term will appear in
relevant documents (hence, he/she will explicitly use it
when formulating the query). Similarly, a term is not rele-
vant when users believe that the relevant documents do not
contain it: they are not interested in documents containing
this term (and, therefore, they could also include it in the
query, but in this case in a negative form).

Focusing on the structure of the network in the BNR
model (see Fig. 1), we can distinguish two subsets of arcs:
(1) the first includes arcs between the term and document
nodes. For each term indexing a document, there is an arc
from the term node to the node associated with the docu-
ment it belongs to. (2) The second one only includes arcs
connecting pairs of term nodes. These arcs represent depen-
dence relationships between terms, and their inclusion im-
proves the performance of the IR system (de Campos et al.,
2002a; Fernández-Luna, 2001). Note that the network does
not contain arcs linking document nodes4 (the dependence

3 We will use the notation Ti (Dj, respectively) to refer to the term
(document, respectively) and also to its associated variable and node.

4 This restriction is removed in the BNR model described in (de
Campos et al., 2002b).

FIG. 1. Network structure in the BNR model.
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relationships between documents are not direct, they always
depend on the terms included in these documents). To
capture the relationships between terms in the collection, a
Bayesian network learning algorithm is used to construct
the term subnetwork. Taking into account efficiency con-
siderations in the learning and inference stages, some re-
strictions on the structure of the learned graph have been
imposed. In particular, the relationships between terms are
represented by means of a polytree (a DAG in which there
is no more than one undirected path connecting each pair of
nodes). The used polytree learning algorithm is described in
detail in (de Campos, Fernández, & Huete, 1998).

To estimate the quantitative component of the Bayesian
network, i.e., the probability distributions stored in each
node, we distinguish three different cases:

1. Term nodes having no parent (root nodes): in this case
we store marginal distributions, estimated as follows:
p(ti) � 1/M and p(t�i) � (M � 1)/M, where M is the
number of terms in the collection.

2. Term nodes with parents: for each node, we need to store
a set of conditional probability distributions
p(Ti�pa(Ti)), one for each possible configuration of the
parent set Pa(Ti). These distributions are simply esti-
mated using frequencies of cooccurrence of terms in the
documents in the collection.

3. Document nodes: in this case, the number of conditional
probabilities that we need to estimate and store for each
Dj grows exponentially with the number of parents of
Dj: for example, if Dj has been indexed by 30 terms (and
this is not uncommon), we need 230 (approx. 1.07 � 109)
probability distributions, which is obviously unfeasible.
So, instead of explicitly computing and storing these
probabilities, the BNR model uses a probability function
(also called a canonical model of multicausal interaction
(Pearl, 1988)), which returns a conditional probability
value when it is called during the propagation stage,
whenever a conditional probability is required. In this
article, we use the following probability function, based
on the cosine measure (Salton & McGill, 1983): for any
configuration pa(Dj) of Pa(Dj) (i.e., any assignment of
values to all the term variables in Dj), the probability of
relevance of document Dj is

p�dj�pa�Dj�� � �j �
Ti�Dj

ti�pa�Dj�

tfijidf i
2 (2)

where tfij is the frequency of the term Ti in the document
Dj, idfi is its inverse document frequency,

�j �
1

����
Ti�Dj

tfijidf i
2�

and � is a normalizing constant. The expression ti

� pa(Dj) in Equation 2 means that we only include in
the sum those weights such that the value assigned to the
corresponding term Ti in the configuration pa(Dj) is ti.
So, the higher the number of relevant terms in pa(Dj),
the greater the probability of relevance of Dj.

Given a query Q submitted to our system, the retrieval
process begins by placing the evidences in the term subnet-
work: the value of each term variable Tk belonging to Q is
fixed to relevant,5 [Tk � tk]. The inference process is then
run, obtaining the probability of relevance of each docu-
ment Dj, given that the terms in the query are also relevant,
p(dj�Q). Finally, the documents are sorted in decreasing
order of probability to perform the evaluation process, and
these will be shown to the user.

Taking into account the size and topology of the BNR
model, and due to efficiency considerations, general-pur-
pose inference algorithms cannot be applied, even for small
document collections. To solve this problem, a specific
inference process comprising two steps has been designed:
propagation � evaluation. It is important to note that this
process ensures that the results are the same as those ob-
tained using exact propagation in the entire network (de
Campos et al., 2002a; Fernández-Luna, 2001): First, we
propagate the query only in the term subnetwork using
Pearl’s Exact Propagation Algorithm in Polytrees (Pearl,
1988), and compute the probability of relevance for each
term given the query, p(ti�Q). In the second step, we com-
pute the probability of relevance of each document given
the query by means of the evaluation of the following
formula:

p�dj�Q� � �j �
Ti�Dj

tfijidf i
2p�ti�Q� (3)

In this way, we are performing exact probabilistic infer-
ence in a complex network very efficiently. Note that as
p(ti�Q) � 1 @Ti � Q, then Equation 3 becomes

p�dj�Q� � �j� �
Ti�Dj�Q

tfijidf i
2 � �

Ti�Dj�Q

tfijidf i
2p�ti�Q�� (4)

Related Work

In this section, we will briefly describe the two main
retrieval models based on Bayesian networks, comparing
them with our model and establishing the main differences.

