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We study probability intervals as an interesting tool to represent uncertain information.
A number of basic operations necessary to develop a calculus with probability intervals,
such as combination, marginalization, conditioning and integration are studied in detail.
Moreover, probability intervals are compared with other uncertainty theories, such as
lower and upper probabilities, Choquet capacities of order two and belief and plausibility
functions. The advantages of probability intervals with respect to these formalisms in
computational efficiency are also highlighted.
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1. Introduction

When dealing with numerical uncertainty in Artificial Intelligence there are many
different theories available. Some of them, at least in a formal sense, are hierarchi-
cally ordered, going from the general to the specific. Hence, we have general fuzzy
measures, lower and upper probabilities, Choquet capacities of order two and belief
and plausibility functions, which include both necessity /possibility and probability
measures. Usually, the more general the theory is, the more expressive capabilities
it has, and the less efficiently the computations within this theory can be carried
out.

In this paper, we study in detail a formalism for representing uncertain informa-
tion: probability intervals. This formalism is easy to understand and it combines
a reasonable expressive power and efficient computation. The main concepts and
tools necessary for the development of a theory of uncertain information, such as
precision (inclusion), combination, marginalization, conditioning and integration
are studied for probability intervals. Moreover, the place of probability intervals in
the hierarchy above is also analized.

The paper is divided into 7 sections. In section 2 we formally introduce proba-
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bility intervals, and study their relationship with upper and lower probabilities and
convex sets of probabilities. Section 3 is devoted to the combination of probability
intervals, and the associated problem of inclusion. The basic concepts of marginal-
ization and conditioning of probability intervals are analized in section 4. Section 5
studies methods of integration with respect to probability intervals. In section 6,
the relationships between probability intervals and belief and plausibility functions,
together with methods of approximation, are considered. Finally, section 7 contains
the concluding remarks and some proposals for future work.

2. Probability Intervals

Let us consider a variable X taking its values in a finite set D, = {z1,22,...,2,}
and a family of intervals L = {[l;,u],i = 1,...,n}, verifying 0 < I; < u; <1 Vi.
We can interpret these intervals as a set of bounds of probability by defining the
set P of probability distributions on D, as

P= {P € P(‘D&‘) I Ii' < P(zi) _<_ Us, VZ}, (1)

where P(D;) denotes the set of all the probability measures defined on a finite
domain D,. So, we will say that L is a set of probability intervals, and P is the set
of possible probabilities assoctated to L.

As P is obviously a convex set, we can consider a set of probability intervals as
a particular case of a convex set (a polytope) of probabilities with a finite set of
extreme points!:2:345,

In order to avoid the set P being empty, it is necessary to impose some conditions
on the intervals [l;, u;], namely that the sum of the lower bounds is less than or equal
to one, and the sum of the upper bounds is greater than or equal to one:

n n
Zl,’ﬁlszu;. (2)
=1 i=1
A set of probability intervals verifying the condition (2) will be called proper. We
always use proper probability intervals, because non proper intervals, associated to
the empty set, are useless.

In addition to a convex set P, we can also associate with the proper intervals
[l;, ;] a pair (I,u) of lower and upper probabilities®"®%1%also called a pair of
representable measures, or a probability envelope) through P as follows:

I(4) = jnf P(4), u(4) = sup P(A), VAC D.. (3)

So, probability intervals can also be considered as particular cases of lower and
upper probabilities, where the set of associated probabilities is defined by restric-
tions affecting only the individual probabilities p(z;) (restrictions like, for example,
p(z:)+p(z;) < uij, or p(x;) +p(z;)+p(zx) > liji, are possible in general lower and
upper probabilities, but they are not allowed in the case of probability intervals.
Here we only allow restrictions such as p(z;) > {; and p(:) < u;).
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In order to maintain consistency between both views of probability intervals, it
would be important for the restriction of I(.) and u(.) to the singletons (sets with
only one element) to be equal to the original bounds, that is to say, that

({z:}) = k, u({z:}) = w, Vi. (4

These equalities are not always true: in general, we only have the inequalities

I({z:}) 2 b, u({z:}) < w, Vi,

because for every probability P in P, is l; < p(z;) < u;, and we take the minimum
and the maximum over these probabilities. But we can get the equality by modifying
the bounds /; and u; without altering the set P, that is to say, without changing
the set of possible probabilities. First let us study which conditions the intervals
[1;, u;] should verify in order to get the equalities (4) (in Tessen'! we can find an
analogous study):

Proposition 1. Given a set of proper probability intervals L = {[l;,u;],i =
1,...,n}, its corresponding convex set of probabilities P and the lower and up-
per probability pair (I, u) associated to L, then the equalities (4) are true if and
only if the conditions

dLi+u<land Y uj+k>1,Vi (5)
j#i j#i
hold.

Proof. As the inequalities I({z;}) > l;, u({z;}) < u; Vi are always true, then the
conditions (4) are equivalent to the following ones: For each 7 there exist probabil-
ities P* and @Q* such that

P'(z:) = w and I < p'(=;) < uy, Vi # 1, (6)

¢'(zi) =k and I < ¢*(z;) <uj, Vi #1i. (M

The reason is that probabilities P! and @' verifying (6) and (7) belong to P and they
reach the maximum and minimum values u; and I; respectively. Now the equivalence
of (6)~(7) and (5) can be easily proved after simple algebraic calculations 1.

A set of probability intervals verifying the conditions (5) will be called reachable.
This name refers to the fact that the conditions (5) are equivalent to the equali-
ties (4), which guarantee that the lower and upper bounds /; and u; can be reached
by some probabilities in P. Now, let us see how to modify these lower and upper
bounds without changing the associated set of possible probabilities 7.

Proposition 2. Let L = {[l;,u;],i = 1,...,n} be a set of proper probability
intervals, and P its associated convex set of probabilities. If we define a new set of
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probability intervals L' = {[l{,u}],i = 1,...,n} by means of

2

I;:Iiv 1—Zu]~ ,uﬁ:ug/\ 1—le , Vi, (8)

Jj#i J#e
then the set of probabilities associated to L’ is also P.

Proof. Let P’ be the set of probabilities associated to L’. It is very easy to see
that I} < wuf, Vi. So, l; < Ui < u; < wu;, Vi, and then P’ C P.

On the other hand, if P € P then, because of the restriction ), p(z;) = 1, then
inmediately I! < p(z;) < u} Vi. So, P € P’ and thus P C P’ 0.

According to proposition 2, we can replace the original set of probability intervals
L by L' defined in (8) without affecting the set P. This replacement permits us to
refine the probability bounds that define P in such a way that these bounds can
always be reached, as the next proposition shows.

Proposition 3. The probability intervals L’ defined in (8) are reachable.

Proof. Let us prove that 3, I +u{ < 1 Vi

HVj#diisly 21— Zm# Um, then I = I; Vj # i. In these conditions, as
ul <1—=37. 1, wehave 3. I +uj = 37, ., lj + uj < 1, and the result is true.
On the other hand, if 3h # i such that s < 1—37_ .} um, then lj =137 ., up.
In these conditions, 3= li +uf = 3, p U+ 1 =3, pum+ul =3, 1 —
Timipti—wi A ui+ 1= 0 )+ (u - w) +1< 1L

The proof of 3~ +uj + {; > 1 Vi is similarO0.

As the replacement of the original set of probability intervals L by the narrower
set L’ does not change the set P of possible probabilities, and L’ constitutes a more
accurate representation of these probabilities, we will perform the substitution in
those cases where L does not satisfy the conditions (5), and thus we will always use
reachable probability intervals.

For reachable sets of probability intervals we are guaranteed that the values
{({z;}) and u({z;}) of the associated lower and upper probabilities, (I, u), coincide
with the initial probability bounds /; and u;, as proposition 1 asserts. But what
about the values of I{.) and u(.) for the other subsets of D, which are not singletons?
In other words, how can we calculate the values I(A) and u(A) for any subset A of
D,? In the next proposition we show the way in which these values can be easily
calculated from the values I; and u;.

