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Abstract

We consider the scenario in which an automatic classifier (previously built) is available. It is used to classify new instances but, in

some cases, the classifier may request the intervention of a human (the oracle), who gives it the correct class. In this scenario, first it is

necessary to study how the performance of the system should be evaluated, as it cannot be based solely on the predictive accuracy

obtained by the classifier but it should also take into account the cost of the human intervention; second, studying the concrete

circumstances under which the classifier decides to query the oracle is also important. In this paper we study these two questions and

include also an experimental evaluation of the different proposed alternatives.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the work in automatic classification is focused
in the construction of the classifier from data (using either
a supervised, unsupervised, semi-supervised, active or even
online strategy) and no attention is paid to how to use it
later, in a realistic situation.

We consider the scenario where the classifier has already
been built and now we are going to use it. In such a case,
we can let the classifier to do its job autonomously and
accept its predictions (which sometimes may be wrong) or
we could also interact with the classifier in order to
improve the performance (Stumpf et al., 2009). The simple
kind of interaction considered is that the classifier, when
faced with a new instance to classify, can decide either to
classify it (correctly or wrongly) or to query a human
supervisor (the oracle) the true class label for this instance.
We may call this task interactive use of a classifier or, for
short, interactive classification. This should not be con-
fused with the concept of interactive machine learning
e front matter & 2012 Elsevier Ltd. All rights reserved.
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(Ware et al., 2001), where users actually generate classifiers
themselves with the help of two-dimensional visual
interfaces.
Notice that this situation shares some similarities with the

active learning (Cohn et al., 1994; Lewis and Gale, 1994) and
the online learning (Littlestone, 1988; Littlestone and
Warmuth, 1994; Helmbold and Panizza, 1997) approaches
to build classifiers but the goal is different. In active learning
the classifier asks the oracle the true class labels of some
selected instances, in order to iteratively build a good
classifier using less training data. However, in our case we
do not want to build the classifier (it has already been built),
we cannot control what instances to use (we only receive new
instances that need to be classified) and, in principle, we do
not try to improve it.1 On the other hand, the key defining
characteristic of online learning is that soon after the
prediction of the classifier is made, the true label of the
new instance will be known. For example, in any problem
that consists of predicting the future, an online learning
algorithm just needs to wait for the label to become available.
1Although we could also try to use the new information provided by the

oracle to refine the classifier, here we do not consider this problem, as it

depends on the specific classifier being used and in this paper we are

focused on general evaluation methods.
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This information can then be used to refine the prediction
capabilities of the classifier. The scenario for our interactive
classification task is different, a scenario where the true label
of the new instance will not be known for sure (and therefore
we take the risk of permanently accepting a wrong classifica-
tion) unless we explicitly query the oracle. An example of this
situation can be the classification of text documents
(Sebastiani, 2002) in a set of categories (e.g. a taxonomy of
web directories, Dumais and Chen, 2000, a controlled
vocabulary, Golub, 2006 or a thesaurus, de Campos and
Romero, 2009).

In this scenario, first it is necessary to study how the
performance of the system should be evaluated, as it
cannot be based solely on the predictive accuracy obtained
by the classifier but should also take into account the cost
of the human intervention. For example a system that
always queries the oracle will obtain an accuracy of 100%,
but it is a useless system (the rate of human intervention is
also 100%). On the contrary, a system that never queries
(and is not perfect) could be outperformed by an inter-
active classifier that occasionally asks labels to an oracle.
We will define evaluation methods for the interactive
classification task.

Another important issue is the way in which the system
decides whether or not to request a label to the oracle. A
reasonable approach is to query when the classifier has
little confidence in the correctness of its own prediction.
For example, in a probabilistic model, the decision could
be based on the shape of the posterior distribution of the
class variable. Query strategies from the stream-based
active learning literature (Settles, 2009) could be consid-
ered or adapted.

The remainder of this paper is organized in the following
way: we first study in Section 2 evaluation criteria for the
interactive classification problem. In Section 3 we consider
strategies for deciding when the interactive classifier should
query the oracle. Section 4 contains an experimental
evaluation of the different proposed alternatives. Finally,
Section 5 includes the conclusions and some proposals for
future research.

2. Evaluation criteria for the interactive classification

problem

Consider the problem of classifying each one of a set of
N instances into one of the possible labels or categories in
C ¼ fc1; . . . ; cmg, and assume that we have already built a
classifier (using a set of training instances and a learning
algorithm). Assume also that the classifier, in addition to
predict the category of an example, can alternatively ask its
true label (using some strategy as those considered in
Section 3). Let nc and nw be the number of times that the
classifier gets the correct and the wrong category, respec-
tively, and let ni be the number of interactions, i.e. the
number of times that the classifier decided to ask the
oracle instead of trusting its own prediction. Obviously
ncþnwþni ¼N.
The question that we consider here is how can we
evaluate the quality of this interactive classifier. For
example, if N¼100 and using a decision strategy and a
given classifier we obtain n1

c ¼ 60, n1
w ¼ 10 and n1

i ¼ 30,
whereas using another strategy and/or another classifier we
get n2

c ¼ 69, n2
w ¼ 16 and n2

i ¼ 15, which of these two
situations is preferable?
We want to define an evaluation measure that takes into