The first model was developed by Croft and Turtle
(Turtle, 1990; Turtle & Croft, 1990, 1991), the Inference
Network Model, which in its simplified form comprises two
networks: the document, and query networks. The former
represents the document collection and contains two kinds
of nodes: the document nodes, representing the documents,
and the concept nodes, symbolizing the index terms con-
tained in the documents. The arcs go from each document
node to each concept node used to index it. The document
network is fixed for a given collection. However, the query

5 Although the BNR model can also deal with queries including terms
in negative form, we will assume here the more common situation where
this does not happen.
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network is dynamic in that it is specific for each query, and
comprises three types of nodes: The Information Need node
(inn), which represents the user’s generic information need;
a set of intermediate query nodes, used when there are
multiple query representations; and finally, the query con-
cept nodes (in simplified form, these are only the concept
nodes in the document network, and represent the connec-
tion between the two networks). The arcs in the query
network go from query concept nodes to query nodes, and
from query nodes to the Information Need node. Each type
of node stores a probability matrix, called the link matrix in
their notation, which in certain cases, depends on the type of
query being formulated (Boolean or probabilistic). The re-
trieval is performed by instantiating a single document node
Dj each time, and computing the probability that the Infor-
mation Need is satisfied given that this document has been
observed, p(inn�dj). In reality, Turtle and Croft precompute
the intermediate probabilities p(ti�dj) in the document net-
work, and, later use closed-form expressions to evaluate
p(inn�dj) as a function of the probabilities p(ti�dj), for those
terms Ti appearing in the query submitted by the user.

A first difference between this approach and ours is that
we do not have a query network. A second distinction, also
topologic, is that the arcs in our model are directed in the
opposite direction (from term nodes to document nodes).
We consider it to be more intuitive to speak about the
probability of a document being relevant given a query than
the contrary. Our choice therefore implies instantiating the
query, or specifically, the terms it contains, and propagating
towards the document nodes. This means that we only have
to propagate once, unlike Turtle and Croft’s model in which
they have to run one propagation per document.

Ribeiro and Silva’s model (Ribeiro-Neto & Muntz, 1996;
Silva, 2000; Silva, Ribeiro-Neto, Calado, Moura, & Ziviani,
2000) is designed to simulate the Vector Space, Boolean,
and Probabilistic models. Their network comprises three
types of nodes: document nodes, concept nodes, and the
query node. The arcs go from the concept nodes to the
document nodes where they occur, and from the concept
nodes (appearing in the query) to the query node. In this
model, the probabilities of interest are p(dj�Q), which could
be computed as

p�dj�Q� � ��1 �
�

p�dj���p�Q���p���, (5)

where � represents any of the 2M assignments of values to
all the terms in the collection. This computation is obvi-
ously unfeasible. Depending on the model to be simulated,
the probabilities p(Q��) and p(�) are therefore defined so
that all the terms in the previous addition except one (cor-
responding to a given configuration �Q) are always equal to
zero. Thus, the computation in Equation 5 becomes straight-
forward: the inference is reduced to evaluate a function
( p(dj��Q)) in the only nonzero configuration.

The main differences appear in the conditional probabil-
ity distributions considered. In our case, these distributions

are not “degenerated” and do not depend on the query, and
we do truly perform probability propagation.

Another important difference between these two models
and ours is that we include direct relationships between the
terms, thereby obtaining a more expressive model.

A Methodology for Relevance Feedback in the
BNR Model

The proposed methodology for relevance feedback in the
BNR model is based on the idea that by evaluating a set of
retrieved documents obtained as a consequence of running a
query Q, the user obtains new pieces of evidence that may
help to discriminate which documents are relevant to his/her
information need. After inserting these new evidences into
the network, we can build a new query Q1, rerun the
inference process, and obtain the new posterior probabilities
of relevance, p(dj�Q1). The main advantage of this meth-
odology is that we can include the evidences in the model
without adding new nodes nor reestimating the probability
distributions stored in the network (as the Inference Net-
work model does; Haines & Croft, 1993).

The key technical question is how the new evidential
information is entered in the Bayesian network. The natural
approach would be to instantiate each evaluated document
to its corresponding relevance value. So, if we have judged
b documents, the set {Dk1

, . . . , Dkh
} contains the docu-

ments that are relevant and {Dkh�1
, . . . , Dkb

} those that are
not relevant, the new query Q1 would be:

Q1 � Q � �Dk1 � dk1, . . . , Dkh
� dkh

,

Dkh�1 � d� kh�1, . . . , Dkb
� d� kb

�.

However, this approach is unfeasible because as soon as
we instantiate a document node, we cannot use the propa-
gation � evaluation algorithm and we would have to resort
to the general-purpose, time-consuming propagation algo-
rithms. It is therefore necessary to develop a new two-step
method to efficiently approximate the desired probabilities.

To maintain the computational advantage of using the
propagation � evaluation algorithm, our proposal is to
translate the definite evidences about the relevance of the
evaluated documents to partial evidences about the rele-
vance of the terms indexing these documents. Nevertheless,
this information must be combined with the previous evi-
dence supported by the original query to formulate a new
query to be processed by the IR system. For example,
whenever a term Ti indexes a document judged relevant by
the user, perhaps we should increase the belief supporting
Ti’s relevance; similarly, if a term Ti only appears in doc-
uments which are not relevant, we should decrease its
relevance degree.

