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Abductive inference in Bayesian belief networks is intended as the process of generating
the K most probable configurations given an observed evidence. These configurations
are called ezplanations and in most of the approaches found in the literature, all the
explanations have the same number of literals. In this paper we propose some criteria
to simplify the explanations in such a way that the resulting configurations are still
accounting for the observed facts. Computational methods to perform the simplification
task are also presented. Finally the algorithms are experimentally tested using a set of
experiments which involves three different Bayesian belief networks.
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1. Introduction

In the last years artificial intelligence researchers have devoted increasing atten-
tion to the development of abductive reasoning methods in a wide range of ap-
plications. Probably the most clear application of abductive reasoning is in the
field of diagnosis, 2242728 although other applications exist in natural language
understanding,®33 vision,'® legal reasoning,®” plan recognition,?!® planning,?® and
learning.?!

Abduction is defined as the process of generating a plausible explanation for a
given set of observations or facts.?® This kind of reasoning can be represented by

the following inference rule:
P = w,w

,lp b
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i.e., if we observe w and we have the rule ¢ — w, then we can infer that v is a
plausible hypothesis (or explanation) for the occurrence of w.

In general, there are several possible abductive hypotheses and it is necessary
to choose among them. Therefore, we can divide the abductive task in two phases:

t of -
Observed hypotheses Set selection of best
facts possible —> hypotheses ™ explanations

explanations

In order to select the best explanations from the generated set, two kinds of
criteria are used: (1) metric based criteria (probability, weight, ...) and (2) simplic-
ity criteria (the preferred explanation is the simplest available hypothesis). Usually
simplicity is interpreted as logical simplicity, which means that those hypotheses
with less different predicates are preferred (Occam’s razor).

We think that the important role played by simplicity in the framework of ab-
ductive inference in logic has not been taken into account in the framework of
abductive inference in Bayesian belief networks. In this paper simplicity criteria
that can be used in the context of Bayesian belief networks are studied.

The paper is organized as follows: In the second section we introduce abductive
inference in the framework of Bayesian belief networks (BBN). In the third section,
we propose two kinds of simplification criteria. In the fourth section computation
issues are studied. In the fifth section we study how to take advantage of the
relations presented in the graph in order to optimize the simplification process. The
experimental evaluation is presented in the sixth section. Finally, in the seventh
section, we consider the conclusions.

2. Abductive Inference and Bayesian Belief Networks

A Bayesian belief network (Pearl,??) is a directed acyclic graph (DAG) where
each node represents a random variable, and the topology of the graph shows the
(in)dependence relations among the variables. The quantitative part of the model
is given by a probability distribution for each node conditioned to its parents. If
Xy ={X1,...,Xn} is the set of variables in the network, then the joint probability
can be calculated as:
P(Xu)= [ P(Xilpa(X2)), ey
X:€Xu
where pa(X;) contains the parents of X;.

Before we continue, we define the following notation. A lower case subscript
indicates a single variable (e.g., X;). An upper case subscript indicates a set of
variables (e.g., X7). For some particular problems, the propositional variables are
denoted by capital letters without subscript A, B,C,.... The state taken by a
variable X; will be denoted by z;, and the configuration of states taken by a set
of variables Xp will be denoted by zp. That is, capital letters are reserved for
variables and set of variables, and lower case letters are reserved for states and
configurations of states.
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Given a set of observations! zo for a set of variables Xo, propagation algorithms
allow us to calculate P(X;|zo) for every X; € Xy \ Xo. The calculations are carried
out in a secondary structure (obtained from the original BBN) called junction tree?
where the evidence zo has been entered. The propagation method?® is based on the
use of two operations: marginalization (addition) and combination (multiplication);
and it is divided into two phases: collectEvidence (messages are passed from leaves
to root) and distributeEvidence (messages are passed from root to leaves). See the
books of Jensen and Shafer for details.!?-30

In the context of BBNs an explanation for a set of observations Xp = zp is a
configuration of states for the network variables, xy;, such that, zy; is consistent with
zo, that is, 23, = zo (by z};° we are denoting the configuration obtained from
zy by removing the literals not in X¢). In fact, the explanation is xi,X“\XO , because
the values taken by the variables in X are previously known. Given the large
number of possible explanations and since we are interested in the best explanation,
our goal will be to obtain the most probable explanation. Thus, abductive inference
in BBNs (Pearl,??) corresponds to finding the maximum a posteriori probability
state of the network, given the observed variables (the evidence). In a more formal
way: if Xo is the set of observed variables and Xy is the set of unobserved variables,
then we aim to obtain the configuration zj, of Xy such that:

zy;y = argmax P(zy|zo), (2)
Tu

where Xo = zo is the observed evidence. Usually, zf; is known as the most prob-
able explanation (MPE), and in general we are interested in the K most probable
explanations (K MPEs).

As in the case of computing marginals, finding the most probable explanation
is an NP-hard problem 33,

Sometimes we are interested in obtaining the K’ MPEs only for a subset of the
network’s variables called explanation set.!® This problem is known as Partial Ab-
ductive Inference and we think that in practical applications is more interesting than
the classical abductive inference problem, because we can select as the explanation
set those variables representing diseases in a medical diagnosis problem, variables
representing critical components (starter, battery, alternator, ...) in a car diagnosis
problem, etc.

Now, if we denote by Xg C Xy the explanation set, then we aim to obtain the
configuration z% of Xg such that:

zy = argmax P(zg|zo) = argmaxZP(mE,zR|zo), (3)
TE TE

TR

1Xo = zo is known as evidence

2The nodes of a junction tree are known as cliques and contain more than one variable. A separator
exists between two cliques and is obtained as the intersection between the variables of the two
cliques.

3This probabilities propagation algorithm is known as HUGIN architecture.14
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where Xp = Xy \ Xg. In general, z}; is not equal to the projection of configuration
z7; over the variables of X . Therefore, we need to obtain z}; directly (eq. 3).