Proposition 4. Given a set of reachable probability intervals L = {[l;,u;],i =
1,...,n}, the values of the lower and upper probability pair (I, u) associated to L
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can be calculated by means of the following expressions:

(A=Y LV [1=Y w], ul)= Y wAll=-Y |, VACD,. (9)

T,€EA zi¢A TiEA €A

Proof. Let us first prove that I(A) = (30,4 %) V (1 = 32, 44 ui). Taking into
account that I(A) = minpep P(A) = minpep ), ¢ 4 P(%:), it is very simple to check
that 1(4) > (F,,e0 ) V (1= 3, g ).
Now, we are going to prove that the equality holds. We distinguish two cases:
1. Suppose that 3=, L >1-3" o, u.
Let us define A =1- Ez‘,eA l;. We have Ez,-gA L<i< ngA u;. Then we can
find numbers ¢; such that Ex'_ g4 Ci = Aand I; < ¢; < u; Va; €A. Therefore, if we
define p(x;) = I; Yz; € A, p(x;) = ¢; Vz; & A, we have a probability that belongs to
P and such that P(A) = 3", .4 P(2:i) = Y, ¢4 li- In this case the equality holds.
2. Suppose now that 35 ,; <1-— ZMA u;.
Let us define A=1-53", o, ui. In this case we have ), . L, <A< ., u. So
once again we can get numbers ¢; such that in eati=Arand ; <¢ <y Ve € A
Therefore, by defining p(2;) = u; Vz; € A, p(2i) = ¢; Vz; € A, we have a probability
belonging to P and such that P(A) = 1— P(A) =1 — 2z.¢a i So, the equality
is verified in this case too.
Finally, the expression for the upper measure u(A) can be easily deduced by duality
a.

For general lower and upper probability measures (and also for general fuzzy
measures'?), we need to give all the values I(A) or u(A) in order to have a com-
plete specification of these measures, that is, we need 2!P=! values (]D,| stands for
the cardinal of the set D;). For several distinguished kinds of measures, such as
probabilities or possibilities!®, it suffices to have the | Dg| values of these measures
for singletons, and the rest of the values may be calculated as

P(A) =) pl=), T(A) =\ n(z), (10)

z€EA z€EA

for probabilities P and possibilities II, respectively. The values p(z;) and =(z;),
t = 1,...,n, are called probability and possibility distributions respectively. For
probability intervals, we need to specify only 2|D,| values instead of 2!P=!. Therefore
we can consider {[l, %], ¢ = 1,...,n} as the values of an ‘interval probability
distribution’. This fact makes probability intervals much easier to manage than
lower and upper probability measures or even belief and plausibility functions.

As we have already mentioned, probability intervals can be considered as par-
ticular cases of lower and upper probability measures, where the restrictions that
define the set of associated probabilities P only affect single values of probability.
The next proposition shows that probability intervals always belong to a well-known
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subclass of lower and upper measures, namely, Choquet capacities of order twol?.
Remember that a pair of fuzzy measures (I, 4) are Choquet capacities of order two
(! is a 2-monotone capacity and u is 2-alternating capacity) if and only if

I(AUB) +1(ANB) > I(A)+1(B) YAC D,,

uw(AUB)+u(ANB) <u(A)+u(B) YAC D,.

Moreover, it is known that pairs of Choquet capacities of order two are always lower
and upper probability measures (see Campos*® and Huber®).

Proposition 5. The lower and upper probability measures associated to a reach-
able set of probability intervals are always Choquet capacities of order two.

Proof. We will prove that VA, C C D, such that ANC =0, 3P € P such that
P(A)=1(A) and P(AUC)=1(AUC). (11)

If this condition is true, then VA, B C D, is AN B C AU B and therefore 3P € P
such that P(ANB) = I(ANB), P(AUB) = {(AUB). So, we have I(AUB)+I(ANB) =
P(AUB)+P(ANB) = P(A)+P(B) > I(A)+1(B), and I(.) is a 2-monotone capacity.
Moreover, using the duality relation between ! and u, we conclude that u(.) is a
2-alternating capacity. So, if condition (11) were true, (I,u) would be Choquet
capacities of order two.

Consider two sets A and C such that ANC = 0. By proposition 4 we know that

A= D Lv(A- D w), (AuC)= > Lv(a- Y w).

z,€A Ti€A z,EAUC 2, @AUC

In order to prove (11), we distinguish four cases, depending on the possible values
for I(A) and I(A U C) (for the sake of simplicity, we will write 1 € Aand i ¢ A
instead of z; € A and z; ¢ A, and similarly with A U C):

1. I(A) = Yieali 21~ Yiga i and {AUC) =1-Fipa00 i > Ticavc b
In these conditions, let us define A = 1 — 37,k — > .04 cui- It is easy to
check that 3 ;. cli < A < Y jec®i- Then we can find numbers ¢; ¢ € C such
that EiEC ci =Aand ; € ¢; € u; Vi € C. Thus, by defining p(z;) = I; ¢ € A,
p(zi) = ui i § AUC, p(x;) = ¢; ¢ € C, we have a probability that belongs
to P and such that P(A) = Y ;.4 = l(4), and P(AUC) = P(A) + P(C) =
Yiealit Xieccti = Lieali+tA=1- Y igaucui =1(AUC).

2. 1(4) = EieA i>1- EigA u; and [(AUC) = EieAUC Li>1- Zigmuc Ui-
In these conditions we have Zig aucli <1- Zie auch < Z.‘g auc Ui- Therefore
once again we find numbers ¢; i ¢ AUC such that 3=, 4 o6 = 1-3 ;4 ¢ ki and
li < ¢ < u; Vi@ AUC. Thus, by defining p(z;) = ¢; i ¢ AUC, p(z;) =, i € AUC,
once again we obtain a probability that belongs to P such that P(A) =3

S€EA "
I(A) and P(AUC) = T;c 400 i = (AU ).
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8. UA)=1=ipnti 2 Yseali and H{AVUC) =3 e a0l 21 - 2igauc wi-
In these conditions it can be seen that p(z;) = ; i € A4, p(zi) = w; i € AUC
and p(x;) = ; = u; i € C, defines a probability belonging to P such that P(A4) =
ZieA i=1- ziec li— EigAuc u=1- Ziec u; + EieAUC up=1- EizA u; =
I(4), and P(AUC) =3 scauc li = I(AUC).

L UA) =1=F 0% 2 Tieali and HAUC) =1=3 0,00 % 2 Licave I'
In that case the inequalities 3°;c o i < 1—37,5, ui < 3, 4 ui are true. Once again
Je; i € Asuch that 3, i =1—3 0, u and I; < ¢ < uw; Vi € A. If we define
p(zi) =ci 1 € A, p(x;) = u; i € A, we get a probability belonging to P such that
P(A) = 3 eaci = 1— Z.’gA u; = I(A) and P(AUC) = EieA ¢ + Eiec Ui =
1=3gati+ 2 iecti =1= Y gaucti = {(AUC).
Therefore, for the four cases we have proved (11). So, the proof is complete O.

To end this section, let us study how to obtain the extreme probabilities of the
convex set P associated to a set of probability intervals L. This is interesting because
these extreme probabilities provide an alternative representation for P (instead of
the linear restrictions, l; < p(z;) < u; Vi, )_; p(zi) = 1, that define P). However,
in general the representation of P by means of linear restrictions is more efficient
than one based on extreme probabilities. The reason is that the number of extreme
probabilities of the convex set P associated to a set of probability intervals can
be very large: As indicated in Tessen!!, the maximum number e(n) of extreme
probabilities is

e e(n) = ( (nT;;/z ) o4l if n is odd

_ n+1 n .
® e(n) = ( n/2 ) o, if n is even

For example, e(10) = 1260 and e(11) = 2722.