To better understand the way in which we are going to
perform the inclusion of partial evidence in the term nodes,
it is useful to briefly explain how Pearl’s Exact Propagation
Algorithm for Polytrees works: The key property of a poly-
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tree is that the variables that are ancestors and those that are
descendants of a given variable X, are conditionally inde-
pendent given X. This fact allows an efficient inference
scheme to be designed in which, given some evidence ev,
each uninstantiated node X receives a vector message �X(Z)
from each of its parent nodes Z, representing predictive
evidence from all the nondescendants of X mediated by X’s
parents; X also receives a vector message �Y(X) from each
of its child nodes Y, representing the diagnostic or retro-
spective support from X’s descendants. The �Y messages
are combined in order to obtain a single vector �(X) � 	Y

�Y(X); all the �X messages are also combined with the
conditional probabilities p(X�pa(X)) to obtain a vector
�(X). The product �(X)�(X), after normalization, contains
the posterior probability p(X�ev). Moreover, each instanti-
ated node X also receives a �o(X) vector from a dummy
node, an imaginary child of X, codifying the observed value
of the variable X. In the case of a binary variable, either
�o(X) � (1, 0) or �o(X) � (0, 1), this represents the
observations [X � x� ] and [X � x], respectively. If the
available evidence about a variable X is a partial rather than
a definite observation, then the �o vector is interpreted as
conveying likelihood information, �o(X) � ( p(Obs�x� ),
p(Obs�x)), where Obs stands for Observation. In this case,
only the likelihood ratio p(Obs�x� )/p(Obs�x) is important,
so, for instance, the vectors ( p(Obs�x� ), p(Obs�x)) and
( p(Obs�x� )/p(Obs�x), 1) are equivalent. Note that a value
p(Obs�x� )/p(Obs�x) 
 1 implies evidence in favor of x: the
smaller this value is, the more evidence there is supporting
the assignment [X � x]. This �o message will be combined
with the information that node X obtains from its parents (�
vector) and children (� vector) in the network, to obtain the
posterior probability p(X�ev) � �o(X)�(X)�(X).

Remark: the use of �o vectors can be extended for the
rest of the nodes in the network, so that we can assume that
every node will receive a �o vector: for uninstantiated nodes
that do not receive any evidence, we use the vector �o(X)
� (1, 1).

Now, taking into account these comments about Pearl’s
Propagation Algorithm, it is clear that the design of a
relevance feedback method for the BNR model, within the
proposed methodology, is reduced to deciding the �o mes-
sages that the term nodes will receive. Obviously, only
those terms indexing the observed documents will receive
�o vectors which are different from (1, 1): the terms that do
not appear in any retrieved document will remain unaltered.

We shall now introduce some notation that will be used
in the rest of the paper: RQ is the set of documents retrieved
and evaluated for a given query Q, and �RQ� is the number
of such documents; nr and nr� represent the number of
retrieved relevant and nonrelevant documents, respectively;
nti

and nt�i
denote the number of retrieved documents where

the term Ti has been observed and not observed, respec-
tively; nrti

is the number of retrieved relevant documents in
which the term Ti appears; nr�ti

is the number of retrieved
nonrelevant documents including the term Ti; nrt�i

is the
number of retrieved relevant documents that do not include

the term Ti; nr�ti
is the number of retrieved nonrelevant

documents that do not include the term Ti. All these num-
bers form a contingency table (see Table 1), which lists the
relevance of the documents where the term Ti appears.

Relevance Feedback Methods for the BNR Model

It is useful to classify the terms indexing retrieved doc-
uments in the three following categories: terms that only
occur in relevant documents (positive terms, ��), those that
only occur in nonrelevant documents (negative terms, ��),
and those that occur in both types of documents (neutral
terms, ��). Moreover, we will also distinguish between
terms indexing retrieved documents that appear in the orig-
inal query and those which do not. The first type, query
terms (�q), will be used for term reweighting, and the
second, expansion terms, (�e), for query expansion.

Query Term Reweighting

The terms in �q, belonging to the original query, were
instantiated as relevant (i.e., they received a message �o(T)
� (0, 1)). However, those query terms that only appear in
nonrelevant documents (Ti � �q � ��) have not per-
formed well. Consequently, they should be penalized by
decreasing the belief supporting their relevance. An extreme
option would be to use a message �o(Ti) � (1, 1), thus
considering them to be nonquery terms. Nevertheless, these
terms have been explicitly selected by the user, so that a
more conservative option is to use a vector �o(Ti) � (�ti

,
1), with 0 
 �ti


 1. The method proposed in this paper
considers a �ti

value sensible to the number of nonrelevant
documents in which the term Ti occurs, nr�ti

: the higher this
number, the greater �ti

will be (thus rendering the �o vector
close to the uninformative vector (1, 1)). The following
expression satisfies this requirement, assessing �ti

values
verifying 0.5 	 �ti


 1:

�o�Ti� � �1 

1

nr�ti � 1
, 1� (6)

We have also tested a different approach for determining
the value �ti

: using a fixed value � for all the negative query
terms. However, some preliminary experimentation showed
that the method in Equation 6 performed almost as well as
the method using a fixed � value, for the best choice of �,
with the main advantage that we do not have to tune this
parameter.