The MPE zj; can be found using the probabilities propagation method replacing
addition by maximum in the marginalization operator.® To obtain the K MPEs,
more complex methods must be used.!8:20:29

The process of finding the MPE 2z}, is more complex than that of finding z7;
because not all junction trees obtained from the original BBN are valid. In fact,
because summation and maximum have to be used simultaneously and these op-
erations do not show a commutative behaviour, the variables of Xg must form a
sub-tree of the complete junction tree. We can deal with this problem in two ways:

o Adapting a standard junction tree. Xu®® has proposed a method for trans-
forming the initial junction tree into another one containing a node in which
the variables of Xg are included. The problem is that if Xg contains many
variables, then the size of the probability table associated with the node con-
taining Xg will be too large. Nilsson?° outlines how to slightly modify Xu’s
algorithm in order to allow (when possible) that variables in Xz constitute a
sub-tree and not a single node.

e Building a junction tree speciﬁc for Xg. The construction of a junction tree
is based on the triangulation of an undirected graph. In partial abductive
inference, to obtain a valid junction tree, instead of searching for arbitrary
deletion sequences, we can only consider sequences in which the variables in
Xr come before the variables in Xg%8.

De Campos et al.® have shown that in both cases the size of the obtained junction
tree grows significantly* in relation with the size of the junction tree obtained with-
out restrictions, and so the propagation algorithm for partial abductive inference
will be less efficient than propagation algorithms for (total) abductive inference. An
approximate method based on genetic algorithms has been proposed by de Campos
et al.” This procedure has shown quite good results when applied to the problem
of searching for the K most probable partial explanations.

3. Simplicity Criteria

As we have seen in the previous section, when abductive inference is carried out in
BBNs a metric is used to select the best explanations, concretely the explanations
are ranked by their a posteriori probability. However, no simplicity criterion is
applied. An immediate consequence is the fact that all explanations® have the same

4As an eztreme example, consider a BBN with eleven variables {X1, ..., X10,Y}, such that there is
alink Y — X; for each variable X;. If all the variables can take 10 different states, then the size of
the optimum junction tree obtained in order to apply probabilities propagation or (total) abductive
inference is 1,000, while the size of the junction tree obtain for partial abductive inference taking
Xg ={X1,...,X10} is 1011,

5As (complete) abductive inference is a particular case of partial abductive inference taking Xg =
Xu, in the rest of the paper we are not going to do any distinction.
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number of literals (| Xg|). Thus, if we have observed, for example, car does not start
and our explanation set contains critical components of the car, we can get

battery=dead, alternator=ok, starter=ok, engine cranks=ok, etc

as a MPE. However, the explanation battery=dead could be enough to account for
the observation and it is simpler than the previous one. Therefore, our goal is
to simplify the explanations obtained by the application of the methods cited in
Section 2, by removing from the explanation those literals that are not important
given the evidence. The process can be represented as follows

Observed ; — simplified
facts KMPEs - ™ explanations

and can be stated in a more formal way as:

Let expl(zo) = {z},2%,...,75} be the K MPEs obtained for the ev-
idence Xo = zo. Then, for all zg € ezpl(zp) we are looking for a
sub-configuration z% (X C Xg), such that z’; is still accounting for
the observed evidence.

It is important to remark that our procedure has two differentiated steps: first we
generate complete explanations with values for all the variables of the explanation
set and ordered by their ’a posteriori’ probability given the observations; in a second
stage each explanation is simplified by removing unimportant literals.

In the literature, we can find an alternative approach to this problem.3%:34 In
these papers Shimony works with partial abduction without taking an explanation
set, but trying to identify the relevant nodes directly, without previously deter-
mining an explanation set. The relevant nodes include the evidence nodes in the
network and only ancestors of evidence nodes can be relevant (see 32:34 for details).
In our opinion the advantage of Shimony’s method is that it does not need two steps
in the inference process, i.e., the method directly generates simplified explanations.
This approach favours simple explanations as, if X/, = /4 is a sub-configuration of
X4 = x4, then the probability of the sub-configuration is greater than the proba-
bility of the initial configuration (it contains less variables with the same assigned
values). In order to prevent that the empty explanation is always obtained, a neces-
sary condition is given for a simplification to be possible. In most of the cases, given
that an assignation X; = z; is included in the explanation set, then it requires that
all the parents of this variable pa(X;) are included in the explanation set, with their
corresponding assignations, except for variables X; in pa(X;) such that known the
value of the parents in the explanation set, the event X; = z; is independent of X;.
This is a really strong condition and, as Chajewska and Halpern, point out in their
paper,? the explanations obtained by this method can have too many variables, be-
cause it is not difficult to see that for each evidence node Xj;, the explanation must
include an assignment to all the nodes in at least one path from X; to a root in



466 L. M. de Campos, J. A. Gdmez & S. Moral

the DAG (see Shimony,3?:3* for details). But, in most of the cases all the ancestors
are included in the explanation set. Another limitation of Shimony’s procedure is
that it always considers that the set of relevant variables (in which the reduced
explanation will be searched) is the set of ancestors of the observed variables. We
think that this can be reasonable in some applications, but there are situations in
which it is not. Assume, for example that arcs have not a causal interpretation
and that the graph is representing independences. In this situation, we can have
equivalent graphs representing the same problem with different orientations of the
arcs. In these equivalent graphs the relevant variables will be different. Another
question is that the result will depend of considering or not intermediate variables.
For example, assume that we have a link from X; to X; and both variables are in
the relevant set. If we refine the model by considering a variable X with a link
from X; to Xy and a link from X} to X, then X will be in the relevant set. This
inclusion can produce that everything change, even the values of the rest of the
variables. For these reasons, we have preferred that the user selects the explanation
set or the relevant variables. These should be the diagnostic variables in which she
is interested. The problem of discovering this set or helping the user to determine
it is really interesting, but we do not have a simple answer to it and will not be
considered in this paper.

The next subsections are devoted to introduce two criteria that can be used to
decide when z¥; C zg € expl(zo) is still an explanation for zo. We will denote by
z'y C zg, the fact that z'; is obtained from zg by removing one or more literals;
and |zg| will denote the number of literals in zgz.

3.1. Independence Based Criteria

Suppose we can divide our initial explanation zg in two parts, zp and zy (XpUX| =
XE), such that, if we know zp then adding z; to our knowledge does not modify
our belief on the presence of the evidence (zp). Thus, zp explains the presence of
zo as well as zg, so we can say that zj is irrelevant for the observed evidence and
therefore its literals can be removed from the explanation. From the probabilistic
point of view, we can express this idea as follows:

P(zolzp) = P(zolzp,zr), (4)

and this means to interpret irrelevance as statistical independence. Following this
idea we can give the next definition of simplification:

Definition 1. (I-simplification)
We say that 'y C g is an Independence based simplification (I-simplification) of
zg € expl(zo), if and only if, P(zo|zy) = P(zo|zE).