Nevertheless, in some cases it may be necessary to calculate the extreme proba-
bilities. For example, in Cano!, a method to propagate convex sets of probabilities
in causal networks!'® is described. If we want to use it to propagate probability
intervals, we must obtain the extreme probabilities.

As probability intervals are Choquet capacities of order two, then the method

proposed in Campos!® is able to give all the extreme probabilities. However this is a
very inefficient method. A better alternative is the method suggested by Tessem?!.
We propose a recursive algorithm which is more efficient on average than the algo-
rithm given by Tessem:
We maintain a global list Prob of the extreme probabilities found so far, and the
current ‘partial’ probability P (this means a set of values p;, i = 1,...,n verifying
the restrictions &; < p; < u; Vi but not necessarily the restriction ) ; p; = 1). We
also use two local variables: a list Ezpl of explored indices and a real value A. The
initialization steps are:
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e Prob — ;

o Expl — 0

e X —1-3%1;

e Fori=1tondop 1

Then we call a recursive procedure Getprob(P, A, Ezpl) that calculates and appends
the extreme probabilities to Prob. Geiprob is defined as follows:
Getprob(P, A, Ezpl)
Fori=1tondo
If not belong(i, Expl)
then if A < wu; —;
then
v — pi;
pi —pi+ A
if not belong(P,Prob)
then append(P,Prob);
pi — U
else
UV — Pi;
pi — uq;
Getprob(P, X — u; + l;, Ezpl U {i});

Pi V5

This algorithm uses an implicit tree search where each node is a partial probabil-
ity and a child node represents a refinement of its parent node by increasing one
component p;. The leaf nodes of this tree are the extreme probabilities.

For example, for the set of probability intervals L defined on the set D; =
{z1, 22, 3, T4}, given by

L = {[0,0.3],[0.4,0.5],[0.1,0.5],[0.1,0.4]}
the extreme probabilities are
(0.3,0.5,0.1,0.1), (0.3,0.4,0.2,0.1), (0.3,0.4,0.1,0.2), (0.0,0.5,0.4,0.1),

(0.0,0.5,0.1,0.4), (0.0,0.4,0.5,0.1), (0.1,0.4,0.1,0.4), (0.0,0.4,0.2,0.4).

3. Inclusion and Combination of Probability Intervals

When dealing with uncertain information two important issues are precision of a
piece of information and aggregation of several pieces of information. With respect
to the first issue, we are going to study the concept of inclusion of probability in-
tervals, which tries to clarify when a set of probability intervals is more precise or
contains more information than another set. In relation to the issue of aggregation,
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we will study methods to combine two (or more) sets of probability intervals in
conjunctive and disjunctive ways. To do that, we will take advantage of the inter-
pretation of probability intervals as particular cases of lower and upper probability
measures, because the concepts of inclusion and combination are defined within this
theory®17:18,

3.1. Inclusion of probability intervals

Given two pairs of lower and upper probability measures ({1, u1) and (2, u3), defined
on the same domain D,, (I3, u1) is said to be included in (I3, u2), and it is denoted
by (I1,u1) C (I2, u2), if and only if (see Campos®!7 and Dubois!®)

[11(A), u1(A)] € [12(A), u2(A4)], YA C Dy . (12)

Because of the duality relation between ! and u, (12) is equivalent to any of the
following inequalities
1,(4) > lo(4) VAC Ds, (13)

u1(A) < up(A) VAC D, . (14)

Moreover, (12) is also equivalent to the inclusion of the set P; of probabilities
associated to (l1,u1) in the corresponding set P, associated to (I3, u3), P1 C Ps.
Inclusion of (I1,u;) in (I3, u3) means that (I1,u;) is a more precise assessment of
the information about the values of one variable than (I3, uz).

We will say that a set L of probability intervals is included in another set L' if
the pair of lower and upper measures (/, u) associated to L is included in the corre-
sponding pair (I, u') associated to L’. Let us see how the inclusion for probability
intervals can be characterized:

Proposition 6. Let L = {[l;,u;],i =1,...,n},L' = {[l},ul],i = 1,...,n} be two
sets of reachable probability intervals on the same domain D,. Then L is included
in L' if and only if

[I,-,u,-](_:[lﬁ,u:-] Vi:l,...,n, (15)
or equivalently

L<L<u<ul Vi=1,...,n. (16)

Proof. The result follows inmediately from proposition 4 and the monotonicity of
the maximum operator .

Therefore, as we could have expected, when checking the inclusion between two sets

of probability intervals, only the single values I;, I/, u; and u} need to be considered.

3.2. Combination of probability intervals

With respect to the combination of lower and upper probability measures, the
conjunctive and disjunctive combinations of these measures, corresponding to the
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logical operators ‘and’ and ‘or’ respectively, were defined by Campos®!7. The idea
is simple: the relation of inclusion defines a partial order relation on the family of
lower and upper probability pairs. The conjunction of two pairs (I, u) and (¥, v'),
denoted by (1®!', u® v'), is defined as the infimum of (I, «) and (¥, u'), if common
lower bounds exist, that is, it is the greatest pair included in both (I, ) and (7', u’).
Analogously, the disjunction of (I,u) and (', u’), denoted by (I & I', u @ u'), is the
supremum of (I,u) and (I, '), the least pair including both ({,u) and (', u’). The
conjunction is the pair of lower and upper measures associated to the intersection
P NP’ of the sets of probabilities P and P’ associated to the initial lower and upper
measures. Similarly, the disjunction is the pair associated to the set of probabilities
PUP.

The semantic of the conjunction and the disjunction is clear: the conjunction
represents the conclusion we can obtain if we suppose that the two initial pieces
of information are true; the disjunction is the one inferred if at least one piece of
information is considered to be true.

The calculus of the disjunction (I & ¥, u @ u’) is very easy: it can be shown (see
Campos®'7) that

(1@ U)(A) = min(I(4), I(4)), (u® u')(A) = max(u(A), v'(4)), VAC D,. (17)

However, the calculus of the conjunction (I ® I, u ® u’) is not so easy. In general,
we need to solve a linear programming problem for each value (I ® I')(A) (and the
values (u®u’)(A) could be obtained by duality, see Campos® for details). Moreover
the conjunction does not always exist. In these cases we say that the two pairs
are not compatible: the information they represent cannot be simultaneously true.
Clearly, compatibility holds if and only if the set P NP’ is not empty.

Now, we are in a position to define the combination of two sets of probability
intervals as the combination of the associated lower and upper probability pairs.
Next, we want to characterize compatibility and give specific formulas for the com-
bination of probability intervals.

Proposition 7. Let L = {[l;,u],i =1,...,n},L' = {[lj,ui],i = 1,...,n} be two
sets of reachable probability intervals on the same domain D,. Then L and L’ are
compatible if and only if

Li<ujand [ <w;Vi=1,...,n, and E(l.- vi)<1< Z(u,- Aui).  (18)
i=1

i=1

The proof of the result above is very easy. The following proposition shows that the
conjunction of two sets of probability intervals is another set of probability intervals:

Proposition 8. Let L = {[l;,w],¢ = 1,...,n}, L' = {[{,4{],i = 1,...,n} be
two sets of reachable and compatible probability intervals on the same domain
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D,. Then their conjunction is the set of reachable probability intervals L @ L' =
{ld®V),(u®u')],i=1,...,n}, where

(@) = max{l,l,1- Y _ min(u;, uj)}, (19)
J#
(v ® u'); = min{u;, u, 1 - Zmax(lj,l.',-)} . (20)
i

Proof. The conjunction is the pair of lower and upper probabilities associated to
the set of probabilities P NP’. Obviously, this set is

PNP ={PeP(D,) |l VI <pla;) <u Auj, Vi}.