TABLE 1. Contingency table for term Ti.

Ti � t�i Ti � ti

r� nr�ti
nr�ti

nr�

r nrt�i
nrti

nr

nt�i
nti

�RQ�
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On the other hand, the terms in �q � �� and to a lesser
extent, those in �q � ��, have performed excellently, and
have been useful when it comes to retrieving relevant doc-
uments. Therefore, rather than being penalised, these terms
should maintain their relevance status or, even better, be
rewarded. However, in principle, we cannot increase the
relevance of the positive or neutral query terms, because
they are already completely relevant. So, the first approach
to deal with these terms is simply to maintain them as
normal query terms, i.e., they will all receive a vector �o(Ti)
� (0, 1). This method will be denoted tr-ins.

Another approach, which aims to increase the impor-
tance of each of these terms Ti in the new query, is to
replicate the corresponding term node in the network as
many times as the number of relevant documents where it
appears, nrti

, and instantiate all the duplicate nodes as
relevant. We call this approach tr-rep. To change the struc-
ture of the term subnetwork at least as possible, we only
connect the duplicate nodes as children of the original term
node Ti and as parents of the documents that contain Ti.
Figure 2 displays an example where a node Ti appears in
three relevant documents.

The effect of this process is that the weight associated to
each of the terms Ti � �q � (�� � ��), in the basic
propagation formula in Equation 4, changes from tfijidf i

2 to
nrti

tfijidf i
2, thus increasing nrti

times the importance of Ti.
Therefore, the replication of the term nodes is only virtual,
we do not actually have to change the network structure.

It is worth mentioning that query reweighting is not a
process of belief updating, because we are not only adding
new evidence to old and repropagating it in the network.
Instead, we are performing a process of belief revision,
because we are also using the new information to retract
previous evidence that is no longer supported.

Query Expansion

We now want to determine the impact of adding new
terms to the original query. The terms in �e, as in the case
of �q, may be positive (�e � ��), negative (�e � ��),
or neutral (�e � ��).

1. All the negative expansion terms will be directly instan-
tiated to nonrelevant, i.e., they will receive a vector
�o(Ti) � (1, 0): we consider that they are not at all
useful for relevant document retrieval. However, it may
be useful to use these terms, in negative form, to prevent

nonrelevant documents that contain them from appearing
in the ranking before other relevant documents.

2. With regard to neutral expansion terms, we use the
vector �o(Ti) � (1, 1) (which is equivalent to not
considering them). We have also experimented with
other alternatives, taking into account the number of
relevant and irrelevant documents where each term ap-
pears, but we did not obtain better results.

3. Positive expansion terms are quite promising: these are
able to clearly distinguish between relevant and irrele-
vant documents, but in a way unanticipated by the user,
who did not select them as query terms. The naive
approach to including these terms in the new query
would be to instantiate all of them to relevant, using a
vector �o(Ti) � (0, 1). This method for expanding
positive terms will be denoted by qe-n. Preliminary
experimental results demonstrated that this is not a good
choice, as we shall see in the next section. Therefore, we
will include the positive expansion terms in the new
query as we did with negative query terms, using soft
evidence (likelihood values, �o(Ti) � (�ti

, 1), �ti

� p(Obs�t�i)/p(Obs�ti)). Although the process is similar
in form, conceptually it is quite different: for negative
query terms we try to decrease their probability of rel-
evance by increasing the value �ti

, thus changing the
initial �o vector from (0, 1) to (�ti

, 1). However, for
positive expansion terms we try to increase their prob-
ability of relevance by decreasing the value �ti

, in this
case changing the initial �o vector from (1, 1) to (�ti

, 1).

We have studied different approaches to carry out posi-
tive query expansion. They will be grouped into two classes.
The first uses the available global information about each
term Ti, obtained from the previously introduced contin-
gency table (Table 1) to build the corresponding �o(Ti)
vector. The second class uses the local information provided
by each relevant document Dj to elaborate a specific local
vector, �Dj

(Ti), and then combines all these vectors to
obtain the final message �o(Ti). These two types of meth-
ods will be discussed separately in the following subsec-
tions.

Positive Query Expansion Using Global Information
We can see the probability of obtaining a relevant doc-

ument when we consider that the term Ti is relevant, i.e.,
p(r�ti) (where r stands for relevant document), as an evi-
dence favoring the relevance of Ti. Analogously, the evi-
dence supporting the non-relevance of Ti could be measured
by the probability of obtaining a relevant document given
that the term is nonrelevant, p(r�t�i). These two values
constitute the �o vector for each positive expansion term Ti

� �e � ��:

�o�Ti� � �p�r�t�i�, p�r�ti�� or, equivalently,

�o�Ti� � �p�r�t�i�

p�r�ti�
, 1� (7)

These probabilities will be estimated, for each term Ti, from
the information obtained by evaluating the retrieved docu-

FIG. 2. Replicating three times the query term node Ti.
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ments, which is globally summarized in Table 1.6 Different
ways of estimating these probabilities give rise to different
positive query expansion methods:

1. qe-gmle: Using a maximum likelihood estimator (fre-
quency counts):

p�r�ti� �
nrti

nti

and p�r�t�i� �
nr �ti

n�ti

(8)

2. qe-gbe: Using a Bayesian estimator (Cestnik, 1990):

p�r�ti� �

nrti � sti

nr

�RQ�
nti � sti

and p�r�t�i� �

nr �ti � s�ti

nr

�RQ�
n�ti � s�ti

(9)

where the parameters sti
and st�i

represent the equivalent
sample size. The reason for proposing this method is that
the quality of the maximum likelihood estimation may be
low, because we are dealing with few data (only the �RQ�
retrieved documents). We, therefore, need some alterna-
tives to fix these parameters sti

and st�i
.