In order to relax the previous definition the term equal can be replaced by
almost equal. The term almost equal can be made precise by means of a threshold
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€ € [0.01,0.05]. Thus, we have the following definition:

Definition 2. (I~simplification)
We say that z%; C zg is an Independence based simplification (I~simplification) of
zg € expl(zp), if and only if,

(1 -¢)P(zolzr) < P(zoles) < (1+€)P(zolzr) (5)

Before going on with our study, it is convenient to say that definitions similar
to the previously formulated can be found in works devoted to sensitivity analysis
in Bayesian networks.3*¢ However, our idea should be interpreted in the opposite
sense, because sensitivity analysis studies how sensitive is the conclusion (hypoth-
esis) with respect to the set of observations, analyzing which items of evidence are
in favor of/against/irrelevant for the conclusion. In our case, the evidence is the
only thing we consider previously fixed, and our goal is to analyze which subsets of
the hypothesis are still an explanation for the given evidence.

Taking up again our definition of I~simplification, we can see that some expla-
nations can not be simplified, but others can have more than one simplification. In
the last case, we aim to obtain the best possible simplification, i.e., the simplification
with the smallest number of literals. The following definition formalizes this idea
and uses probability to break ties:

Definition 3. (Best I~simplification)
We say that 2y C zg is the best independence based simplification (I~simplification)
of zg € expl(zo), if and only if, the following conditions hold:

1. z'y is an I~simplification of zg.
2. 3 2% C zg, such that z'; is an I~simplification of zg and |z7%| < |z'5].

3. If z'f is an I~simplification of g and |z%;| = |z’;| then the following expression
is true: abs(P(zolz) — P(zo|zg)) > abs(P(zo|zy) — P(zo|zE)).

where abs denotes the absolute value function.

In Section 4 we will talk about computational aspects of this criterion, but now
we are going to give another independence based criterion.

3.2. Relevance Based Criteria

Now, our idea is the following: Let z’%; be an I~simplification of zg, then we
have removed the literals in Xz \ X} because they were (almost) irrelevant for the
observed evidence. But, what happen when P(zo|zg) is not (almost) equals to
P(zolz’s)?. We can distinguish two cases:

1. P(zolz's) < P(zolzg). This can be interpreted as the sub-configuration z'y
accounts for zp in smaller degree than the original explanation.
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2. P(zo|z’y) > P(zo|zg). This can be interpreted as the sub-configuration z'y
account for zp in greater degree than the original explanation.

Therefore, in the second case we think that z; would be accepted as a simpli-
fication of zg, because it accounts for the observed evidence at least as zg, and
it has a smaller number of literals. This idea can be formalized by the following
definition:

Definition 4. (R~simplification)
We say that 2z C zg is a Relevance based simplification (R~simplification) of
zg € expl(zo), if and only if,

(1 -e€)P(zolzr) < P(zolrk) (6)

We have called this criterion relevance based simplification because the re-
moved literals are not irrelevant to the evidence, against what happens when us-
ing I~simplification. The best R~simplification can be defined similarly to defini-
tion 3, breaking ties in favor of the sub-configuration z'; with greatest probability
P(zol|z’;). Furthermore, it is clear that if z'; is an I~simplification of zg then it
is also a R~simplification of zg.

3.3. Examples

In this subsection we give two simple examples in order to show the intuition of the
simplifications provided by the previous definitions. They will show two different
situations in which the behaviour of the simplifications has some particularities.
The first one is a case in which we have two alternative causes for an unusual
finding. The second one will present a situation in which we have two consecutive
causes for an observation, being one of the causes independent of the observations
given the other cause.

Example 1. Let us assume the network given by the graph G = ({4, B,C},{4A —
C,B — C}), where each variable is bivalued, and the following conditional proba-
bilities:

P(a) =01 | P(cjab) = 0.95 P(cjab) = 0.05
P(@) =09 | P(clab) =0.9 P(clab) = 0.1
P(b) =001 | P(c[ab) =0.92 P(c[ab) = 0.08
P(5) = 0.99 | P(c[ab) = 0.001 P(g[ab) = 0.999

This is a very common situation in which we have two competing causes A and
B for an unusual effect C'. This effect is rarely present if none of the causes is active.
The ’a priori’ probability of a cause is low too (0.1 for a and 0.01 for b).

Assume now that we have observed ¢ and that the explanation set is Xgp =
{A, B}. In these conditions the three best explanations are (in this order): ab, @b, ab,
with probabilities P(abjc) = 0.8980, P(ab|c) = 0.0835, P(ablc) = 0.0096. Of
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course, there is a big difference between the first and the rest of more probable con-
figurations (which is mainly due to its higher ’a priori’ probability), so that, ab is
the true best explanation. However, let us proceed to simplify the three more prob-
able configurations. Taking into account that P(c|ab) = 0.9 and P(c|a) = 0.9005,
ab is simplified to a. In fact, b does not add anything to a as an explanation to c.
In an analogous way, ab is simplified to b, though in this case a higher € (0.02) is
necessary for the I~simplification. With respect to ab, a higher value of € (0.05) is
required in order to simplify it to b; in this case we can see how removing one of
the causes decreases the probability of the observations. O

Example 2. Let us assume the network given by the graph G = ({4, B,C},{A —
B,B — (C}), where C is conditionally independent of A given B. Consider that
each variable is bivalued with the following conditional probabilities:

P(a) =0.1 | P(bla) =0.95 P(bla) =0.05
P(@) =09 | P(bja) =0.05 P(bla)=0.95
P(c[p) =0.99 P(c[p) =0.01
P(c|b) =0.01 P(c|b) =0.99

Assume as above that we have observed ¢ and that the explanation set is Xg =
{A,B}. In these conditions the first two explanations are ab, with P(ablc) =
0.6389, and ab with P(ab|c) = 0.3026. In both cases, with any of the criteria, both
explanations are simplified to b. The reason is that the conditional independence
implies that the probability of the observations given b is independent of the value
of A. :

It is important to observe as in the case of consecutive causes (A4 is a cause
of B and B is a cause of C) of some observations (c in this case), these criteria
select the immediate causes (b), removing the primary or deep causes (a), as the
observations do not depend of them given the immediate causes. As a more intuitive
example, assume that a car does not start and we have as possible explanations
that there is no petrol, and as a cause of this that the tank has a leak. If these two
explanations are chosen as most probable explanations, these criteria will simplify
the explanation to there is no petrol, discarding the fact that there is a leak in
the tank. Of course, sometimes we are more interested in these primary causes.
Gémez,? has proposed an iterative procedure in which, after each simplification, the
immediate (non simplified) cause is added to the observations and removed from
the set of explanations, repeating everything again. The procedure finishes when
there are no more variables in the set of explanations. In this way, the consecutive

explanations of a set of observations are obtained, starting from the immediate
causes to the primary ones.