As P NP’ is defined by restrictions affecting only the individual probabilities p(z;),
it is clear that {[l; VI,u; Au}],i =1,...,n} is a set of probability intervals whose
associated set of probabilities is just P NP’. Then by using propositions 2 and 3,
the expressions for the equivalent but reachable probability intervals coincide with
(19) and (20) O0.

With respect to disjunction, although it is very easy to calculate, the problem
is that this operation is not closed for probability intervals: the disjunction L & L’
of two sets of probability intervals L and L' is always a pair of lower and upper
probability measures, but it is not necessarily a set of probability intervals. Let us
show this fact by means of the following example:

Example 1. Consider the following two sets of probability intervals (in fact, two
single probabilities), defined on the domain D, = {z;, z2, 23, z4}:

L = {[li,u1] = [0.3,0.3), [l2, uz] = [0.4,0.4], [Is, ua] = [0.2,0.2], [l4, us] = [0.1,0.1}}
L' = {[If,ui) = [0.0, 0.0}, [I3, 3] = [0.1,0.1), 5, ug] = [0.5,0.5), [I3, u}] = [0.4,0.4]}
According to (17), some of the values of (I @ l') and (u @ u’) are:
o I®l))=03A0=0,({®l')3=02A05=0.2,
o (udu)=04v0.1=04, (udu)s=0.1v04=04,
o l®l)({z1,23})=05A05=0.5

If L @ L' were a set of probability intervals, then taking into account the result of
proposition 4, we would have

(lol)({zyzs) =101 +(dV)s) V(I - (udu)— (udu')y) =02#£0.5

So, in this case, L @ L’ cannot be a set of probability intervals 1.

In order to get a set of probability intervals as the result of the disjunction of two
sets of probability intervals, we can try to find the set of probability intervals that
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is the best approximation of L & L’. So, we look for the set of probability intervals,
say (L @ L")?, such that, first L @ L’ is included in (L & L')* (in order not to add
information), and second every other set of probability intervals including L @ L'
must also include (L @ L)® (we should lose as little information as possible). The
following proposition shows that we can always find a set of probability intervals
verifying these conditions, and it gives its concrete expression too:

Proposition 9. Let L = {[l;,w),i =1,...,n}, L' = {[l,u}),i=1,...,n} be two
sets of reachable probability intervals on the same domain D,, and let L & L’ be
their disjunction. Define the reachable set (L @ L’)® of probability intervals as

(Lol ={LAuvul,i=1,...,n}. (21)

Then L& L' C (L @ L')* and for every other set of probability intervals L” such
that L@ L' C L”, we have (Lo L')* C L".

Proof. First, it is very easy to see that (L @ L’)® verifies the conditions (5) that
characterize reachability, provided that L and L’ are reachable sets of probability
intervals. Now, let us prove that L & L' C (L @ L’)®: From (17), we know that
(I & 1) (A) = min(I(A),"(A))VA C D.; from (21) and (9) we deduce that (I @
) (A) = 2 iealli NV (1 = 3204 (ui V uf)). Then we obtain I(A) > (1@ 1')*(A)
and I'(A) > (I&1')%(A). Therefore (I®l')(A) > (I®l')*(A) VA C Dy, and from (13)
we conclude that L& L' C (L & L')%.

Finally, let us prove that if L” is a set of probability intervals such that L& L' C L”,
then (L & L')® C L": the condition L @ L’ C L” means that I"(A) < (1@ I')(4) <
(v @ v')(A) < v"(A), VA C D,. In particular, we have I! < (I l'); = L All <
uy Vu, = (udu); <ul/Vi. But I l)f =LAl and (u® v')? = w; V ul, and
therefore we have I < (1@ ") < (u® ')} < uf Vi. From proposition 6, this is

equivalent to the inclusion of (L @ L')® in L O0.

From proposition 9, if we want to have a disjunctive combination closed for proba-
bility intervals, the best choice is to define it as (L @ L')® in (21).

4. Marginalization and Conditioning of Probability Intervals

In most of the problems, our interest is not usually restricted to only one variable
since we deal with several variables defined on different domains exhibiting some
relationship among each other. In these cases we have one joint piece of information
on the set of variables (or a number of pieces of information relative to several
subsets of variables). In such situations, we need a tool to obtain information on
one variable or a subset of variables from the joint information. Such a tool is
the marginalization operator. Moreover, it is also necessary to have a mechanism
available to update our information about one or several variables once we know
for sure the values taken by other variables. This is a conditioning operator. In
this section we define and study the concepts of marginalization and conditioning
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for probability intervals. We will study the simple case in which we have only two
variables, but the generalization to deal with more variables is straightforward.

So, let us consider two variables X and Y taking values in the sets D, =
{z1,22,...,2n} and Dy = {y1, 92, ...,Ym} respectively, and a set of reachable bidi-
mensional probability intervals L = {[{li;,ui;],i = 1,...,n,j = 1,...,m}, defined
on the cartesian product D,xDy, representing the joint available information on
these two variables.

4.1. Marginalization of probability intervals

First, we want to define the marginals of these bidimensional probability intervals.
To do that, we can use the interpretation of a set of probability intervals as a pair
of lower and upper probabilities (I, u). Given (I, u), the marginal measures (I, uz)
on D, (for the marginals on D, is analogous) are defined!%2?° as:

I.(A) = I(AxD,), us(A) = u(AxD,), VA C D, . (22)

This definition, which obviously reproduces the usual definition of marginalization
for probability measures, also preserves duality between I, and u,. Moreover, it can
be proved that marginalization, as defined above, is a closed operation for most of
the subclasses of lower and upper probability measures (necessities/possibilities, be-
lief/plausibility functions, Choquet capacities of order two,. . .), that is, the marginal
measures belong to the same subclass as the bidimensional measures!®29,

Alternatively, we could use the interpretation of probability intervals as convex
sets of probabilities, and define the marginal of L on D, as the set P, of marginal
probabilities of the probabilities in the convex set P, being P the set of probabilities
associated to L, that is to say,

P, ={P € P(D,)|3Q € P such that p(z;) = iq(zg,yj) Vi}. (23)

j=1

Fortunately, both definitions are equivalent, in the sense that P, is precisely the set
of probabilities associated to (I,,u;), as the following proposition asserts.

Proposition 10. Given a set L = {[lij, u;;],i=1,...,n,j = 1,..., m} of reachable
bidimensional probability intervals, the corresponding convex set of probabilities P
and the lower and upper probability pair (I, u) associated to L, then the marginal
measures (I, u;) defined in (22) and the set of probabilities P, defined in (23) verify
the following relation:

(4) = min P(A), ug(A) = max P(A),YACD,. (24)

The proof is very simple and hence we have not included it. Proposition 10 shows
that we can define the marginals of a set of probability intervals consistently with
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the two interpretations of probability intervals. Moreover, it can be proved that
these marginals are, in fact, probability intervals:

Proposition 11. Let L = {[l;;, u;;],i=1,...,n,j=1,...,m} be aset of reachable
bidimensional probability intervals. Then the marginal lower and upper measures
(lz, uz) defined in (22) are associated to the set of reachable probability intervals
L, ={[li,w],i=1,...,n}, defined as follows:

I.':ZI.'J'V(l—ZZuH),i:l,...,n, (25)
i=1

k#i j=1

U,’:iu;j/\(l—z:ilkj),i:l,...,n. (26)
j=1

ki j=1

Proof. First, it is very easy to see that the set P, of probabilities associated to the
marginal measures (I, uz) of L is

P ={P€P(D;)| Y _kj < p(x:) <Y uij, Vi}.

j=1 i=1

So, P, is defined by restrictions affecting only the single values of probability p(z;).
Therefore P, is associated to the set of probability intervals {[3_; ki, 3°; uij], ¢ =
1,...,n}. Now, using (8), the equivalent but reachable intervals are precisely those
defined in (25) and (26) O.