3. qe-gbe1: The first option is obtained by setting them to
a given fixed value. In this article, we have used sti

� st�i

� nr.
4. qe-gbe2: Another alternative for computing sti

and st�i

may be obtained by taking into account the total number
of documents in which Ti occurs and does not occur in
the whole set of documents in the collection (as opposed
to the set of retrieved documents). For instance, if a term
appears in three documents, and these three documents
have been retrieved, sti

should be equal to 0, because we
are using all the possible data to estimate the probability.
The opposite case occurs when Ti indexes a large num-
ber of documents, for example, 100 documents, and only
one is retrieved: sti

should be high. This behavior can be
obtained by computing the ratio between the frequency,
tfTi

, of the term Ti in the collection and nti
, in the

following way (N is the number of documents in the
collection):

sti �
log�tfTi � 1�

log�nti � 1�
� 1 and

s �ti �
log�N 
 tfTi � 1�

log�n�ti � 1�
� 1 (10)

We use logarithms because in many cases the values
computed for the parameters could be extremely high
and have to be smoothed.

Positive Query Expansion Using Local Information
In this approach, each term Ti � �e � �� will receive

a local message, �Dj
(Ti), from each document Dj that has

been evaluated as relevant and contains Ti:

�Dj
�Ti� � �p�Obsj�t�i�

p�Obsj�ti�
, 1� (11)

where Obsj represents the observation focused on Dj. This
vector codifies the likelihood about the relevance or the
irrelevance of Ti derived from the knowledge that Dj is a
relevant document. All these vectors are then multiplied to
obtain the combined vector 	j�1

nrti �Dj
�Ti�. Moreover, to ob-

tain the final �o vector, we also want to take into account the
quality of the original query, measured as the number of
relevant documents retrieved, nr: when this number is high,
then the original query has performed well. Because we do
not therefore want to modify it much, we add new terms but
in such a way that these terms do not have a strong impact
on the original query. On the contrary, if we retrieve a small
number of relevant documents, it may be convenient to
modify the original query more markedly. In this case, the
terms indexing the relevant documents should be added to
the query using a weight greater than in the previous case.
We have implemented this idea using a convex combina-
tion, as follows:

�o�Ti� �
nr

�RQ� �1, 1� � �1 

nr

�RQ����
j�1

nrti

�Dj
�Ti�� (12)

We must now specify how to compute the vectors
�Dj

(Ti). We have developed different options:

1. First, we will use the likelihood of the term Ti due to the
fact that Dj is a relevant document, but taking into
account the information already provided by the original
query:

�Dj�Ti� � �pQ�dj�t�i�

pQ�dj�ti�
, 1� (13)

where pQ� � p(��Q). Therefore, we have

�Dj�Ti� � �p�dj�t�i, Q�

p�dj�ti, Q�
, 1� (14)

This expression considers how the posterior probability
of relevance of a document is affected by the addition of
a new term to the query. Using equation 3, p(dj�ti, Q)
and p(dj�t�i, Q) can be computed by means of

p�dj�ti, Q� � �j �
Tk�Dj

tfkjidf k
2p�tk�ti, Q�

� �j� �
Tk�Dj,ki

tfkjidf k
2p�tk�ti, Q� � tfijidf i

2�
p�dj�t�i, Q� � �j �

Tk�Dj

tfkjidf k
2p�tk�t�i, Q�

� �j �
Tk�Dj,ki

tfkjidf k
2p�tk�t�i, Q� (15)

The next target should be to estimate p(tk�ti, Q) and
p(tk�t�i, Q) for each term Tk, k  i, belonging to Dj.
These computations require propagation in the network
considering both the query Q and the term Ti as evi-
dences. This may be a time-consuming process, because
it implies as many propagations as twice the number of
positive expansion terms. We will therefore try to find an6 Note that for positive expansion terms, nrti

� 0 and nr�ti
� 0.
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approximation of these probabilities with the informa-
tion that we possess. On the one hand, as t�i is the most
probable state that the term variable Ti can take on, it is
reasonable to think that it does not add more information
to the information already provided by Q, so we assume
p(tk�t�i, Q) � p(tk�Q). On the other hand, because both
terms Tk and Ti index the relevant document Dj, we
assume that they are positively correlated, although very
weakly, given Q. Combining these assumptions by
means of an or-gate (Pearl, 1988), we obtain p(tk�ti, Q)
� � � (1 � �) p(tk�Q). This local query expansion
method is called qe-l1.