account not only the number of correctly and wrongly
classified examples (as the predictive accuracy, nc=ðncþnwÞ,
in a non-interactive scenario) but also the number ni of
interactions with the oracle. To this end, we are going first
to specify several properties that such an evaluation
measure reasonably should possess.
Let f ðnc; nw; niÞ be an evaluation measure for interactive

classification (EMIC), whose value we want to maximize.
The following properties should be satisfied by any reason-
able EMIC:
1.
 To increase the number of examples correctly classified
by the classifier while decreasing the number of examples
wrongly classified (and keeping unmodified the number of
interactions) is beneficial: 8k such that 1rkrnw,

f ðnc; nw; niÞo f ðncþk; nw�k; niÞ:
2.
 To increase the number of examples correctly classified,
at the expense of decreasing the number of interactions
is also beneficial: 8k such that 1rkrni;

f ðnc; nw; niÞo f ðncþk; nw; ni�kÞ
3.
 To increase the number of interactions is positive if we
reduce the number of examples wrongly classified:
8k such that 1rkrnw,

f ðnc; nw; niÞo f ðnc; nw�k; niþkÞ
4.
 To increase the number of correctly classified examples
increases the performance: 8k40,

f ðnc; nw; niÞr f ðncþk; nw; niÞ
5.
 To increase the number of wrongly classified examples
decreases the performance: 8k40,

f ðnc; nw; niÞ4 f ðnc; nwþk; niÞ

We shall say that an EMIC satisfying these five properties is
a coherent EMIC. Observe that, as a consequence of the first

two properties we have that the best possible result is to always
classify correctly without requiring any interactions, i.e.

max
nc ;nw;ni9ncþnwþni ¼ N

f ðnc; nw; niÞ ¼ f ðN; 0; 0Þ

It should also be noticed that from the third property it
follows immediately that f ðnc; nwþni; 0Þo f ðnc; nw; niÞo
f ðnc; 0; niþnwÞ. This means that the optimal strategy to
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query labels, which consists in querying only when the
classifier is going to make a mistake, is always preferable to
the non-interactive classifier. The value f ðnc; 0; niþnwÞ repre-
sents the upper limit of performance for a classifier whose
(non-interactive) accuracy is nc=N.

We can think in different ways of defining an EMIC.
For example, it may be natural to assume that the quality
of the interactive classifier depends on both the proportion
of correctly assigned examples, ðncþniÞ=N (remember that
the oracle always returns the true label) and its degree of
autonomy (capacity of doing the job without querying the
oracle), ðN�niÞ=N. Then we can combine these two factors
by using some kind of average. Thus we would obtain:
�

2

mic
Arithmetic mean: ðncþNÞ=2Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

�
 Geometric mean: ð1=NÞ ðncþniÞðN�niÞ
�
 Harmonic mean: 2ðncþniÞðN�niÞ=NðncþNÞ
However, none of these three measures is a coherent
EMIC, since they all fail to satisfy the property 3 above.
Consider for example the case where nc¼50, nw¼40, ni¼

10 and k¼40: for all the three cases we get f ð50; 40; 10Þ
Z f ð50; 0; 50Þ.
Another option is to base our measure in the concepts of

precision and recall2 (which are so frequently used in the
information retrieval and text classification fields). Let us
define the precision p as the ratio between the number of
examples correctly classified and the number of examples
effectively classified by the classifier alone (without inter-
actions), i.e. p¼ nc=ðncþnwÞ ¼ nc=ðN�niÞ. The recall r is
defined as the ratio between the number of examples
correctly classified and the total number of examples,
r¼ nc=ðncþnwþniÞ ¼ nc=N. The standard way of combin-
ing these two measures is through the use of the so
called Fb measure (van Rijsbergen, 1979), which is the
weighted harmonic mean of precision and recall:
Fb ¼ ð1þb

2
Þpr=ðb2pþrÞ. The range of Fb is [0,1] and the

parameter b varies in ð0; þ1Þ; when b¼ 1 we are giving
the same weight to precision and recall; using b41 we are
giving more weight to recall, whereas with bo1 we give
more importance to precision. In our case, the Fb measure
is the following:

Fb ¼
ð1þb2Þpr

b2pþr
¼
ð1þb2Þnc

ð1þb2ÞN�ni

ð1Þ

Observe that in the non-interactive case, i.e. when ni¼0,
the value of the measure is Fb ¼ nc=N, so we reproduce the
accuracy.

Proposition 1. The Fb measure defined in Eq. (1) is a

coherent EMIC.

The proof is very simple and we omit the details. All the
five properties defining a coherent EMIC can be easily
More precisely, we shall consider the concepts of micro precision and

ro recall (Sebastiani, 2002).
proven by induction on the number k, starting with k¼1
and taking into account that ncþnirN.
A second proposal for defining a coherent EMIC is by

thinking in terms of cost. The three possible results that,
given an instance to classify, the interactive classifier can
return are classify correctly, classify wrongly and query.
Let dw and di be the costs incurred by classifying wrongly
and asking, respectively; the cost of classifying correctly
will obviously be dc¼0. Then, we can evaluate the inter-
active classifier by estimating the average cost (AC) in the
following way:

AC ¼ dc

nc

N
þdw

nw

N
þdi

ni

N
¼ dw

N�nc�ni

N
þdi

ni

N

¼ dw

N�nc

N
þðdi�dwÞ

ni

N

It is quite natural to require that the cost of a wrong
classification should be greater than the cost of querying,
i.e. dw4di. Otherwise an interactive classifier would have
not any sense because the cheapest classifier would always
be the non-interactive one.
As only the proportion between di and dw is important in

terms of comparing classifiers and/or query strategies,
and in order to manage only one parameter, we define
r¼ di=dw and then redefine the average cost by also
dividing by dw, thus obtaining

ACr ¼
1

dw

dw
N�nc

N
þðdi�dwÞ

ni

N

� �
¼

N�nc�ð1�rÞni

N

It should be noticed that an EMIC is defined in such a way
that the greater the value the better the performance, and
with the average cost the opposite situation occurs. So, we
are going to speak in terms of profit instead of cost to
define the EMIC, simply by subtracting the average cost
from the maximum cost (which is equal to 1). The expected
profit EPr is then defined as

EPr ¼ 1�
N�nc�ð1�rÞni

N
¼

ncþð1�rÞni

N
ð2Þ

The range of the EPr measure is also the interval [0,1] and
its value in the non-interactive case (ni¼0) is again equal to
the accuracy, EPr ¼ nc=N.
Proposition 2. The EPr measure defined in Eq. (2) is a

coherent EMIC if 0oro1.

The proof of this result can be obtained by simple
algebraic manipulations, so that we omit it. The parameter
r in Eq. (2) must be understood as the ratio between the
cost of querying and the cost of a wrong classification. It
can also be interpreted as the difference between the utility
of classifying correctly (which is equal to 1) and the utility
of asking the oracle (assuming that the utility of a wrong
classification is zero).
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3. Decision strategies to ask the oracle

In this section we study several strategies that the
interactive classifier could use in order to decide when it
should not classify a new instance and instead it should ask
the oracle. In the absence of any kind of external
information, the only reasonable approach is to base the
decision on the degree of confidence of the classifier in its
own prediction. We shall assume that, given an instance x,
the classifier obtains a set of numerical values representing
the degree of confidence of the classifier in that each one of
the categories ci is the true category for this instance. These
values can be interpreted as the posterior probability
distribution of the class variable given the instance,3

pðC9xÞ. The classifier would then predict the most probable
class, cnx ¼ arg maxci

pðci9xÞ.
In the active learning literature a very similar problem

has already been considered, namely that of selecting the
most informative instances that must be queried (those
that would probably improve the classification model the
most). In the pool-based active learning setting the queries
are selected from a large pool of unlabeled instances,
whereas in the stream-based active learning setting only
one instance is available each time and then the learner has
to decide whether or not to ask its label. In any case this
involves evaluating in some way the informativeness of
unlabeled instances. Although in our case the goal is
different (confidence versus informativeness), some of the
query strategies for active learning can also be useful here,
concretely the so-called uncertainty sampling (Lewis and
Gale, 1994), which selects unlabeled examples for query-
ing, based on the level of uncertainty about their correct
class: the active learner queries the instances about which it
has the least certainty.

There are several ways of measuring the degree of
confidence of the classifier that we shall describe below.
Let fðpÞ be the confidence degree in the prediction
obtained from the posterior probability pðC9xÞ. By fixing
a minimum threshold, a, on the degree of confidence, we
can establish a decision rule according to which the system
will decide whether or not to query the oracle:

if fðpÞra then ask the oracle

else classify the instance ð3Þ

The case where the classifier has maximum confidence in
its prediction is, clearly, when pðcnx9xÞ ¼ 1 and pðci9xÞ ¼ 0
for all ciacnx. The different measures of confidence fðpÞ
considered are the following:
�

3T

usin
Maximum probability:

fmðpÞ ¼max
ci

pðci9xÞ ¼ pðcnx9xÞ ð4Þ

fmðpÞ varies in the range ½1=m; 1�. fmðpÞ ¼ 1=m repre-
sents absolute lack of confidence (because in this case
he values will be conveniently normalized if necessary, in case of

g a non probabilistic model.

4W

grea
pðci9xÞ ¼ 1=m for all ci), whereas fmðpÞ ¼ 1 means total
confidence.

�
 Difference between the two most probable class labels:

fdðpÞ ¼ pðcnx9xÞ�pðcnnx 9xÞ ð5Þ

where cnnx ¼ arg maxciacnx
pðci9xÞ. fdðpÞ varies in the

range [0,1], with fd ðpÞ ¼ 1 meaning again total con-
fidence and fdðpÞ ¼ 0 representing complete distrust
ðpðcnx9xÞ ¼ pðcnnx 9xÞÞ, because there are at least two
competing class labels having the same maximum
probability.

�
 Negative entropy4

feðpÞ ¼
Xm

i ¼ 1

pðci9xÞ logðpðci9xÞÞ ð6Þ

feðpÞ varies in the range ½�logðmÞ; 0�, where feðpÞ ¼ 0
means in this case total confidence and
feðpÞ ¼ �logðmÞ means total distrust (pðci9xÞ ¼ 1=m

for all ci).

�
 Sample standard deviation (of the posterior probabil-

ities):

fsðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m�1

Xm

i ¼ 1

pðci9xÞ�
1

m

� �2

vuut ð7Þ

fsðpÞ varies in the range ½0; 1=
ffiffiffiffi
m
p
�, and again fsðpÞ ¼ 0

represents lack of confidence (pðci9xÞ ¼ 1=m for all ci)
and fsðpÞ ¼ 1=

ffiffiffiffi
m
p

total confidence.