Observe that the calculus of the marginal probability intervals on one variable
is very easy: we simply sum the values l;; and u;; on the other variable; then the
equivalent but reachable intervals are obtained using the formulas (25) and (26). If
we want to calculate the values of the marginal measures I, and u, for subsets which
are different from singletons, they can be obtained using the result of proposition 4.

4.2. Conditioning of probability intervals

In order to define the conditioning of probability intervals we will once again use
their interpretation as lower and upper probabilities, because several definitions of
conditioning in this framework are available (see Moral?! for a review). We will
use the following definition of conditioning??:23:2%; Given a pair of lower and upper
probabilities (I, u) defined on a domain D, and a subset B C D, the conditional
lower and upper measures given that we know B, (I(.|B), u(.|B)) are defined as

(AN B) u(AN B)
- , u(A|B) = = ,
(AN B) +u(ANB) u(ANB)+I(ANB)
In our case, we have a set of bidimensional probability intervals L = {{l;;, ui;],i =

1,...,n,j=1,...,m}, and we want to calculate the conditional probability inter-
vals for one variable, say X, given that we know the value of the other variable,

I(A|B) =

VACD. (27)
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Y = y;. Then the previous expressions (27) become

I{(=i,9;)})
1({(zi,9;)}) + v((Dz - {z:)x{y;})’
uij; = u(wily;) = u({zi}xDy | Dox{y;}) = u({(z‘,,yj)};‘g(,f(‘}fj)i){xi})x{yj}) ’
Taking into account the expressions for the lower and upper measures associated

to a set of probability intervals given in the proposition 4, the set of conditional
probability intervals on X given Y = y; is

Lij = =z:ly;) = I({z:i}xDy| Dox{y;}) =

L(X|Y = yj) = {[l,-|j,u,-|j],i =1,.. .,n},

where

L); = by ) (28)
Lij 4+ (ks Wi AL =25 2oty len — 1i5))

u,-_,-
ity = .
i Uij + (g s V(1= 28 onaej Ukn — Uij))
If we define Leo, Use, Lo, Len; Ure, Usr by means of the following expressions:

n m m n
L00=Zzlkh; Lk.:Elkh,kzl,...,n, L0h=21kh;h=1a"'ama
k=1h=1 h=1 k=1

(29)

n m m n
Uoo=zzukh’ Uk0=zukh’k=l$"')n; Uoh=zukhah=1:"'7m7
h=1

k=1h=1 k=1

then the conditional probability intervals [l;;, u;;] can also be expressed as

Iy

b = (Usj — (uij — Iij))]/\ (L+Lej = Les)’ 0
Ug4

U= Ty + (w = 1)) v (1+Usj —Uss)’ “

Note that the calculus of the conditional probability intervals is very simple.
Moreover, as the next proposition proves, these intervals are always reachable, and
therefore it is not necessary to transform them in reachable intervals by using propo-
sitions 2 and 3.

Proposition 12. Given aset L = {[li;,ui;],i=1,...,n,j =1,...,m} of reachable
bidimensional probability intervals, then for each j = 1,. .., m, the set of conditional
probability intervals L(X|Y = y;) is always reachable.

Proof. Let us denote by P(X|j) the set of probabilities associated to the conditional
probability intervals L(X|Y = y;) given in (28) and (29), that is

P(X|j) = {P € P(Dz) ll; < p(2i) < uyj; Vi}.
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Then, as we did in proposition 1, to prove the reachability it suffices to prove that
for each i there exist probabilities P* and @ that belong to P(X|j) whose values
for the singleton {z;} coincide with l;; and u;j; respectively, that is

p'(z:) = Liy; and ly; < p'(zk) < upyj Yk # 4,

¢'(zi) = uij; and ly; < ¢*(z1) < up) VE # i

We will only prove the first condition; the proof for the second one is analogous.
The proof is based on the following result about Choquet capacities of order two
(see Campos??): If (I, u) is a pair of Choquet capacities of order two, P being their
set of associated probabilities, then the conditional measures defined in (27) can be
written as
B) = mi = P(A|B), VA .
I(A|B) = min P(A|B), u(4|B) = max P(A|B), VA, VB
As the measures associated to a set of probability intervals, according to proposi-

tion b, are always Choquet capacities of order two, then the result above can be
applied. So,

lg; = }I_}lei% Pxi|y;) < Plzly;) < Iglea%(P(zklyj) = ug;, VPP, Vk,j.

Then given 7, there exists a probability P that belongs to P such that l;; = P(x;|y;).
The conditional probability P(.|y;) is precisely the probability P* that we are look-
ing for O.

To end this section, let us consider the following simple example, which illus-
trates some of the concepts studied:

Example 2. We are performing a study in a car factory. Our objective is to
know the production rates of vehicles classified in two classes, say Motor (Hp 90,
115) and Model (Md Alpha, Beta). In order to know the exact production rates, we
decided to ask the Production Manager, but unfortunately he was on holiday. So, we
asked a member of his team, Mr.XX. He did not have exact information about the
production rates, and answered our question in the following terms: ‘The production
rate for a 90 Hp Alpha model is between 30% and 40%, and no more than 20% for
the 90 Hp Beta model. For the 115 Hp Alpha model the production rate is exactly
20%, and between 30% and 50% for the 115 Hp Beta model’. This information can
be represented as the following set of reachable bidimensional probability intervals:

Md Alpha Md Beta
Hp 90 [0.3,0.4] [0.0,0.2]
Hp 115 | [0.2,0.2] [0.3,0.5])

If we want to obtain information about either Motor or Model, we must mar-
ginalize. By using (25) and (26), the marginals are
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Hp 90 Hp 115 Md Alpha Md Beta
[0.3,0.5] [0.5,0.7] [0.5,06]  [0.4,0.5]

We decided to extend our study by asking the staff in the assembly chain, aiming
to improve our information. We selected a person in the Engine section, Mr.YY,
who told us that ‘the production rate for the 115 Hp cars is at least 60%’. Mr.ZZ,
from the Equipment section, told us that ‘the rates for both the Alpha and Beta
models are between 40% and 60%’.

Mr.YY and Mr.ZZ’s answers are represented as two sets of probability intervals, as
follows:

Hp 90 Hp 115 Md Alpha Md Beta

[0.0,0.4] [0.6,1] [0.4,06)  [0.4,0.6]

In order to refine our knowledge about Motor, we may combine Mr.XX’s marginal
information about Motor with Mr.YY’s information using the conjunctive operator.
The result, using (19) and (20), is

Hp 90 Hp 115

[0.3,0.4] [0.6,0.7]

that is, between 30% and 40% of the cars are equipped with the 90 Hp engine and
the cars with the 115 Hp engine represent between 60% and 70% of the production.
Another way of expressing this information is the following: 30% of the cars are
equipped with the 90 Hp engine, 60% are equipped with the 115 Hp engine, and
we are unsure for the remaining 10%: they could be equipped either with 90 Hp or
115 Hp engines.

With regards to the Model, we can also combine Mr.XX’s marginal information
about Model with Mr.ZZ’s information. However, in this case Mr.ZZ’s answer does
not provide new information (it includes the other information) and therefore the
combination does not change the information provided by Mr.XX.

Finally, if we want to obtain information about the proportion of cars of a given
model that equip the two possible engines, we calculate the conditional probability
intervals about Motor given Model. They are

Model = Alpha Model = Beta
Hp 90 Hp 115 Hp 90 Hp 115
[0.6,0.67] [0.33,0.4] [0,0.4]  [0.6,1]

that is, for Alpha models, 60% use the 90 Hp engine, 33% use the 115 Hp engine
and 7% could use the two engines; 60% of the Beta models use the 115 Hp engine
and we do not know what happens with the remaining 40% O0.