2. Another approach to computing the vector �Dj
(Ti) as-

sumes that the query plays the role of a fictitious docu-
ment that has also been observed as relevant. Therefore,
in the set of observed components we include both the
document Dj and the query Q. The likelihood vector
then becomes

�Dj�Ti� � �p�dj, Q�t�i�

p�dj, Q�ti�
, 1� (16)

Note that the value p(dj, Q�ti) can be written as

p�dj, Q�ti� �
p�dj�ti, Q� p�ti�Q� p�Q�

p�ti�
(17)

and a similar expression is obtained for p(dj, Q�t�i).
Therefore, an equivalent formula for the vector �Dj

(Ti)
is:

�Dj�Ti� � �
p�dj�t�i, Q� p�t�i�Q�

p�t�i�

p�dj�ti, Q� p�ti�Q�

p�ti�

, 1	 (18)

The values of p(t�i) and p(ti) are known, and the values
p(t�i�Q) and p(ti�Q) were calculated when the original
query was processed. So, we only need to compute
p(dj�t�i, Q) and p(dj�ti, Q). Note that these values are the
same as those we used in the previous method, qe-l1, and
are calculated using Equation 15, by computing p(tk�ti,
Q) and p(tk�t�i, Q). In this case, we use two different
approaches to approximate these probabilities: the first,
denoted by qe-l2, follows the same approach considered
for qe-l1. The second, denoted by qe-l3, approximates
these probabilities in a slight different way: p(tk�t�i, Q) �
p(tk�Q), and p(tk�ti, Q) � � � p(tk�Q), and � being a
small value. This approximation represents another way
of shaping the assumption that the terms Ti and Tk are
almost independent given Q.

Experimental Results

With the aim of observing the behavior of our feedback
methods in different environments, we carried out several
experiments with five well-known standard test collections:
Adi, CACM, Cranfield, CISI, and Medlars. Several com-
ments must be made beforehand: the number of documents
that the IR system returns to the user is 15 (�RQ� � 15). The
performance measure employed is the percentage of change
of the average precision for three intermediate points of
recall (0.2, 0.5, and 0.8) with respect to the results obtained
after submitting the original queries to the system. This
measure will be denoted %C 3p. Avg. We evaluate the
feedback performance by using the Residual Collection
method (Chang, Cirillo, & Razon, 1971), which removes all
the documents that the user has seen in the first relevance
judgment step from the collection. Moreover, we use all the
queries, even those where no relevant document has been
retrieved. Several important preprocessing steps necessary
to obtain a vectorial representation of documents and que-
ries, such as indexing and stemming, have been carried out
using the facilities provided by the SMART system (Salton
& McGill, 1983). The � parameter used in the qe-l1 and
qe-l2 methods has been set to 0.0075, and the � value in
method qe-l3 has been set to 1/�RQ�.

The main characteristics of the five collections (number
of documents, terms and queries), as well as the average
precision at the three intermediate points of recall, 3p.
Avg., obtained by the BNR model for all the queries, are
shown in Table 2.

Table 3 shows the results of term reweighting (%C 3p.
Avg. values) using the two different approaches to handle
positive and neutral query terms: tr-ins and tr-rep. Negative
query terms are always penalized using Equation 6. We can
observe that except in the case of Adi, the method tr-rep,
which rewards positive and neutral query terms, performs
considerably better than tr-ins. When performing term re-
weighting, we therefore recommend the tr-rep method, pe-
nalizing negative query terms.

Table 4 shows the results of the experiments about query
expansion. To focus on the impact of added terms, the
original query terms will remain unchanged, instantiating
all of them to relevant. In all cases, we instantiate the
negative expansion terms to nonrelevant and do not take
into account neutral expansion terms. For positive expan-
sion terms we test all the proposed methods, naive (qe-n),
global (qe-gmle, qe-gbe1, and qe-gbe1) and local (qe-l1,
qe-l2, and qe-l3).

TABLE 2. Main characteristics of the test collections.

Collection Documents Terms Queries 3p. Avg.

Adi 82 828 35 0.36
CACM 3,204 7,562 52 0.34
CISI 1,460 4,985 76 0.17
Cranfield 1,398 3,857 225 0.42
Medlars 1,033 7,170 30 0.63

TABLE 3. %C 3p. Avg. values for term reweighting.

Collection tr-ins tr-rep

Adi 20.12 12.25
CACM 29.90 68.55
CISI 21.45 58.99
Cranfield 3.92 34.18
Medlars 1.45 22.66
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We can observe that query expansion always improves
the results (all the percentages of change are positive),
except when we use the naive approach, which degrades the
performance considerably in four collections. The reason
for this behavior of qe-n is that in this case the positive
expansion terms are instantiated to relevant. Therefore, they
are being considered as query terms, thus changing the
original sense of the query and confusing the retrieval
process. In the light of these results, we will discard this
method for subsequent experiments.

When we focus on a single document collection, there
are great differences in performance between the six meth-
ods considered (e.g., in CACM, the performance varies
from 3% for qe-gmle to 59.45% for qe-gbe2), but these
differences are not so important in the average values (the
maximum difference between the mean results of the five
collections is around 8%, and less than 3% for the medians).
We show our preferences using the qe-gbe1 method (always
with negative expansion), which obtains the best mean and
median, and exhibits a more robust behavior. On the other
hand, qe-gmle is more unstable: it obtains the best values for
some collections and the worst for others.

