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Abstract

This paper presents an information retrieval model based on the Bayesian network

formalism. The topology of the network (representing the dependence relationships

between terms and documents) as well as the quantitative knowledge (the probabilities

encoding the strength of these relationships) will be mined from the document collection

using automatic learning algorithms. The relevance of a document to a given query is

obtained by means of an inference process through a complex network of dependences.

A new inference technique, called propagation+ evaluation, has been developed in or-

der to obtain the exact probabilities of relevance in the whole network efficiently.

� 2003 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, the retrieval of information is becoming more and more im-

portant with the widespread use of Internet in our everyday tasks. The field of

information retrieval (IR) has been defined by Salton and McGill [22] as the
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subject concerned with the representation, storage, organization, and accessing

of information items. 1 In this paper, we mainly focus our attention on two
main IR tasks: representing the information, and the way in which we access

information items, i.e. identifying documents in a collection that are relevant to

a particular information need formulated by means of a query.

We shall focus our research on the use of uncertain inference models for IR

[3]. These models represent an extension of the classical probabilistic model

[28], providing a framework for the integration of several sources of evidence.

The use of these models is based on the fact that most tasks in this area may be

described as uncertain processes [26]. The theoretical justification for these
models is based on the �probability ranking principle’ [21] which states that the

best overall retrieval effectiveness will be achieved when documents are ranked

in decreasing order of their probability of relevance.

The concept of relevance in uncertain inference models is basically related to

an inference process through a network of dependences using evidential rea-

soning techniques. The most promising ones are those based on Bayesian

networks [18]. Intuitively, as [16] says, ‘‘Bayesian networks are complex dia-

grams that organize the body of knowledge in a given area by mapping out
cause-and-effect relationships among key variables and encoding them with

numbers that represent the extent to which one variable is likely to affect an-

other’’. The use of a general Bayesian network methodology as the basis for an

IR system is difficult to tackle. The problem mainly appears because of the

large number of variables involved and the computational efforts needed to

both determine the relationships between variables and perform the inference

processes. 2 Nevertheless, an increasing effort has been made in the research of

uncertain inference models for IR [17,20,25]. These models consider the fol-
lowing two main simplifying restrictions in order to solve the above efficiency

problem:

R1 Fixed dependence relationships: the structure of the model, encoding the

dependence relationships between variables, is fixed a priori, without con-

sidering any potential knowledge that might be mined from the collection.

R2 Simplified estimation of probabilities: in order to avoid the large space nec-

essary to store all the probabilities relevant to the process, it is assumed

that those complex compound events will have been assigned zero proba-
bility values. With this assignment, these events can be discarded when in-

ference tasks are performed.

Using the restrictions above, the probability of relevance of a given docu-

ment only depends on the set of terms used to formulate the query and it can be

1 In this paper, we will only deal with documents, or in a broader sense, textual representations

of any type of object, i.e. a research article, a book, a message in an electronic mail file, etc.
2 Note that these tasks are NP-hard [10] in the number of variables.
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computed without truly performing inference tasks, i.e. without propagating

the evidences through the networks. In these cases, it is sufficient to consider
the evaluation of a set of functions.

Our objective in this paper is to show that it is possible to relax these re-

strictions, and therefore to obtain a more expressive Bayesian network-based

IR model. This relaxation involves considering new theoretical and practical

trends: how to infer the set of relationships between variables from the col-

lection, how to estimate and store all the needed probabilities efficiently, and

finally, assuming that we have the solutions for the previous problems, it will

be necessary to study how to perform exact inference efficiently through the
network.

Following these ideas, this paper is divided into the following sections: in

Section 2, we introduce the Bayesian network background needed to under-

stand the rest of the paper. Section 3 presents other models based on these

graphical models. Section 4 will explain the Bayesian Network Retrieval Model

(BNRM) in detail: its topology and construction, the estimation of probability

distributions, and the inference method. In Section 5, the results of an exper-

imentation with this new model is presented. The performance of the model is
also compared with the effectiveness of other models such as the vector space

model and inference network model. Finally, Section 6 shows the conclusions

of this work, as well as future work that we plan to implement in order to

improve the BNRM.