5. Integration with Respect to Probability Intervals

In probability theory, the concept of mathematical expectation or integral with
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respect to a probability measure plays an important role from both a theoretical
and a practical point of view. Indeed, integration is useful, for example, to derive
the probability of an event A, P(A), from the conditional probabilities P(A|B;)
of that event given a set of mutually exhaustive and exclusive events By, ..., By,
and the probabilities of these events P(B;). Concepts such as the entropy of a
probability distribution, or the quantity of information about one variable that
another variable contains are defined with the help of an integral. Basically, an
integral, with respect to a probability measure, is a tool able to summarize all the
pieces of information provided by a function in a single value; this value is a kind
of average of the function in terms of the probability measure. Integration is also
essential in decision-making problems with uncertainty. The following two simple
examples illustrate this point:

Example 3. Suppose we can choose to participate in one of two different lotteries.
The two lotteries have three possible outcomes zy, 25 or z3. If we choose ; and
this is the outcome of the lottery, we obtain a prize. The prizes are the same for
each lottery, and they are 108 for z,, 5% for z and 20$ for z3. The probabilities of
each outcome for each lottery are:

Lottery 1 Lottery 2
p(z1)  p(z2)  p(xs) p(z1)  p(z2)  p(zs3)
0.75 0.15 0.1 0.4 0.4 0.2

Which lottery is chosen? Using several assumptions about what is ‘rational behav-
ior’, we should choose the lottery that produces a better prize on average. So, if
we calculate the expected prize EP for each lottery (as the integral of the prize
function with respect to each probability), we get

e EP(lottery 1) = 10.25
o EP(lottery 2) =10

Therefore lottery 1 provides a better expected prize and we should choose it O.

Example 4. After doing a number of tests, it is determined that the illness a given
patient is suffering is one among three possible illnesses, say zi, 2 or 3, with
probabilities 0.6, 0.3 and 0.1 respectively. Once the doctor chooses a diagnostic,
he applies the appropriate treatment. However, to wrongly diagnose an illness has
a cost that depends on both the true illness that the patient is suffering and the
diagnosed one. These costs are reflected in the following table:

true illness
Cij | &1 X2 T3
41 0 60 100
£z {30 0 90
z3 |40 50 o0

diagnosed illness
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Which diagnostic and subsequent treatment should the doctor choose? Having
probabilistic information about the true illness, the ‘rational’ choice is the one that
minimizes the average cost. So, if we select illness z;, the average cost of this choice
is C(x;) = p1 * ¢i1 + D2 * ¢i2 + D3 * ¢i3, that is, it is the mathematical expectation
of the cost function corresponding to the choice #; with respect to the probability
of illness. In our case C(z1) = 28, C(x2) = 27 and C(z3) = 39, and therefore the
best diagnostic is illness x5 0.

In this section we are going to study the concept of integration when the un-
derlying uncertainty measure is not a probability measure but a set of probability
intervals. So, in the previous examples, even if we do not have purely probabilistic
information, we are able to perform comparisons and make decisions, on the basis
of the ‘average behavior’.

As is usual in this paper, we will use the interpretation of probability intervals
as particular cases of pairs of lower and upper probability measures, which in turn
are particular cases of fuzzy measures, since we have several methods of integration
for fuzzy measures available (fuzzy integrals). The two main fuzzy integrals are the
Sugeno integral'? and the Choquet integral'?. We will use the Choquet integral,
because it is closer in spirit to the mathematical expectation than the Sugeno inte-
gral, and therefore it seems to us to be more appropriate for probability intervals.
Moreover, the Choquet integral can be defined for any real-valued function whereas
the Sugeno integral is only defined for functions taking values in the interval [0,1]
(see Campos?:26 for an in-depth study of Choquet and Sugeno integrals).

In our case, we have a set L of probability intervals, and the associated pair of
lower and upper measures (I, #). So, we can define the Choquet integral with respect
to the two fuzzy measures I(.) or u(.). We will denote them as the lower E;(h) and
the upper Ey(h) Choquet integrals, and they form an interval [Ey(h), Ey(h)]. This
interpretation as an interval is justified by the following equalities (which are true
for Choquet capacities of order two'%2”, that relate the values Ey(h) and Ey4(h)
with the integrals Ep(h) with respect to probabilities P that belong to the set P
associated to L:

Ei(h) = géi‘g Ep(h), Eu(h) = max Ep(h). (32)

It is easy to see that the specific expressions for E;(h) and Ey(h) for the partic-
ular case of reachable probability intervals are the following:

E(h) =) pih(zi), (33)
i=1

Ey(h) = Z gih(zi), (34)

where:
h: D, — Rt is a real function such that h(z;) < h(z2) < ... < h(zy),
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(p1,p2y- -1 Pn) = (w1, 42, .., uk—1, 1 = Liy1 — U1, lg 41, - < - 1n) and k is the index
such that [ <1 — Ly — Ug—1 < ug, and L; = Z;‘m- Ij, U; = E;’—_-l Uj Vi,
(q1, 92,2 qn) = (I, 02, . Ipeg, L= LAY~ UR+L g1y, uy,), and h is the index
such that I < 1— L*!' UM Cupyand L= 35, 4, U= 0 u; Vi
An easy algorithm to calculate the weights p; in (33) is the following:

S —0;

Fori=1lton—1do S« S+ u;;

S — S+l

k — n;

While S >1do S —S—upo1+l1; pr —lg; bk —=k—1;

For: =1to k—1 do p; «— u;;

pr—1—=S+1; 0.

The analogous algorithm to obtain the weights ¢; in (34) is:
S« 0;
Fori=1lton—1do S —S+1;
S — S+ uy,;
k — n;
While S <1do S —S+up_1—lk-1; pr — ux; bk — k—1;
Fori=1tok—1dop; «I;
pe — 1 =S+ u; 0.

To end this section, let us consider modified versions of the examples 3 and 4 (see
Bolafios?® for a study of decision-making problems within the theory of evidence,
and Loui?®, Wakker3? for other approaches):

Example 5. Consider the same situation of example 3, but now the information
about the chances of lottery 2 is not completely precise: All we know about lottery
2 is the following set of probability intervals:

(i, 1]  [lo,ug] [z, us]
[0.2,0.4] [0.4,06] [0.1,0.2]

Then, by calculating the interval of expected prize for lottery 2, using (33) and (34),
we get the interval [8,10]. Therefore, we still prefer lottery 1, which gives an expected
prize of 10.25 0.

Example 6. Let us suppose that in example 4 the information about the three
possible illnesses is not a probability, but the following set of probability intervals:

Illness T T2 T3
[l,:, u,-] [0.5,0.7] [0.2,0.4] [0.1,0.2]

Then, if we calculate the intervals of expected cost for each choice, we obtain:
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C(z1) = [22,38], C(z2) = [24,36], C(z3) = [34,40).

Although we can not extract a definitive conclusion, it is clear that the worst diag-
nostic is £3. Between &, and x5, perhaps the choice depends on the decision-maker’s
attitude to risk: An optimistic person would possibly prefer z£; because this choice
guarantees a lower expected cost lesser than z5. However, a pessimistic person
would prefer x5 since z, gives an upper expected cost lesser than z;. Obviously,
other intermediate criteria are also possible O.

6. Probability Intervals and Belief/Plausibility Functions

Belief and plausibility functions constitute an interesting formalism for representing
uncertainty. Despite their different interpretations3!:32:33 here we consider them in
a formal sense as Choquet capacities of infinite order. So, they are also Choquet
capacities of order two. We already know that probability intervals are also Cho-
quet capacities of order two. However, in general, probability intervals are not
belief/plausibility functions. As belief and plausibility functions, although easier to
manage than general lower and upper probabilities or Choquet capacities of order
two, they require more complex processing than probability intervals, the first prob-
lem that we consider in this section is that of approximating belief and plausibility
functions by probability intervals.