O
4. Computation

In this section we have to deal with the problem of simplifying explanations from
a computational perspective. From this point of view, one of the main problems is
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the fact that the best simplification cannot be found (in an exact way) by means
of a search in which a literal is removed at each step, because the independence
based criteria does not have a monotonicity property, as we can see in the following
example.

Example 3. Let us to consider the network given by the graph G = ({4, B,C, D},
{A— D,B — D,C — D}) and the conditional probabilities shown in the following
Table (all the variables can take two states).

P(a) =0.5 | P(dlabc) =0.5 P(dlabc) =0.5
P(@) =0.5 | P(d|labc) =0.3 P(d|abc) =0.7
P(d]abc) = 0.3 P(d|abc) = 0.7

P(b) =0.5 | P(dlabc) =0.9 P(dJabc) =0.1
P(b) =0.5 | P(d|Jabc) =0.3 P(d|abc) =0.7
P(d|abe) = 0.5 P(d|abe) = 0.5

P(c) =0.5 | P(d|Jabc) =0.5 P(d]abc) =0.5
P(€) =0.5 | P(d|Jabc) =0.5 P(d]abc) = 0.5

Let D = d be the evidence and Xg = {4, B,C} be the explanation set. Then,
abc is the second most probable explanation with P(abc|d) = 0.133. In the tree
obtained when all the sub-configurations of abc are considered, we can see that
ab is not an independence (or relevance) based simplification for abe, while its
sub-configuration a is a valid simplification.

- P)=05

P(dlab)=0.4
AN P(dlb=0.4

- P(dla)=0.5

P(dlabc)=0.5 7 P(dlac)=0.4
N P(dlc)=0.4

P(db)=0.5
P(dIbc)=0.4 ~

P(dlc)=0.4
a

A property saying that if a sub-configuration z'; is a relevance (independence)
based simplification of zg and there are two or more literals of g not in z'y, then
there is a relevance (independence) based simplification z'; intermediate between
XEg and X, would allow to design an algorithm in which the simplifications of zg



Simplifying Explanations in Bayesian Belief Networks 471

are carried out by removing one literal at each step. If in a given moment no single
literal can be removed producing a simplification, then we would be sure that there is
no simplification that can be obtained by removing more than one literal and we can
stop. Unfortunately, such a property is not verified as the example above shows, and
to the best of our knowledge the complete search space of all the sub-configurations
should be explored if we want to be sure that the obtained simplification is exactly
the best independence (or relevance) based simplification® To do this, P(zo|z);) for
each ¢y C zg, must be calculated through a propagation in the junction tree, and
given that the number of sub-configurations grows exponentially with the number of
variables in the explanation set, and that each computation of P(zo|z'y) can require
a probabilistic propagation, the process, in general, would be intractable. So, the
search cannot be done in an exact way, and so approximate search methods have to
be considered. These methods will try to use previous computations associated to
configurations already evaluated, when we try to calculate the probability P(zo|z's)
for a given configuration.

We are going to use two alternatives: cautious propagation and a heuristic
method.

4.1. Using Cautious Propagation

In sensitivity analysis the same problem exists,'? and the solution adopted by Jensen
et al. was to use a modified scheme of inference in junction trees called cautious
propagation (Jensen,'!).

Cautious propagation is a modification of HUGIN propagation into a Shafer-
Shenoy-like architecture3!, in which each separator in the junction tree stores two
messages, and the probability tables of cliques are not modified during the propaga-
tion task. The method is called cautious because it does not change any probability
table in the junction tree. Cautious propagation is less efficient than HUGIN, but
given a configuration, zx, and a configuration of observations zp, it provides access
to P(zp|zm) for a great number of subsets zy, of Xo (as the method was developed
to solve sensitivity analysis, the configuration g represents an hypothesis, but this
is not relevant to our problem).

P(zp|rw) is accessed means that this value can be obtained using probability
tables calculated previously, without requiring extra propagations.

Jensen also suggests to use cautious entering of evidence,!! that is, items of
evidence are always entered in a leaf of the junction tree and at most one item
(z, € zo) is inserted in any node. In most cases, it is necessary to add dummy
nodes to the junction tree in order to make possible cautious entering of evidence.

The combination of cautious propagation with cautious entering of evidence
enlarges the number of P(z(,)s accessed. In particular, it gives access to zo \ z,
and z, for any item z, = mOX‘, for all X; € Xo.

6See Section 5 for some previous reductions of the search space, based on the independences
represented by the graph
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As P(zolzly) = Pz} },’2;’,)1; (0) we can use this method but carrying out two
cautious propagations, that 1s:

1. Let T be a junction tree without entered evidence and let Tp be a junction
tree in which evidence o has been entered.

2. Enter cautiously (as evidence) zg in T and perform cautious propagation.
This gives access to a set of P(z'y)s.

3. Perform HUGIN propagation in Tp. After this propagation the tables of
To are conditioned on zp. Furthermore, P(zp) can be calculated in this
propagation by summing in the probability table of the root node, after the
collectEvidence phase has been carried out.

4. Enter cautiously (as evidence) zg in Tp and perform cautious propagation.
As probability tables in Tp were conditioned on zo this propagation gives
access to P(zg|zo) for the same subset of sub-configurations of g as in the
second step.

5. Now we can calculate P(zol|z}y) = & (2} 1|3z(2,)1)3(zo) for all z'; accessed, and the

best simplification is obtained according to definition of best simplification.

The solution obtained by this method can be interpreted as approzimate, because
the search space is not completely explored and so we cannot be sure that the best
simplification found is the true best simplification.

4.2. Regressive search method

In this section we are going to propose an alternative method to the previous one. It
is based on an incremental heuristic search. We start with the complete explanation
and we try to remove a literal at each step (this is the reason we have called it
regressive). The procedure stops when it is not possible to obtain a simplification
by deleting a single literal. The procedure is as follows:

1. s + zg (the explanation to be simplified)

2. Let S be the set of sub-configurations of zs obtained by removing only a
literal from zg.

3. Remove from S those elements not being an I~simplification of z 5.
4. If S = ( finish returning zs as the best simplification.