�
 Euclidean distance:

fed ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðcnx9xÞ

pðcnx9xÞþpðcnnx 9xÞ
�0:5

 !2

þ
pðcnnx 9xÞ

pðcnx9xÞþpðcnnx 9xÞ
�0:5

 !2
vuut

This is the Euclidean distance between the vector
composed of the two normalized maximum probabil-
ities and the vector (0.5,0.5). Simple algebraic manip-
ulation shows that fed ðpÞ can also be expressed as
follows:

fed ðpÞ ¼
1ffiffiffi
2
p

pðcnx9xÞ�pðcnnx 9xÞ
pðcnx9xÞþpðcnnx 9xÞ

ð8Þ

fed ðpÞ varies in the range ½0; 1=
ffiffiffi
2
p
� and, as in the

previous cases, fed ðpÞ ¼ 0 represents maximum distrust
ðpðcnx9xÞ ¼ pðcnnx 9xÞÞ and fed ðpÞ ¼ 1=

ffiffiffi
2
p

maximum
confidence.
The criteria of maximum probability, difference between
the two most probable class labels and entropy have
already been used in the active learning literature
(Settles, 2009; Settles and Craven, 2008), whereas sample
standard deviation and Euclidean distance are new pro-
posals. fs and fed represent other ways of measuring the
confidence in the prediction of the classifier, by evaluating
the degree of ‘flatness’ or ‘sharpness’ of the posterior
probability distribution. fs measures the sample standard
e use the negative of the entropy because the lower the entropy the

ter the degree of confidence.



Table 1

Description of the data sets used in our experiments.

# Data set Instances Attributes Classes

1 adult 45222 14 2

2 australian 690 14 2

3 breast 682 10 2

4 car 1728 6 4

5 chess 3196 36 2

6 cleve 296 13 2

7 corral 128 6 2

8 crx 653 15 2

9 diabetes 768 8 2

10 DNA-nominal 3186 60 3

11 flare 1066 10 2

12 german 1000 20 2

13 glass2 163 9 2

14 glass 214 9 7

15 heart 270 13 2

16 hepatitis 80 19 2

17 iris 150 4 3

18 letter 20000 16 26

19 lymphography 148 18 4

20 mofn-3-7-10 1324 10 2

21 mushroom 8124 22 2

22 nursery 12960 8 5

23 pima 768 8 2

24 satimage 6435 36 6

25 segment 2310 19 7

26 shuttle-small 5800 9 7

27 soybean-large 562 35 19

28 splice 3190 60 3

29 vehicle 846 18 4

30 vote 435 16 2

31 waveform-21 5000 21 3
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deviation from the probability values to its average (which
is always equal to 1/m). fed is similar to fd , it evaluates the
difference between the probabilities of the two most
probable class labels but using another distance measure
(Euclidean instead of absolute value) and normalizing the
probabilities. fed is also similar to fs, but computing the
standard deviation only of the two most probable (normal-
ized) probabilities.

It should be noticed that in the case of a binary
classification problem (m=2), all these confidence mea-
sures become equivalent, in the sense that given a thresh-
old ar for any confidence measure fr, we can find another
threshold as for any other confidence measure fs such that
the decision strategies frðpÞrar and fsðpÞras are iden-
tical. For the non binary case, in general the different
confidence measures do not generate the same decision
strategies.

4. Experimental evaluation

We have carried out an extensive experimentation
to study our interactive classification framework,
using several classifiers and several databases. The main
objectives are (1) testing whether the interactive version of
the classifiers can be useful and (2) selecting the most
promising confidence measures used by the decision
strategy.

4.1. Databases and algorithms

We have selected six classifiers from the Weka platform
(Hall et al., 2009): HillClimber (HC), IBk, J48,
Logistic (LOG), MultilayerPerceptron (MP) and
NaiveBayes (NB). HillClimber is a Bayesian network
classifier (Heckerman et al., 1995); IBk is a K-Nearest
Neighbors algorithm (Aha and Kibler, 1991); J48 is the
Weka version of the C4.5 decision tree algorithm (Quinlan,
1993); Logistic is a logistic regression classifier (Hilbe,
2009); MultilayerPerceptron is a feedforward artifi-
cial neural network model (Haykin, 1998), and Naive-
Bayes is self-explained. Observe that three algorithms
(HillClimber, Logistic and NaiveBayes) are truly
probabilistic classifiers, whereas the other three are not, but
Weka is able to transform their predictions into probabil-
ities. In all the cases we used the default options of these
algorithms, except for IBk, where the number of neighbors
was set to 3, and HillClimber, where the local search
used the operators of arc addition, arc deletion and arc
reversal to built the network structure, starting from an
empty network and using the BDeu score.