So, given a pair (bel, Pl) of belief and plausibility functions, we look for the set
of probability intervals L¢, such that (bel, Pl) is included in L® and every other set
of probability intervals L including (bel, PI) must also include L®, that is:

Find L° such that (35)

1. (bel,Pl) C L®, and
2. VL such that (bel, PI) C L then L* C L.

The solution to this problem is very easy, as the next proposition shows:

Proposition 13. The solution to the problem (35), which is the best probability
interval approximation L¢ of a belief/plausibility pair (bel, Pl) is L® = {[I¢, uf],i =
1,...,n}, where

I§ = bel(z;), ui = Pl(z;), Vi=1,...,n. (36)

Proof. Let m be the basic probability assigment (b.p.a) associated to (bel, Pi),
that is to say, bel(A) = 3"pc 4, m(B) and PI(A) = 3" p, 449 m(B).

According to (13), to prove the inclusion of (bel, Pl) in L® we must prove that
[*(A) < bel(A) VA. From proposition 4 we know that 1°(4) = 37 ., ¥V (1 -
Ea:.-EA uf).

As ) sieali = Z_f.-eA bel(z;) = Zz.-GA m(z;) < ZBQA m(B) = bel(A) and

1 —bel(A) = PI(A) = ZBnZ¢¢ m(B) < Zz,-gA EB_:_){:,"-} m(B) =3 ;¢4 Pl(zi) =
Zx.-ZA u®.
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then 1¢(A) < bel(A), and (bel, Pl) is included in L®.

Now, let us suppose that L is a set of probability intervals that includes (bel, Pi).
Then I(A) < bel(A) < Pl(A) < u(A) VA. In particular we have I; < bel(x;) = 1§ <
uf = Pl(z;) < u; Vi, and from proposition 6 this means that L° is included in L O0.

Remark: If we consider a pair (I, u) of lower and upper probabilities instead of a pair
(bel, Pl), its approximation by probability intervals is the same: If = I(z;),uf =
u(z;) ViO.

Now, let us consider a different problem, whilst still relating belief and plausi-
bility functions and probability intervals: If we have a set L of probability intervals,
can we find a belief/plausibility pair whose values for the singleton subsets coincide
with the values of L7 In other words, we must look for the conditions that a set of
probability intervals must verify in order to be considered as a partial specification of
a belief/plausibility pair. This problem was solved by Lemmer and Kyburg®*, who
found a necessary and sufficient condition. Their result, adapted to our notation,
is the following:

Proposition 14 [Lemmer and Kyburg 1991). Given aset L = {[l;,u;],i=1,...,n}
of probability intervals, we can find a pair (belr, Plp) of belief and plausibility
functions such that

belp(z:) = ; and Plg(zi) = u;, Vi=1,...,n, 37)

if and only if the following three conditions are verified:

z":l.' <1, (38)

i=1l

dohi+u <1 Vi, (39)
J

Yo+ ui>2. (40)
i=1 =1

Moreover, Lemmer and Kyburg proposed an algorithm that constructs the b.p.a.
corresponding to bely, and Ply whenever the three conditions are met (however,
in general there exist several pairs (bel, Pl) verifying (37), and the pair (belr, Plr)
obtained by using the algorithm in Lemmer and Kyburg®* is not necessarily the
least specific). In our case, the first two conditions are always verified, because
we are considering proper and reachable sets of probability intervals. The only
condition that we need to check is the third one.

The problem that remains to be considered is the following: if condition (40) is
not verified for a set of probability intervals L, then we can not consider L as a partial
specification of any belief/plausibility pair. In that case, it makes sense to look for
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another set of probability intervals L™ satisfying (40) which is an approximation
of L. In one sense, this is the reverse of the problem of approximating belief and
plausibility functions by probability intervals, because once L™ is obtained, we can
use the algorithm given by Lemmer and Kyburg®* to obtain belief and plausibility
functions that constitute an approximation of the original set L.

So, given a set L = {[l;,u;], = 1,...,n} of probability intervals that does
not satisfy (40), we look for another set of probability intervals that includes L,
verifying (40), and included in every other set of probability intervals including L
and verifying (40). This set would be the minimum (in the sense of the inclusion
relation) of all the intervals including L that satisfy (40).

Unfortunately, it is not generally possible to find such a minimum set, but only
several minimal sets, that is to say, sets of probability intervals L™ = {[I,u*],i =
1,...,n} verifying:

Lcirm,

Zl’"+2u >2, (41)

i=1
There is no L' # L™ that satisfies (40) and L C L' C L™.

The following proposition characterizes these minimal sets of probability inter-

vals:

Proposition 15. Let L = {[l;,w],i = 1,..,n} be a set of reachable probability

intervals such that n n
Z l; + Z u; < 2.
i=1 =1

Then every set of probability intervals L™ = {{I*, u*],i = 1, .., n} verifying

™ =1, Vi,

u* > ug, Vi, (42)

S+ 3 =n
is minimal, that is, it verifies (41). The converse is also true.

Proof. We are going to prove the equivalence between (42) and (41):

From I® = I; and u[* > u; V4, it is obvious that L C I™. The condition Z; =
E:’ LUl > 21is also clear. Finally, if L’ # L™ is such that L C L' C L™ then
L; =1" =1 and u; < u} < ul Vi, but u,c < uf* for some k. In these conditions

S ,+Z'__1u _Z,_ L+ ui <Yl k+Y5 ,u"=2 and L' does not
satisfy (40). So we have proved that (42) implies (41).
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On the other hand, from L € L™ we have I* < I; and ul* > u; Vi. If I* < ;
for some j, then define L’ by means of If = I* Vi # j, I = I;, u| = u]* Vi.
In these conditions we have L' # L™, L C L' C L™ but Y ;. U+ 31 v} =
S U+l > L P+ ul > 2. So, L satisfies (40), in contradiction
with the hypothesis. Therefore I = [; Vi.

Finallyif 30 P +3 0  u* > 2then Y0 L+Y 0 uP >2> Y0 L+ 0w
Thus, Y o ul > 2-37" I > 3", u;. We can get numbers ¢; such that u; <
ci<ulViand ) o e =2—3 7", li. Then L', defined as I = I; and u} = ¢; Vi,
is such that L C L’ C L™ and it satisfies (40), which is again a contradiction with
the hypothesis. Therefore 3. I* + 3 7, u® = 2 and then (41) implies (42). The
proof is complete 0.

From (42) we can deduce that any set of probability intervals of the form [l;, u; +
Ai], where A; >0Viand Y . ; A =2 - 1, (&i + u;), is a minimal approximation
of L. Moreover, it can be seen that all of these minimal approximations are always
reachable, provided that the original probability intervals are.

Another interesting result about the minimal approximations is that they are
associated to pairs of belief/plausibility functions whose focal elements always have
a cardinality less than or equal to 2:

Proposition 16. If (bel Pl) is a pair of belief/plausibility functions such that
bel(z;) = I, Pl(z;) = ul® Vi, and Y 1, I + Y -, u™ = 2, then for every focal
element B of (bel, Pl), is |B| < 2.

Proof. As 320 I* + 300, uf* = 2 then 3000 (uf” — 1) = 2(1 - 3201, 7).

So, on the one hand:

1= 30 0 =1= 300 bel(zi) = 1= 320, m(i) = 325 1py22) ™(B)-

On the other hand:

S (P — 1) = S0 (Pl(:) - bel(22)) = S0y s 15152, e5y ™(B) =
(81 (B|22 |BIm(B)

Then 3~ p| 15132} |BIm(B) = 23" 5|2} ™(B) and therefore

E{B||B|22}(|B| —2)m(B) = 0. As |B| — 2 > 0, all the terms in the sum are non-
negative. The conclusion is that if |B| > 2 then m(B) = 0. So, the focal elements
must have a cardinality less than or equal to 2 0.