5. If S # @ dozs = 2’z € S, such that, 2z minimizes the expression abs(P(zo|zy)—
P(zolzg))-

6. Go to step 2.
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As we can see, in order to look for the R~simplification, only steps 3 and 5 have
to be modified according to the R~simplification criterion.

Although we have seen in example 3 that this way to proceed does not guarantee
the success of the search, from the experiments (Section 6) we can conclude that in
general the method has a good behavior.

Using this method the number of evaluated sub-configurations is reduced from
21Xe| (exhaustive search) to” Jﬁ’i‘%"lx—’fl Furthermore, this is an upper bound be-
cause the explanation is not always simplified to a unique literal. As P(zo|zy) =
—Ii%(%’g—)o), two upward propagations® are necessary in order to calculate this value
(with and without entered evidence). However, the computational cost of the pro-
cess still is too high, so we are going to deal with this problem in the next subsection.

4.2.1. Ewvaluation of sub-configurations

Our proposal now is to avoid the need of carrying out a complete upward propaga-
tion when a new sub-configuration has to be evaluated. The idea is as follows:

When a sub-configuration z% has to be evaluated, it is clear that an-
other very similar sub-configuration has been previously evaluated: a
configuration z'; such that z'% can be obtained by deleting a literal (a
value for a variable) from 5. So it is very probable that a great part of
the computations involved in the new propagation had been calculated
before. In order to avoid these repetitions we always will work over the
same junction tree, storing in it all the messages previously sent.

If 2% C 2’5 and |z'5| = |z| — 1, then we will refer to z'; as the father of z';.
Notice the fact that a sub-configuration 2% can have more than one father, because
different literals can be added to z’;; however, in the context of regressive search,
as only a branch of the tree of configurations is explored, then the father is clearly
identified.

The process of evaluating an explanation and its sub-configurations requested
by the regressive algorithm could be as follows:

o Enter cautiously (as evidence) zg in the junction tree.

e Perform an upward propagation storing all the messages sent among the nodes
of the junction tree.

7One configuration of size |Xg|, plus |Xg| configurations of size (|Xg| — 1), plus (| Xg| — 1)
configurations of size (| Xg| — 2),..., plus 3 configurations of size 2, plus 2 configurations of size 1.

Therefore, we have to evaluate Xpl(Xpl+l) _ 'XElzz'HXE' configurations.

8By upward propagation we are denoting the process of evaluating a configuration zz. As we have
seen in the previous subsection, to do this only the first step of HUGIN propagation is needed.
Concretely, the process has three steps: (1) enter the configuration (as evidence) in the junction
tree, (2) select a root and perform collectEvidence, and (3) P(zg) is calculated by summing in
the probability table of the selected root.
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o Let z’; be the sub-configuration to be evaluated, and z; its father configura-
tion (previously evaluated). Let C be the node used as root in the evaluation
of 2y and Hy, ..., Hy the neighbours of C in the junction tree. Then, z’; can
be divided in 4 U... Uzl Uzt Uzt U... Uz, (see Figure La).

We know z; is equal to z; except in one literal I. Let us suppose that this
literal is included in &%. Then, 2 =z U... Uy Uz Uz U... U},
where z% is obtained from % by removing that literal. So, we can evaluate
z'y; following one of the two options given below:

— (' is maintained as the root. Then C sends a message to H; requesting
the correct message (z%). If H; has enough information the message
is sent, otherwise the necessary information is requested from H; to its
neighbours (except C). This option corresponds with Figure 1.b. To
implement this procedure each separator of the junction tree stores a list
of messages.

— The root is moved to H;. In this case C' builds the message z§ =
zhU...UzT uzsdt u.. .Uz}, and sends it to H;. If H; has enough in-
formation then z'; can be evaluated, otherwise the necessary information
is requested from H; to its neighbours (except C). This option corre-
sponds with Figure 1.c. To implement this procedure each separator of
the junction tree stores two lists of messages.

Using one of the previous options, we only calculate a few new messages,
saving a lot of time in computation. By contrast, it is clear that this way
to proceed needs more memory, because each link stores one or two lists of
messages instead of a single message. This raises the issue of space efficiency,
although given that cautious entering of evidence is used, we think that if the
clique selected as the root is chosen in an appropiate way, then the number
of different messages to be stored in each separator will be moderated (as can
be viewed in Figures 2, 3 and 4).

e When no more sub-configurations have to be evaluated, it is interesting to see
that some additional sub-configurations are accessed. That is, they can be
evaluated without sending more messages (as in cautious propagation).

In most cases it is not necessary to evaluate all the accessed sub-configurations,
because if we fix the order of evaluation from less to more literals, then if a
simplification is found, there is not need to evaluate the sub-configurations
with a greater number of literals.

As occurs in cautious propagation, two junction trees are necessary, one of them
without entered evidence (to obtain P(zg)’s) and the other with entered evidence
(to obtain P(zg,z0)’s). After this process, P(zo|zg)’s can be calculated.
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(©

Fig. 1. Choosing a new root

The following example is an illustration of the previous algorithm.

Example 4. Figure 2.a shows a junction tree in which zg = abcde has been entered
cautiously, and the messages sent during the evaluation process (propagation). As
|zg| = 5, in the first stage of the regressive algorithm we have to evaluate five
sub-configurations of length 4. The messages sent in those evaluations are shown
in Figures 2.b to 2.f ([] denotes an empty message).

Let us consider abde as the best simplification of zg in this stage. So, in the
second stage of the search process four sub-configurations of length 3 have to be
evaluated. The messages sent in these evaluations are shown in Figures 3.a to 3.d.

Let us suppose that no one of these sub-configurations is a simplification of z g,
so the best found simplification is abde. At this moment two observations can be
done:

1. After evaluating zg, only a few new messages are necessary to evaluate its
sub-configurations.

2. In Figure 4 a summary of the messages sent in the complete process is shown.
It is easy to see that the algorithm gives access to configurations de and cde
in node 2 and configurations ab and abc are in node 5. As the length of these
configurations is smaller than the length of the best simplification found, we
can calculate their value and study if some of them constitutes the new best
simplification.