We have also selected 31 databases from the UCI
repository of machine learning databases (Blake and
Merz, 1998). Table 1 gives a brief description of the
characteristics of each database, including the number of
instances, attributes and states for the class variable. These
data sets have been preprocessed in the following way: the
continuous variables were discretized using the procedure
proposed by Fayyad and Irani (1993), and the instances
with undefined/missing values were eliminated. For this
preprocessing stage, we have used the MLCþþ System
(Kohavi et al., 1994).
The performance measures considered are the two

coherent EMICs defined in Section 2, namely the F

measure Fb and the expected profit EPr, for different
values of the parameters b and r. To estimate these
measures we used 5-fold cross-validation, so that each
time four fifths of the instances are used for training the
base classifier and a fifth is used for testing.
In Fig. 1 we illustrate the experimental process globally:

each of the six classifiers takes as the input each one of the
instances (using cross validation) of each one of the 31
databases, and returns the posterior probability and the
predicted class for each instance. This probability is used
to compute a measure of the confidence in the prediction,
according to each of the five different measures fr.
Depending on the confidence value and the threshold a,
the system decides either to query the oracle the true class
label or to keep the original prediction. Finally, the labeled
samples (from the test fold) are evaluated according to the
proposed EMICs.
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Fig. 1. Diagram of the experimental process.

Table 2

Macro-average values of the performance measures F0:5 and EP0:5 across

the 31 databases, for each algorithm and each confidence measure, when

computing the threshold a optimistically. All the differences with respect

to the non-interactive classifier are statistically significant at level 0.05.

Algorithm fe fm fd fs fed No interaction

F0:5

HC 0.8978 0.8980 0.8977 0.8980 0.8974 0.8734

IBk 0.8891 0.8901 0.8898 0.8897 0.8894 0.8611

J48 0.8816 0.8820 0.8821 0.8821 0.8822 0.8654

LOG 0.8894 0.8893 0.8892 0.8894 0.8892 0.8685

MP 0.9029 0.9026 0.9026 0.9026 0.9026 0.8800

NB 0.8881 0.8884 0.8880 0.8881 0.8875 0.8551

EP0:5

HC 0.8818 0.8818 0.8813 0.8819 0.8810 0.8734

IBk 0.8708 0.8718 0.8719 0.8712 0.8716 0.8611

J48 0.8710 0.8715 0.8715 0.8715 0.8712 0.8654

LOG 0.8753 0.8755 0.8753 0.8753 0.8752 0.8685

MP 0.8886 0.8884 0.8884 0.8884 0.8884 0.8800

NB 0.8675 0.8676 0.8672 0.8674 0.8669 0.8551
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4.2. Results

We have carried out different experiments, within the
experimental setting previously described, in order to study
different aspects of the interactive classification process.
They are described in the following subsections.

4.2.1. Selection of the threshold a
A key parameter for the interactive classifier’s decision

strategy is the threshold a used in combination with the
confidence measure: the greater a the more interactive the
classifier. In the extreme case where a is set to its maximum
value (which depends on the specific measure of confidence
considered) then the classifier would always query; on the
contrary, if a is set to its minimum value, then the classifier
would be completely autonomous and it would never query.

To determine an upper limit of the performance of the
interactive classifiers, first we are going to optimistically
evaluate them using the best possible threshold (for each
algorithm, each database and each confidence measure).
To determine it, we rank the test instances (of each fold) in
decreasing order of their confidence measure and then look
for the threshold which optimizes the performance. We do
it by tentatively making the threshold equal to the
confidence measure of each test instance, computing the
corresponding performance measure and selecting the best.
A summary of the results of these experiments for the
parameters b¼ 0:5 and r¼ 0:5, showing the averages
across the 31 databases, is displayed in Table 2. As we
can observe, we always get better results using the inter-
active classifiers, showing the potentiality of our approach,
provided that we are able to find a good threshold.
Although the differences with respect to the non-inter-
active classifier are not very large, they are in all the cases
statistically significant (at level 0.05): for each base classi-
fier, we first used the non-parametric Friedman test (more
precisely the Iman–Davenport extension, Demsar, 2006) to
reject the hypothesis that the results of the interactive and
non-interactive classifiers are equal. Then, the Hommel
post-hoc test (with the non-interactive classifier acting as
the control method, Demsar, 2006) was used, again for
each base classifier, and detected statistically significant
differences with respect to the non-interactive classifier for
all the interactive classifiers based on the five different
confidence measures proposed.
In order to determine a threshold in a realistic way, we

proceed as follows: as before, we again look for the
threshold which optimizes the performance, but now
ranking (in decreasing order of their confidence measure)
the training instances of each fold instead of the test
instances. Then we apply this threshold to the test set
and compute the performance. In this way we are not
using the test instances to select the threshold. A summary
of the results of these experiments appears in Table 3.
In this case the behavior of the two EMICs is somewhat

different: using F0:5 we still obtain always better results
using the interactive classifiers, with differences statistically
significant in all the cases; however, when using EP0:5, we
even get worse results in 9 from the 30 cases, and the
differences are not statistically significant in any case,
according to the Friedman test. It should be noticed that



Table 3

Macro-average values of the performance measures F0:5 and EP0:5 across

the 31 databases, for each algorithm and each confidence measure, when

computing the threshold a realistically. For F0:5 all the differences with

respect to the non-interactive classifier are statistically significant at level

0.05, whereas for EP0:5 the differences are not significant.