If we want to select only one approximation among all the minimal approxima-
tions of L, we must use an additional criterion. We propose to use the so called
symmetry principle3®. Intuitively this principle says that if we have several possi-
ble solutions, then we should look for an intermediate solution among the extreme
ones. In our case, the n extreme minimal approximations L™ ¢ = 1,...,n of
L={[l;,u],i=1,.,n} are:

L= ([P | B = = VG I = b = w+ )} (43)
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where A = 2 — 37, (li + u;). So, the arithmetic mean of these extreme minimal
approximations, given by

I# = (i u“]ll{‘:l;,uf:u;+%,z':l,...,n}, (44)

» Uy
looks appropriate as the single approximation of L. Let us see an example:

Example 7. Consider the following set of reachable probability intervals defined
on the domain D, = {21, z2, z3, z4}:

L = {[0,0.3],[0.1,0.2], [0.3,0.4], [0.1,0.4]} .

As 2?=1 I; + E?=1 u; = 1.8 < 2, then L can not be a partial specification of any
pair of belief and plausibility functions. The extreme minimal approximations (43)
are

o L™ = {[0,0.5],[0.1,0.2], [0.3,0.4],[0.1,0.4]}
o L™ = {[0,0.3],[0.1,0.4],[0.3,0.4], [0.1,0.4]}
o L™ = {[0,0.3],[0.1,0.2], [0.3,0.6], [0.1,0.4]}
e L™ = {[0,0.3],[0.1,0.2],[0.3,0.4],[0.1,0.6]}
The single approximation L* defined in (44) is
L* = {[0,0.35),[0.1,0.25], [0.3, 0.45], [0.1, 0.45]} .

If we apply the algorithm of Lemmer and Kyburg®* to L#, we obtain a pair (bel, Pl)
whose associated b.p.a. m is given by

o m(z3) = 0.1, m(zs) = 0.3, m(z4) = 0.1,

o m({z1, 22}) = m({z1, z3}) = 0.05,

o m({z2,z3}) = m({z2, 24}) = m({z3, 24}) = 0.05,
o m({zy,z4}) =025 O.

Finally, let us study several interesting particular cases of sets of probability
intervals which verify (40):

Example 8. L° = {[l;,ui],s = 1,..,n}, where [; = 0Vi, and u; = 1 Vz; € B, u; =
0Vz; ¢ B, where B # 0 is any subset of the domain D, which is not a singleton.
Obviously L° is reachable and it verifies (40). The only pair (bel, Pl) compatible
with this partial specification (that is to say, verifying (37)) is associated to the
b.p.a. m given by

m(B) =1, m(A)=0,VA#B.
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This kind of belief and plausibility functions (in fact they are also necessity and
possibility measures) is known as crisp measures focused on a subset, and they
represent the following piece of information about the unknown value of the variable
X: ‘the value of X isin B’ 0O.

Example 9. Consider a probability P defined on D, with probability distribution
p(xi), i=1,...,n. Let us define a set L of probability intervals by means of

L=0Q-ep(x:), i =(1—¢e)p(zi)+e,i=1,...,n,

where 0 < e < 1.
It is very easy to see that L is reachable, and it verifies (40). Moreover, there is
only one pair (bel, Pl) which is compatible with L, and its associated b.p.a. is

m(z;)=(1—e)p(z:), i=1,...,n, m(D;) =¢

This pair (bel, Pl) corresponds to the discounting operation defined by Shafer3? for
belief and plausibility functions, applied to the probability P (which is a particular
case of belief measure that is equal to the plausibility measure). The semantic of
this set of probability intervals corresponds to an ill-known probability, where the
percentage of error is quantified by the value 100e (we have a confidence level of
100(1 — €)% that the probability P is the correct one) O.

Example 10. Another way to express partial confidence in a probability measure
P could be by considering the set of probability intervals L = {[l;,w;],i=1,...,n}
defined by means of:

L=@@:)—e) V0, ui=(p(zi)+e)Al, i=1,...,n,

where p(z;),i=1,...,n is the probability distribution of P, and 0 <e < 1.

It can be proved, although it is a bit harder than in the previous examples, that
L is reachable and verifies (40). However, in this case there is more than one pair
(bel, Pl) compatible with L. For instance, if p(z;) = 0.7, p(x2) = 0.2, p(z3) = 0.1,
p(z4) = 0.0, and € = 0.15, then the pair (bel;, Pl;) with b.p.a. m; obtained using
the algorithm in3* is:

o my(z1) = 0.55, my(z2) = 0.05, my({z1, z2}) = 0.0833,

o mi({z1,23}) = mi({z2, z3}) = 0.0333,

o my({z1,z4}) = mi({22, 24}) = m1 ({23, z4}) = 0.0333,

o my({z1,z2,23}) = 0.1, my({z1, z2, 23, 24}) = 0.05.
But the pair (bely, Ply) with associated b.p.a. my defined by

[ m2(x1) = 055, mz(zg) = 0.05, mz({r]_, :L‘2}) = 005,
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o ma({z1,24}) = ma({z2,24}) = mo({zs, 24}) = 0.05
e my({z1,22,23}) = 0.2,

is also compatible with L 0.

Example 11. Suppose that we only know lower bounds for an unknown prob-
ability P defined on D, that is §; < p(2;) Vi, where Z?=1 l; < 1. This infor-
mation can obviously be represented by means of the set of probability intervals
{[l;;1),4 = 1,...,n}. However, this set is not reachable. The equivalent reachable
set of probability intervals is L = {[l;, u;},i = 1,...,n}, where u; = 137, 1; Vi.
This set of probability intervals was used by Fertig? to define interval influence
diagrams. The lower and upper probabilities (I, u) associated to L are in this case
very simple:
I(A)=> L uwA)=1-> L VACD,,

Ti€EA z €A

which are belief and plausibility functions with associated b.p.a. m given by

n
m(:c,-):l,-, i:l,...,n, m(Dx)-:l—Zl,'.

i=l

Moreover, it is very easy to see that L verifies (40), and the only pair (bel, Pl)
compatible with L is precisely (I, u). Finally, is interesting to remark that the sets
of probability intervals considered in this example, generated only by lower bounds,
are equivalent to those considered in example 9, generated by a probability and and
parameter ¢, by defining

n
I.
e=1-Y I, p(zi) = =, Vi O.
; Zj:l IJ

7. Concluding Remarks.

In this paper we have studied in depth probability intervals as a formalism to
represent uncertain information. Basic concepts for the management of uncertain
information, such as combination, marginalization, conditioning and integration
have been considered for probability intervals. Moreover, the relationship of this
formalism with others, such as lower and upper probabilities, Choquet capacities of
order two and belief and plausibility functions has also been clarified. OQur opinion is
that probability intervals, because of their computational simplicity and expressive
power, are interesting tools for uncertain reasoning.
In further work we aim to include:

—The study of the concept of independence!®. Independence permits us to modu-
larise our knowledge in such a way that we only need to consult the pieces of infor-
mation which are relevant to the question we are interested in, instead of having to
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explore a complete knowledge base. For example, in Bayesian networks, indepen-
dence is used to decompose an intractable joint probability distribution into smaller
distributions, and then local methods may be used to perform inference. Having
an appropriate definition of independence for probability intervals we could define
belief networks based on probability intervals?11:16, For this task, the study of ways
to obtain bidimensional distributions from marginal and conditional ones, and the
related problems of generalizing total probability and Bayes theorems to probabil-
ity intervals will also be necessary (for several approaches to perform inference with
imprecise or partially known probabilities see Refs. 9, 10, 36, 37, 38, 39, 40).
—Estimation methods for probability intervals, and their use for learning in belief
networks. We can get probability intervals directly from experts or from empirical
information (a set of examples) using statistical techniques as confidence intervals,
but more research is necessary in this direction.
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