We have carried out another more limited series of
experiments with query expansion, to confirm our intuition
about the important role played by negative expansion in
our feedback model: The negative expansion terms in this
case will not be added to the query [they will receive a
vector (1, 1) instead of a vector (1, 0)]; only positive
expansion terms will be considered, using in this case the
method qe-gbe2. Alternatively, we also consider the case
where only negative expansion terms are used and no pos-
itive expansion term is added to the query. Table 5 displays
the results of these experiments.

We can observe that the performance decreases consid-
erably when we do not use negative expansion (second

column in Table 5). However, the use of negative expansion
alone (third column) gives good results, similar to when we
consider both negative and positive expansion (fourth col-
umn). The conclusions are clear: negative query expansion
is necessary, positive query expansion alone is not very
useful, in some cases it may even be self-defeating. Only in
one case, CACM, does the additional use of positive expan-
sion clearly improve the result offered by negative expan-
sion. Therefore, the best choice is to put negative and
positive query expansion into practice simultaneously.

If we compare term reweighting with query expansion,
Tables 3 and 4, we can see that in some cases (for CACM,
CISI, and Medlars) term reweighting gives better results
than query expansion, whereas sometimes the opposite
holds (for Adi and Cranfield).

Table 6 displays the results obtained by combining term
reweighting and query expansion, using the two term re-
weighting methods and the six different techniques for
positive query expansion. In all the cases, we use negative
query expansion.

These experiments offer a somewhat surprising result:
although the term reweighting method tr-rep was clearly
better than tr-ins, this is no longer true when they are
combined with query expansion. In fact, tr-ins � qe is
systematically much better than tr-rep � qe for two col-
lections, Adi and Cranfield, and slightly better for CACM.
We believe that the reason for this behavior may be that in
these collections, the major part of the improvement
achieved is due to query expansion, which dominates term
reweighting, as we have already mentioned. However, when
the two techniques are combined, the weights assigned by
tr-rep to the positive or neutral query terms7 dominate the
weights of the positive expansion terms, thus driving the
retrieval process towards the wrong place. We conjecture
that a more equilibrated reweighting scheme for query
terms, combined with query expansion, would produce bet-
ter results.

If we consider the appropriate term reweighting method
for each collection, we can observe that its combination
with query expansion outperforms the results obtained by
either technique separately. Moreover, when we use tr-ins,
the best query expansion method is qe-gbe2, followed by
qe-gbe1 and qe-l3. For tr-rep, all the query expansion

7 Remember that these terms are rewarded considerably when using
tr-rep.

TABLE 4. %C 3p. Avg. values for query expansion.

Collection qe-gmle qe-gbe1 qe-gbe2 qe-l1 qe-l2 qe-l3 qe-n

Adi 41.30 37.62 21.90 18.19 17.23 31.98 11.90
CACM 3.00 48.40 59.45 51.12 51.37 51.73 �84.71
CISI 35.98 35.97 34.77 37.25 35.21 34.81 �61.59
Cranfield 77.20 78.61 67.41 79.76 81.52 65.87 �9.78
Medlars 10.05 7.64 7.03 4.42 2.39 7.14 �87.42

TABLE 5. Effects on the %C 3p. Avg. values in query expansion when
we do not use either negative expansion (ne) or positive expansion (pe).

Collection

qe-gbe2
with pe

without ne

qe-gbe2
without pe

with ne

qe-gbe2
with pe
with ne

Adi �7.73 31.81 21.90
CACM 12.19 30.09 59.45
CISI �0.07 34.75 34.77
Cranfield 2.36 65.87 67.41
Medlars �0.34 6.96 7.03
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methods perform in a similar way, except qe-l2, which is
somewhat worse.

We therefore recommend a combination of term re-
weighting and query expansion. Depending on the term
reweighting technique used, its best query expansion tech-
nique shall be recommended. For tr-ins, qe-gbe2, and tr-
rep, all with the exception of qe-l2 could be equally applied.

A general conclusion applicable to term reweighting,
query expansion, and their combination, is that the effec-
tiveness of relevance feedback is highly related to the qual-
ity of the initial retrieval: the better the retrieval, the worse
the results of relevance feedback. This conclusion is drawn
from the observation of the high negative correlation be-
tween the 3p. Avg. (see Table 2) and the %C 3p. Avg.
values, for each collection.

Although it is very difficult to compare feedback meth-
ods when the retrieval engines are different, to conclude this
section, we shall compare the performance of the Relevance
Feedback methods designed for the BNR model with the
results shown in (Salton & Buckley, 1990). In this article,
the authors examined several Relevance Feedback methods,
showing their effectiveness with four of the five collections
that we have used in our experimentation (all except Adi).

We compare the best results obtained with query term
reweighting and the qe-gbe2 expansion method from Table
6 with the Ide (dec hi) and Probabilistic (adjusted revised
derivation) methods.8

In Table 7, we show, for each method and each collec-
tion, the average precision of the initial run (3p. Avg.—I.R.),
but computed using the reduced collection, i.e., removing
the retrieved documents in that run and evaluating with the
remaining documents, and the average precision of the first
iteration of feedback (3p. Avg.—1R.).