Finally, some of the messages calculated in this process can be retained for the
next configuration. For example, if the new configuration to simplify is abcde, the
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(a) Evaluation of abcde (b) Evaluation of abcd
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(c) Evaluation of abce (d) Evaluation of abde
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(e) Evaluation of acde (f) Evaluation of bcde

Fig. 2. Messages used in the evaluation of configuration abcde and its children. Notice the fact
that after evaluating abcde only two new messages are sent in order to evaluate its children.
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Fig. 3. Messages sent when evaluating children of sub-configuration abde
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Fig. 4. Summary of calculated messages
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process can start with the junction tree shown in (Figure 5) and not with an empty
one.
ab/

b S
. (2
7t /{¢&
ONOBNORNONNO
c d €

a b

Fig. 5. Retained computations from configuration abcde to configuration abcde

5. Simplifications induced by the graph

In this section we try to take advantage of the graph topology in order to do an
’a, priori’ simplification. That is, before to carry out any probabilistic propagation,
all the configurations will be simplified by removing some literals (corresponding to
the same variables).

To obtain the set of literals to be removed, we study whether the explanation
set Xg can be divided in two disjoint sets Xp and X, such that the evidence (Xo)
is independent from X given Xp (this independence statement is usually denoted
as I(Xo|Xp|Xr)). The previous statement implies the independence I(zo|zp|zr)
for all configurations zo,zp,zr of Xo,Xp and X respectively, so xEXD is a sim-
plification of zg for all MPE zg.

As we have stated in the first paragraph, our aim is to identify Xp and X
(with Xp being a minimal set) by analyzing the directed acyclic graph (DAG).
The key concept in this analysis is the d-separation criterion (Pearl,?2), because
we know that if Xo is d-separated from X given Xp in the graph G (denoted by
< Xo|Xp|Xr >%) then we can conclude I(Xo|Xp|Xr). Therefore, we can obtain
Xp and Xy from the graph G.

Although efficient algorithms have been developed for determining d-separation
in graphs'®, as some authors have pointed out,! the d-separation criterion is difficult
to manage and is rather subtle. So, we will transform the problem into an equivalent
one, in which the use of d-separation is avoided, being replaced by a more uniform’
criterion like separation in undirected graphs. To do so, we follow the algorithm
proposed by Lauritzen et al.!” It is based on the fact that if X4, Xp and X¢ are
three disjoint subsets of nodes in G, then X4 is d-separated from Xp given X, if
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and only if, X4 is separated from Xp given X¢ in the graph (GAMXaUXsUXc)),
where (GAMXaUXsUXc)),  is the graph resulting from the moralization of the graph
induced by the smallest ancestral set in G containing X4 U Xp U X¢:

< XA|Xc|XB >g~<:>< XA|X0|XB >?GA"(XAUXBUXC))M (7)

In our case X4 U Xp U X¢ is equal to Xg U Xo and this knowledge is enough
to obtain the ancestral graph (a minimal graph containing Xg U X0 and all their
ancestors in the graph). After this step we moralize the graph by adding edges
among the parents of each node and making all the edges in the graph undirected).

Working over the undirected graph, the task to identify Xp is reduced to detect
which nodes of Xg can be reached from some node of Xp, by using a path that
does not contain any node of Xg. Finally X is obtained as the complementary set
of Xp respect to Xg.

5.1. ’A priori’ simplification of the explanation set

As we have seen in the previous study, if X; # 0 (such that I(Xo|Xp|Xr) holds)
exists, then all the MPEs can be simplified by removing the elements corresponding
to X1, so “why not to do Xg = Xp before obtaining the K MPEs?”. If we do so,
it is probable that the process of searching the K MPEs could be more efficient®.
On the other hand, ”is the best MPE for Xp the same as for Xg?”. The following
counter-example answers this question:

Example 6. Let us to consider the network given by the graph G = ({4, B,C}, {4
— B,B — (C}) and the conditional probabilities shown in the following table (all
the variables can take two states):

P(a) =0.3 P(@E) =0.7
P(bla) =0.45 P(bla) =0.55
P(bla)=04 P(bja) =0.6
P(c[b) =059 P(c|b) = 0.41
P(c[b) =04 P(b) =0.6

Let us to consider Xg = {4, B}, Xo = {C'} and C = c as the observed evidence.
Under these considerations, the most probable explanation is the configuration ab
with probability 0.351. However, the independence I(C|B|A) can be obtained from
the graph, so we could take X, = {B}. With this new explanation set, the most
probable explanation is b with probability 0.511. Therefore, we can see that the
best MPE is not the same in both cases:

ab'? =B #£b

9A direct relation between | X | and the size of the junction tree has been established by Gdmez.°

bl
and de Campos et al.8
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ad

In our opinion, the explanation set has been chosen by the user attending to
some reasons, and this choice should be respected unless we can ensure that the
best explanation is the same for Xp and Xp. Now, we are going to show that
in some cases this equality can be warranted, concretely, when the independence
I(Xp|0|X) is also observed.

The well known semigraphoid azioms,?? which are always verified by the inde-
pendences associated with probability distributions, will be used:

e Symmetry: I(X|Z|Y) < I(Y|Z|X)

e Decomposition: I(X|Z|Y UW) = I(X|Z|Y) & I(X|Z|W)

e Weak Union: I(X|Z|[YUW) = I(X|ZUW]Y)

e Contraction: I(X|Z|Y) & I(X|ZUY|W) = I(X|Z|]Y UW)
where X,Y, Z and W are sets of variables.
Proposition 1. Let Xg be the explanation set and Xo the observed variables.
Let Xp and X7 be two disjoint subsets of Xg such that Xg = Xp U X;. Let us
suppose the independence relations I(X;|Xp|Xo) and I(X;|0|Xp). Then, if zg

is the configuration which maximizes P(Xg|zo), mEXD is the configuration which
maximizes P(Xp|zo).

Proof. In the following we are going to denote a:%XD by zp, and xEX’ by zry. Our
goal is to prove that if

Tp = IpTy = arg n}l{axP(XEkco),
E

then
zp = arg max P(Xp|zo).
Xp

From I(X|Xp|Xo) and I(X;|0| X p), using contraction and weak union, we can
obtain I(X|Xo|Xp). Therefore,
P(zg|zo) = P(zpzr|zo) = P(zr|zo)P(zplzo)

hence zg = zpx can be the configuration that maximizes P(Xg|zo) if and only
if zp and z; are the subconfigurations that maximize P(Xr|zo) and P(Xp|zo),
respectively.

O

The following proposition shows that under the conditions of proposition 1 the
independence I(Xr|0|Xo) is also true.

Proposition 2. Under the conditions of proposition 1 the independence relation
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I(X1]0|Xo) holds.
Proof. By contraction in =>; and decomposition in =5 we have:
I(X1|Xp|Xo) & I(X[|0|Xp) =1 I(X[|0|Xp U Xo) =2 I(X[|0|X0)
|

Although conditions of proposition 1 can seem too hard, there are some domains
in which they can be easily satisfied. For example, in diagnostic problems it is very
usual to select a subset of the root nodes (diseases, components, etc ...) as the
explanation set, so the independence I(Xp|0|X;) holds.