Algorithm fe fm fd fs fed No interaction

F0:5

HC 0.8896 0.8892 0.8890 0.8886 0.8885 0.8734

IBk 0.8790 0.8804 0.8802 0.8801 0.8797 0.8611

J48 0.8737 0.8742 0.8736 0.8743 0.8735 0.8654

LOG 0.8796 0.8792 0.8793 0.8794 0.8793 0.8685

MP 0.8900 0.8904 0.8906 0.8905 0.8906 0.8800

NB 0.8761 0.8757 0.8758 0.8758 0.8749 0.8551

EP0:5

HC 0.8757 0.8756 0.8749 0.8752 0.8746 0.8734

IBk 0.8626 0.8640 0.8637 0.8630 0.8642 0.8611

J48 0.8667 0.8669 0.8667 0.8668 0.8666 0.8654

LOG 0.8683 0.8683 0.8685 0.8683 0.8684 0.8685

MP 0.8768 0.8769 0.8770 0.8770 0.8769 0.8800

NB 0.8596 0.8595 0.8593 0.8595 0.8591 0.8551

Table 4

Number of times that the interactive classifier obtains significantly better/

better/worse/significantly worse results (with respect to Fb) than the non-

interactive classifier, from the 30 possible combinations of learning

algorithms and confidence measures being considered, for different values

of the parameter b.

b 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Signific. better 30 30 30 30 30 30 15 0 0 0

Better 0 0 0 0 0 0 15 25 15 6

Worse 0 0 0 0 0 0 0 5 11 21

Signific. worse 0 0 0 0 0 0 0 0 4 3

Table 5

Number of times that the interactive classifier obtains significantly better/

better/worse/significantly worse results (with respect to EPr) than the

non-interactive classifier, from the 30 possible combinations of learning

algorithms and confidence measures being considered, for different values

of the parameter r.

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Signific. better 30 30 30 25 0 0 0 0 0

Better 0 0 0 5 21 8 3 0 0

Worse 0 0 0 0 9 18 17 18 20

Signific. worse 0 0 0 0 0 4 10 12 10
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the parameters b¼ 0:5 and r¼ 0:5 have a very different
meaning, so that this different behavior is not
necessarily odd.
4.2.2. Study of the EMIC parameters b and r
It is clear that the results obtained by the interactive

classifiers will depend on the parameters b and r used by
the two EMICs, which reflect (implicitly in the case of Fb

and explicitly for EPr) the relation between the costs of
querying and misclassifying for a given problem and a
given user. We have repeated the previous experiments
(estimating the threshold a realistically) but using different
values for r and b, more precisely r varying in
Z¼ f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g and b varying in
Z [ f1:0g.

Given the great volume of experiments, even showing a
summary of the results (aggregated across the 31 data-
bases), as we have done previously, is impractical. There-
fore, in Tables 4 and 5 we only show results aggregated
across the 31 databases, the 6 learning algorithms and the
5 confidence measures, representing the number of times
that the interactive classifier obtains significantly better/
better/worse/significantly worse results than the non-inter-
active classifier (with respect to Fb and EPr, respectively).
As before, we use the Friedman test to test the hypothesis
that there are not differences between the interactive and
non-interactive classifiers and, in case of rejection, the
Hommel post-hoc test to detect significant differences with
the non-interactive classifier.

It is clear from these results that the interactive classifiers
should be used in combination with any base classifier only
if the cost of a wrong classification is considered at least
twice the cost of querying (rr0:5, when using EPr), or
when we give more importance to precision than to recall
(br0:7, if we are using Fb). As precision measures the
performance of the classifier when it does not resort to the
oracle, to give more importance to precision than to recall
seem us quite natural, because obtaining low precision
values means that a lot of examples would be misclassified.
An example where these requirements are met could occur
in a medical domain, where misclassifying an example may
represent either not to give treatment to an ill patient or
giving treatment (which in some cases may be quite
aggressive) to a healthy patient. Another example could
be an email classifier, where misfiling important messages
could cause significant loses to the users (Stumpf et al.,
2009).

4.2.3. Comparing the confidence measures

Once we have shown that the use of interactive classifiers
can be beneficial, we turn our attention to the selection of
the best confidence measures. As all the confidence
measures considered are equivalent for binary classifica-
tion problems, in order to experimentally compare them
we are going to discard all the databases having binary
classes, thus keeping only 14 from the 31 original data-
bases for the new experiments. As we aim to study all the
pairwise comparisons between the five confidence mea-
sures, without using a control method, we must use a post-
hoc test appropriate for this task; we have used the Shaffer
test (Garcı́a and Herrera, 2008).
We have not found almost any statistically significant

differences among the confidence measures. To be exact, we
only found one significant difference among all the 60 cases



Table 8

Percentages of interaction of the classifier with the oracle, when using fd

and Fb for different values of b.

b 0.1 0.2 0.3 0.4 0.5

HC 43.67 31.94 23.62 18.54 12.93

IBk 40.51 34.61 27.09 21.56 15.62

J48 43.00 26.16 15.80 10.80 6.37

LOG 32.95 24.50 18.86 13.93 10.73

MP 22.14 16.80 14.26 12.45 10.83

NB 47.47 36.33 27.56 22.01 16.88
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considered (b 2 f0:1; 0:2; 0:3; 0:4; 0:5g, r 2 f0:1; 0:2; 0:3; 0:4;
0:5g and the six base classifiers): fd was significantly better
than fe when using F0:5 and the algorithm IBk. This may be
due in part to the fewer databases being considered. In
Tables 6 and 7 we display the number of times that each
confidence measure was better than the others, when using Fb

and EPr, respectively.
Although we cannot speak of significant differences, we

can clearly observe that the confidence measures based on
difference of probabilities ðfdÞ, standard deviation ðfsÞ

and maximum probability ðfmÞ tend to outperform those
based on entropy ðfeÞ and Euclidean distance ðfed Þ.
Table 9