Although the average of precision for the three recall
points in three of the four collections is higher with Salton
and Buckley’s methods than with our techniques, we should
mention that the conditions in which the experiments have
been carried out are probably different, in that the set of
documents retrieved in the first run will not be the same, and
therefore, the evaluations are performed with a different set

of documents.9 We also notice how the average precision
obtained with the first run in the reduced collection is
always better in our methods than theirs. This means that the
BNR model performs slightly better. Consequently, rather
than looking at the percentage of change, we should look at
the value of the average precision of the first iteration. In
this case, our methods are more effective in CACM and
CISI than theirs, and less in the other two collections.
Nevertheless, the relevance feedback of the BRN model
behaves in a similar way to these two methods.

Concluding Remarks

In this article, we have introduced a methodology for
relevance feedback in the Bayesian Network Retrieval
model, based on the idea of translating the user’s relevance
judgments about the retrieved documents into partial evi-
dences (likelihood ratios) about the relevance of terms,
which can be inserted and propagated in the Bayesian
network to obtain the new posterior probabilities of rele-
vance of the documents. This methodology has been used to
design several query term reweighting and query expansion
techniques. Our methods focus on the terms that appear in
the retrieved documents and distinguish, on one hand, be-
tween query and nonquery terms, and on the other hand,
between positive, negative, and neutral terms, depending on
whether they only appear in relevant, irrelevant, or both
classes of documents. Different kinds of partial evidences
are used to weight the different types of terms.

Using the residual collection method, the proposed tech-
niques have been empirically evaluated on five small stan-
dard document collections. They have performed well and
in a similar way to that obtained with other models (Haines
& Croft, 1993; Harman, 1992; Salton & Buckley, 1990).

By way of conclusion, we could say that the technique of
query term reweighting in which the positive and neutral
query terms are rewarded increases the performance of the
feedback. With respect to query expansion, the negative
version is a very useful technique in our model by itself.
Combining positive and negative expansions, the results are
similar to those obtained with only negative query expan-

8 Broadly speaking, these methods show the best behavior in the
experiments with the four common collections.

9 Moreover, other experimental conditions are also different. For in-
stance, the three selected recall points are 0.25, 0.50 and 0.75 in (Salton &
Buckley, 1990).

Table 6. %C 3p. Avg. values for combined term reweighting and query expansion.

Collection

qe-gmle qe-gbe1 qe-gbe2 qe-l1 qe-l2 qe-l3

tr-ins tr-rep tr-ins tr-rep tr-ins tr-rep tr-ins tr-rep tr-ins tr-rep tr-ins tr-rep

Adi 104.2 62.81 95.0 62.14 105.0 53.53 82.98 50.68 78.76 47.50 105.77 60.13
CACM 6.33 62.91 67.1 64.46 72.1 63.69 70.58 61.32 69.46 62.63 67.93 63.46
CISI 8.2 69.74 42.9 70.17 39.0 69.66 48.49 65.02 45.76 63.02 42.51 69.71
Cranfield 99.1 57.92 99.9 61.00 107.7 55.68 90.53 68.76 93.46 70.21 101.87 54.75
Medlars �32.6 24.70 7.9 24.63 12.4 24.42 9.97 29.09 �11.97 23.64 �4.79 24.43
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sion. The performance of the feedback, based on the appli-
cation at the same time of term reweighting and query
expansion, is a good choice, and improves the results ob-
tained by these techniques separately. Finally, when the
performance of our relevance feedback method is compared
with others, we can conclude that ours maintains a very
good level.

Future work will center on developing new relevance
feedback methods for the BNR model, based on the under-
lying concept of partial evidences, in an attempt to improve
the performance obtained with the methods introduced here.
This implies designing new or more accurate ways of com-
puting the appropriate likelihood vectors. On the other hand,
the query expansion techniques considered in this article
include all the positive and negative expansion terms in the
new query. We also plan to use a term selection process to
determine the terms that will be effectively used to expand
the original query, according to certain criteria.

Finally, we plan to test our methods with larger docu-
ment collections, such as TREC. Several comments need to
be made about this task: in terms of propagation, if we see
that running a query in the largest collection where we have
tested our model only takes a few tenths of a second, we
could predict that using a TREC collection would increase
this time by a few seconds, a time that would still be
acceptable. If this time were too long, there are several ways
of reducing the retrieval time. First, the topology of the term
subnetwork could be changed, with a smaller polytree con-
necting only those most important terms. The rest of the
terms would be isolated among them. As the size of the
polytree is smaller, propagation would be much faster.
Alternatively, we could have several smaller Bayesian net-
works comprising clusters of related terms (in this way, we
also reduce the learning time). Propagation will only occur
in those networks where there is an evidence, a very fast
process. Second, we could apply some of the approximate
algorithms that we are implementing based on Pearl’s prop-
agation. These algorithms avoid propagation in those areas
of the polytree where the belief in the terms will not change,
saving a great amount of time without reducing the perfor-
mance of the propagation.

As the TREC reader can appreciate, there are various
ways of modifying the original model if the retrieval and
feedback speed were not fast enough for this kind of col-
lection, while maintaining the base of a Bayesian network

and all the ideas about the model itself and the feedback
methods presented in this article.
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