6. Experimental Evaluation

We have evaluated the algorithms using three networks:

1. The alarm belief network.® This network has been commonly used in the
literature to test several kinds of algorithms (learning, propagation, ...). The
alarm belief network (Figure 6) has 37 variables, each of them can take 2, 3

or 4 different states.
@ I
® /0

@~@\@@ 6—@«———0 @
@{@i@ 2\9 @ @—®
6O e

Fig. 6. The alarm belief network

2. An artificially generated network. This network (Figure 7) has 25 variables,
each of them taking a number of states between 2 and 7.

3. The car-starts'® belief network. This network (Figure 8) has 18 variables,
each of them can take 2 or 3 different states.

For each network we have selected two different explanation sets, then the 20
most probable explanations were simplified using the proposed algorithms. Con-
cretely, the six experiments are:

10This network is included in the package JavaBayes www.cs.cmu.edu/"javabayes
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Fig. 7. The artificially generated belief network

Engine
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Fig. 8. The car-starts belief network
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. Alarm network. All the root nodes (variables) were selected as the explanation

set, that is, Xp = {Xo, X1, Xs, X7, Xs, X10, X11, X13, X17, X20, X8, X31}
Four variables were randomly selected to be observed, Xo = {X12, X24, X35,
Xs6}-

. Alarm network. Twelve variables were randomly selected as the explanation

set, Xp = {X5, X6, Xs, X11, X12, X14, X17, X20, X26, Xo7, X33, X34}. Four
variables were randomly selected to be observed, Xp = { X3, X9, X19, X346}

. Artificial network. All the variables with odd index were selected as the expla-

nation set, that is, Xp = {X1, X3, X5, X7, X9, X11, X13, X15, X17, X19, X021,
Xs3}. Three variables were randomly selected to be observed, Xo = {X4, X1o,
X24}.

Artificial network. All the variables with even index were selected as the expla-
nation set, that is, Xp = {Xa, X4, X¢, X5, X10, X12, X14, X16, X18, X20, X22,
Xo4}. Three variables were randomly selected to be observed, Xo = {Xs, X15,
X19 } .

. Car-starts network. All the root nodes (variables) were selected as the expla-

nation set, that iS, XE = {Xo,Xl,Xz,X4,X7,X11,Xlg,X14,X15,X16}. Two
variables were randomly selected to be observed Xo = {X,, X17}.

Car-starts network. Ten variables were randomly selected as the explanation
set, XE = {Xo,Xz,X3,X4,X5,X6,X10,X12,X13,X15}. Two variables were
randomly selected to be observed Xop = {X1, X11}.

Tables 1 and 2 show the mean number of literals in the simplified explanations.
The threshold used in all the experiments has been € = 0.05. The algorithms are:

Ezhaustive: an algorithm that explores the complete search space of sub-
configurations for each explanation, and obtains the corresponding best sim-
plification according to Definition 3 (and its adaptation to the criterion of
R-simplification).

Cautious: the algorithm exposed in Subsection 4.1.

Cautious®: the same algorithm but applied after obtaining the simplifications
induced by the graph (Section 5).

Regressive: the algorithm proposed in Subsection 4.2, applied after obtaining
the simplifications induced by the graph.

Regressive*: the same algorithm but using the algorithm proposed in Subsec-
tion 4.2.1 to evaluate the sub-configurations, so the accessed sub-configurations
are also evaluated.

In each experiment, we have obtained the following simplifications induced by
the graph:
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Table 1. Mean number of literals in each simplified explanation using I-simplification criterion.

Alarm network || Artificial network || Car-starts network

Experiment: 1 2 3 4 ) 6

| XE| 12 12 12 12 10 10
Exhaustive 2.3 3.45 3.45 1.5 2 2.85
Cautious 8.1 9.05 5.45 5.5 6.2 5.6
Cautious® 7.75 7.65 4.75 2.3 5.6 3.8
Regressive 2.95 4.35 5.45 2.0 2 2.85
Regressive* 2.95 4.00 3.95 2.0 2 2.85

Table 2. Mean number of literals in each simplified explanation using R-simplification criterion.

Alarm network || Artificial network || Car-starts network

Experiment: 1 2 3 4 5 6

| XE| 12 12 12 12 10 10
Exhaustive 1.6 1.9 3.2 1.5 1.5 2.6
Cautious 6.25 5.15 4.85 2.6 3.6 4.85
Cautious® 6.1 4.45 4.25 2.3 3.3 3.35
Regressive 1.6 1.9 3.35 1.5 1.5 2.6
Regressive* 1.6 1.9 3.3 1.5 1.5 2.6

L. I(Xo|XEg \ {Xo, X1, X8, X31 }|{ X0, X1, Xas, X31})
2. I(Xo|Xe \ {X11, X2 }[{X11, X12})

3. I(Xo|XE \ {X4, X16, X20 }/{ X4, X16, X20})

4. I(Xo|Xp \ {X7, X17, X190 }{ X7, X17, X10})

5. I(Xo|Xp \ {X7}{Xx})

6. I(Xo|XEg \ {X4, X5, X10, X12}[{ X4, X5, X10, X12})

As can be noticed, we can have algorithms obtaining simplifications with sim-
ilar mean number of literals, but with a high degree of di-similarity between the
simplifications provided. For example, assume the explanation abcde, and the two
simplifications abc and ade obtained by two different methods. Of course, they
have the same number of literals, but they are quite different. For us, this fact does
not constitute a problem, because if both configurations have been obtained as
simplifications, then both account for the observed evidence with similar strength.
Anyway, it is interesting to study how similar are the simplifications obtained by
the proposed algorithms with respect to the best simplification obtained by the
exhaustive algorithm. The similarity measure we use is the Hamming distance: let
us represent a simplification z’; as an array of length | Xg|, such that, z'5[i] = 1 if



Simplifying Ezplanations in Bayesian Belief Networks 485

literal Xg; is contained in simplification z';, and 0 otherwise. Then, the Hamming
distance between two simplifications z’%; and z'; is calculated as:

| XE|

S abs(@lsli] - oli).

i=1

H(EIE,.’IJ%) =

The Hamming distance computes the number of literals contained in simplica-
tion z% and not in 2% plus the number of literals contained in z% and not in z’.
Then, H(z'y, ') can be expressed as

H(z, ) = Alelg, 2%) + M(zlp, ),
where
| XE| | XE|
A@g, ) = Y (@pli] —opl]) and M(ag, ) = > (@hli] - z'g[i]).
i=1 i=1
zgli] =1 zgli] =1

If ' is the simplication obtained by the exact method (exhaustive) and z’; is the
one obtained by an approximate method, the two previous quantities have a different
meaning: M (z'y, ;) is the number of correct literals that the approximate method
misses, and A(z'y, z) is the number of literals that the approximate method adds
to the correct ones.