Percentages of interaction of the classifier with the oracle, when using fd

and EPr for different values of r.

r 0.1 0.2 0.3 0.4 0.5

HC 34.49 22.17 15.53 8.78 3.63

IBk 34.27 24.02 15.30 8.81 4.52

J48 31.75 14.42 7.40 3.05 0.86

LOG 25.42 17.14 10.41 6.80 3.38

MP 18.33 13.26 11.01 8.57 6.37

NB 41.88 26.01 18.93 11.26 5.97
4.2.4. Evaluating the oracle’s effort

In order to evaluate how many queries are required to
achieve the performance gain of the interactive classifiers,
i.e. to evaluate the oracle’s effort, in the previous experi-
ments we have also computed the percentages of interac-
tion of the classifier with the oracle, 100nni=N. In Tables 8
and 9 these percentages, averaged across the 31 databases,
are displayed for each algorithm and five different values
of the parameters b and r (in the range where interactive
classification is beneficial). We have selected only one
confidence measure, namely the one based on the differ-
ence of probabilities fd , the results for the other measures
are very similar. Observe that the columns with label 0.5 in
Tables 8 and 9 display the percentage of interactions
Table 6

Number of times that the confidence measure in row i is better than the

confidence measure in column j when using Fb, with b¼ 0:1; 0:2; 0:3;
0:4; 0:5 and the six base classifiers.

Fb fe fm fd fs fed Total best

fe – 12 14 6 13 45

fm 17 – 10 10 18 55

fd 16 19 – 15 19 69

fs 24 18 14 – 18 74

fed 16 12 10 11 – 49

Total worst 73 61 48 42 68

Table 7

Number of times that the confidence measure in row i is better than the

confidence measure in column j when using EPr, with r¼ 0:1; 0:2; 0:3;
0:4; 0:5 and the six base classifiers.

EPr fe fm fd fs fed Total best

fe – 13 12 10 19 54

fm 17 – 14 15 18 64

fd 16 15 – 18 22 71

fs 19 12 12 – 20 63

fed 11 11 7 9 – 38

Total worst 63 51 45 52 79
corresponding to the values of F0:5 and EP0:5 in the column
with label fd in Table 3.
We can observe that the percentage of interaction

increases considerably as we decrease the value of the
parameters b and r, although the increment is quite
dependent on the base algorithm being considered. It
seems that NB is the algorithm that requires more interac-
tions with the oracle, whereas J48, LOG and MP need less
interactions (MP is better for smaller values of b and r,
whereas J48 performs better for greater values of the
parameters).
In Fig. 2 we can take a closer look at the results

(percentage of interaction) for the different databases
obtained by NB, MP and J48, for the parameter b¼ 0:5.
Apart from the variability due to the different algorithms,
we can see that the results also depend heavily on the
databases: there are differences greater than 35% (for NB
and MP) and 19% (for J48) from a database to another.
4.2.5. Comparing with a random decision strategy

Another interesting question5 is to what extent the
decision strategies proposed, based on a confidence mea-
sure and a threshold, are better than a strategy which
randomly asks the oracle a given percentage of predictions.
For example, if a classifier was always wrong (for all the
test examples, i.e. nc¼0), a random decision strategy
would be equivalent to the other strategies (provided we
are using the Fb measure).
5Posed by a reviewer.



Fig. 2. Percentages of interaction obtained by NB, MP and J48 for each of the databases, when using fd and Fb with b¼ 0:5.

Table 10

Macro-average values of the performance measure Fb across the 31

databases and the 6 learning algorithms, for each confidence measure and

different values of b.

b fe fm fd fs fed Random Best %

0.1 0.9301 0.9308 0.9309 0.9310 0.9306 0.8298 18.39

0.2 0.9176 0.9181 0.9181 0.9180 0.9178 0.8087 18.10

0.3 0.9026 0.9027 0.9029 0.9027 0.9028 0.7705 19.14

0.4 0.8903 0.8905 0.8905 0.8905 0.8903 0.7410 19.94

0.5 0.8813 0.8815 0.8814 0.8815 0.8811 0.6972 19.95

0.6 0.8749 0.8751 0.8749 0.8750 0.8746 0.6645 19.78

0.7 0.8707 0.8710 0.8706 0.8707 0.8704 0.6329 19.89

0.8 0.8686 0.8687 0.8686 0.8686 0.8686 0.6018 20.31

0.9 0.8670 0.8669 0.8669 0.8668 0.8668 0.5715 19.61

1.0 0.8664 0.8662 0.8663 0.8662 0.8662 0.5606 20.20

No interaction: 0.8672.