Tables 3 and 4 show the mean numbers of missing (M) and added (A) literals
of the different algorithms with respect to the exhaustive method. In these tables
caut. is used as abbreviation of cautious and reg. as abbreviation of regressive.

Table 3. Mean number of missing (M) and added (A) literals for each simplified explanation using
I-simplification criterion.

Alarm network Artificial network Car-starts network
Exp.: 1 2 3 4 5 6
[Xz] 12 12 12 12 10 10
M ] M[A|MTJA][M] M[A[M]
Caut. 021 6.0 | 0.1 | 5.7 || 038|238 |0.55|4.55]| 0.0|42]03]3.05
Caut.® | 0.2 | 5.65 | 0.05 | 4.25 || 0.35 [ 1.65 | 0.4 | 1.2 |[ 0.0 | 3.6 | 0.1 | 1.05
Reg. 0.2 1085 | 0.2 1.1 0.4 24 |1 04 | 09 ||00(|00}|00]| 0.0
Reg.” 0208 |025| 08 |[[045|095| 04 | 09 {[00]|0.0]00] 0.0

From the results displayed in Tables 1, 2, 3, and 4 we can obtain two conclu-
sions: First, the two proposed simplification criteria reduce considerably the size of
the original explanations, as can be observed from the number of literals in the ex-
planations obtained by the exhaustive method. Second, the approximate methods
perform quite well, particularly the Regressive and Regressive* algorithms: they
also obtain simplifications with a small number of literals, and more importantly,
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Table 4. Mean number of missing (M) and added (A) literals for each simplified explanation using
R-simplification criterion.

Alarm network Artificial network Car-starts network
Exp.: 1 2 3 4 5 6
| XE| 12 12 12 12 10 10

M| A |M[A | M|A|MJA|MJ[A|[M]A
Caut. [0.05 | 47 [ 0.0 325 [[0.35 | 2.0 [0.0 | 1.L [ 0.0 | 2.1 | 0.2 [ 2.45
Caut.% | 0.05 | 455 | 0.0 | 2.55 || 0.2 | 1.25 | 0.0 | 0.8 || 0.0 | 1.8 | 0.1 | 0.85
Reg. | 0.0 | 00 [ 0.0 | 0.0 || 0.5 0.3 | 0.0 | 0.0 || 0.0 | 0.0 | 0.0 | 0.0
Reg.® | 0.0 | 00 [0.0] 00 || 0.1 | 0.2 [0.0] 0.0 || 0.0 | 0.0 [ 0.0 | 0.0

these simplifications are quite similar to the exact ones, as can be seen from the
number of missing and added literals (on the average, they add less than one literal
and miss almost none literal with respect to the exact simplification).

In order to show an example of our simplification criteria, we can consider the
following case taken from one of the experiments carried out over the network car-
starts. The root nodes were selected as the explanation set, and Lights=work,
Starts=No as the evidence. Then, the obtained MPE is:

Alternator = Ok, FanBelt = Ok, Leak = NoLeak, BatteryAge = New,
GasInTank = NoGas, Starter = Faulted, Leak2 = False, Fuel Pump = Ok,
Distributor = Ok and SparkPlugs = Ok.

And the simplified explanation is (in this case both independence criteria {I,R}
yield the same simplification):
BatteryAge = New and Starter = Faulted.

7. Concluding Remarks

In this paper two simplification criteria and algorithms to carry out the simplifi-
cation have been proposed. This kind of criteria has the advantage of having a
consistent semantic based on independence concepts.

The simplification algorithms are based on a heuristic search combined with an
evaluation procedure which minimizes the number of necessary computations to
evaluate a configuration and its sub-configurations. Furthermore, we have seen how
a study of the graph is interesting because some quick simplifications can be carried
out before performing any probabilistic propagation.

The results obtained by the proposed algorithms are better than the results
obtained when cautious propagation is directly applied to this task. Furthermore,
we have seen how the results of cautious propagation are improved in a significant
way when it is applied after obtaining the simplifications induced by the graph.
Following the suggestion of one of the reviewers, for the future we plan to exploit
the combination of both methods (regressive and cautious) by considering regressive
search as an extension of cautious propagation, where subsequent messages are
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collected in order to give access to a larger set of probabilities of subsets of the
explanations.

With respect to the accuracy of the developed algorithms, we can see that the
mean of the Hamming distance between the exact simplification and the obtained
one, is always small. That is, the algorithms not only remove a great number of
literals from the original explanation, but also the correct literals. As a consequence,
the obtained simplification very often coincides with the exact one.

In relation with the simplifications induced by the graph, we think that its
"a posteriori’ (that is, after searching for the K MPEs, but before starting the
simplification process) use is always recommended, because it is a non expensive-
time consuming process and after its application, the number of configurations to
be evaluated is significantly smaller, so we obtain a high pay-off. Of course, if
conditions of Proposition 1 hold, then we can use the simplification induced by the
graph ’a priori’, that is, reducing the explanation set before searching for the K
MPEs.

In the experiments carried out the number of literals in the simplified explana-
tions is between the 16.6% and the 33.3% of the literals in the initial explanation
when the I-simplification criterion is used, and between the 12.5% and the 27.5%
when the R-simplification criterion is used. :

It is important a careful selection of the explanation set, as the final results
can heavily depend of the variables in this set. This selection will be the object of
future research. Now, what we can say with an intuitive basis is that we should
include the variables relevant for our future decisions and not intermediate facts or
non-observed variables. For example, in a medical application we should choose the
diseases and not the intermediate consequences or the results of tests that have not
been carried out.

From the experiments, we have learned that some different explanations can
be simplified to the same configuration, so it is possible that we cannot give K
simplified explanations if we start with K explanations. Due to this observation
and given the complexity of abductive reasoning in BBNs, we plan to investigate in
the development of approximate methods that directly yield simplified explanations,
i.e., the process will only involve one step and not two as in the present work.
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