Table 11

Macro-average values of the performance measure EPr across the 31

databases and the 6 learning algorithms, for each confidence measure and

different values of r.

r fe fm fd fs fed Random Best%

0.1 0.9320 0.9325 0.9325 0.9325 0.9325 0.9048 42.40

0.2 0.9040 0.9040 0.9042 0.9040 0.9040 0.8368 21.27

0.3 0.8861 0.8862 0.8863 0.8862 0.8860 0.7841 18.97

0.4 0.8740 0.8742 0.8741 0.8742 0.8739 0.7315 19.37

0.5 0.8683 0.8685 0.8684 0.8683 0.8683 0.6779 19.13

0.6 0.8661 0.8661 0.8661 0.8660 0.8661 0.6269 19.52

0.7 0.8648 0.8649 0.8649 0.8648 0.8649 0.5735 19.80

0.8 0.8639 0.8639 0.8640 0.8638 0.8640 0.5217 20.00

0.9 0.8632 0.8632 0.8633 0.8631 0.8633 0.4699 19.52

No interaction: 0.8672.
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To this end we have carried out experiments with the
following random decision strategy: first, we try to deter-
mine, using only the training set, which percentage of
random queries would give the best result (the best value of
our performance measure, either Fb or EPr). To do that,
for each case (each algorithm, each problem and each
performance measure) we try different percentages
ð5%; 10%; 15%; . . . ; 90%; 95%Þ and perform random sam-
pling using this percentage to select the examples to query
for. We repeat the process several times (10 times) with
each percentage and get the average performance, in order
to obtain more stable and reliable results. Once we have
determined the best percentage for each case, we apply
random sampling using this percentage to the correspond-
ing test set and compute the performance. We used the
random sampling algorithm proposed by Knuth (1997).

The results of these experiments are displayed in
Tables 10 and 11, for the performance measures Fb and
EPr, respectively. These tables show a summary of the
results averaged across the 31 databases and the 6 algo-
rithms, for the different strategies, including the random
strategy as well as the averages of the best estimated
percentage used by this strategy.

We can clearly observe that the random strategy per-
forms poorly: it is always considerably worse than any of
the informed strategies, and it is also worse (except in one
case) than the non-interactive classifier. The results of this
strategy are progressively worse as the values of the
parameters b and r increase. The averages of the best
percentages remain more or less stable around 20%. In
order to take a closer look at the results of the random
strategy, Table 12 displays them for the parameters b¼ 0:5
and r¼ 0:5, breakdown by algorithm, which can be



Table 12

Macro-average values of the performance measures F0:5 and EP0:5 across

the 31 databases, for each algorithm, using the random strategy. They can

be compared with the results in Table 3.

Algorithm F0:5 EP0:5

HC 0.6952 0.6760

IBk 0.6950 0.6825

J48 0.6916 0.6765

LOG 0.6998 0.6744

MP 0.7059 0.6813

NB 0.6955 0.6767
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directly compared with those found in Table 3 for the
other strategies. We can see that the behavior of the
random strategy is uniformly bad across all the algorithms.
5. Concluding remarks

In this paper we have centered on a scenario which is not
usually considered in the field of automatic classification:
an already built classifier having the possibility of inter-
acting with a human oracle, in such a way that the
classifier must decide when to classify an instance and
when it should query the correct label of this instance to
the oracle. We have studied two fundamental problems
arising in this scenario: how to measure the performance of
such a system, taking into account both the accuracy of the
classifier and the cost of the human intervention, and how
to decide whether or not to query.

With respect to the first problem, after specifying some
properties that any coherent evaluation measure for inter-
active classification should satisfy, and showing that several
apparently reasonable measures are not coherent, we have
proposed two coherent measures. One is based on the
concepts of precision and recall, and the usual way of
aggregating them through the F measure. The other is based
of the idea of computing the average costs of using the
interactive classifier, taking explicitly into account the costs
of misclassifying and querying. Both measures depend on a
single parameter which determines the contribution of each
of the two components of each measure.

Next, we have studied strategies that an interactive
classifier may use to interact with the human oracle. We
have assumed that the output of the classifier is a posterior
probability distribution over the possible categories and
then a confidence measure based on this distribution and a
threshold are used to define the decision rule: to ask the
oracle if the confidence measure is below the threshold. In
addition to several confidence measures used in the active
learning field, we have proposed two additional measures
based on the sample standard deviation and the Euclidean
distance.

Finally, through an extensive experimental evaluation,
using 6 standard classifiers and 31 databases, we have
shown that: (1) an interactive classifier is significantly
better than its non-interactive counterpart (with respect
to the coherent evaluation measures defined), provided
that an appropriate threshold for the decision strategy can
be estimated (and we can do it) and the parameters of the
two evaluation measures give more importance to preci-
sion and to the cost of misclassification; (2) some of the
confidence measures considered (concretely those based on
difference of probabilities, standard deviation and max-
imum probability) outperform the others (those based on
entropy and Euclidean distance), although the differences
are not statistically significant. In turn all of the confidence
measures outperform an uninformed interactive strategy
which randomly asks the oracle a given percentage of
predictions.
For future research we would like to study whether some

kind of external information (different from the own
prediction suggested by the classifier for the given instance)
could be used to improve the classifier’s decision strategy.
For example, information gathered during the training and
testing of the base classifier. Another interesting task
would be to study the influence of some characteristics of
the problems (e.g. the number of classes, or the distribu-
tion of the class variable) on the behavior of the interactive
classifier. We are also planning, for some specific base
classifiers, to study and evaluate methods to re-use the
information provided by the oracle in order to re-learn the
interactive classifier and improve its performance. If this
information would include not only the labels but also
some arguments supporting the decisions (Mozina et al.,
2007) then the quality of the re-learned model could be
even greater.
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