2. Preliminaries: Bayesian networks basics

In this section, we shall briefly introduce the concept of the Bayesian net-

work [18], the basis for the model presented in this paper. We shall attempt to

answer questions such as what it is for, how it is composed, how it can be
constructed, and how it can be used.

In formal terms, a Bayesian network is a directed acyclic graph (DAG) (a

graph with links which are orientated, taking the name of arcs, and with no

cycles in it), in which the nodes represent random variables and the arcs show

causality, relevance or dependency relationships between them. 3 The variables

and their relationships comprise the qualitative knowledge stored in a Bayesian

network. A second type of knowledge also stored in the DAG is known as

quantitative, since it establishes the strength of the relationships and is mea-
sured by means of probability distributions. Associated with each node there is

3 A dependence relationship between two variables, X and Y , implies a modification of the belief

in X , given that the value taken by Y is known. An Independence relationship means that the belief

in X is not modified, given the knowledge on Y .
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a set of conditional probability distributions, one for each possible combina-

tion of values that its parents can take.
Formally, a Bayesian network can be considered an efficient representation

of a joint probability distribution that takes into account the set of indepen-

dence relationships represented in the graphical component of the model. In

general terms, given a set of variables fX1; . . . ;Xng and a Bayesian network G,
the joint probability distribution in terms of local conditional probabilities is

obtained as follows

P ðX1; . . . ;XnÞ ¼
Yn
i¼1

P ðXijpðXiÞÞ

where pðXiÞ is any combination of the values of the parent set of Xi, PðXiÞ, in
the graph. If Xi has no parents, then the set PðXiÞ is empty, and therefore

P ðXijpðXiÞÞ is just P ðXiÞ.
Once completed, a Bayesian network can be used to derive the posterior

probability distribution of one or more variables since we have observed the
particular values for other variables in the network, or to update previous

conclusions when new evidence reach the system. Researchers have developed

general inference algorithms that take advantage of the independences repre-

sented in the network. Although it is possible to find algorithms that perform

inference tasks in a time that is linear in the number of variables, high com-

putational complexity inference algorithms result from having multiple path-

ways connecting nodes in the graph. General inference has been proved to be

NP-hard [10].

3. Related Bayesian network-based models

In this section we shall briefly describe the two main retrieval models based

on Bayesian networks.

The first model was developed by Croft and Turtle [25], the Inference Net-

work Model, which is composed, in its simplified form, of two networks: the

document and query networks. The first, fixed for a given collection, represents

the document collection, and contains two kinds of nodes: the document

nodes, representing the documents, and the concept nodes, symbolizing the

index terms contained in the documents. The arcs go from each document node

to each concept node used to index it. In addition, the query network is specific

for each query. In the simplified form, there is a query node for each query

representation used to express the information needed. This query node has as
parents those concepts (terms) used to formulate the query, representing the

connection between the two networks. The query nodes are also the parents of

an information need node that represents the user’s generic information need.
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When there is only one query representation the information need node and the

query node coincide. In the rest of the paper, we shall concentrate our attention
on those models which use only one query representation. Fig. 1, on the left

hand side, shows this simplified Inference network. In order to complete it, it is

necessary to assess the conditional probability distributions of the nodes in the

graph. The proper specification of these probabilities allows the inference

network to cover different IR strategies.

A document Dj may be ranked with respect to a query Q by measuring how

much evidential support the observation of Dj provides to the query Q. In
order to obtain this ranking, a single document node Dj is instantiated each
time, and the probability that the information need is satisfied given that this

document has been observed, pðQ ^ Dj ¼ trueÞ, is computed.

A direct computation of these values is unfeasible for practical purposes. In

order to solve this problem, the inference network takes advantage of a par-

ticular probability assessment. It is interesting to note that using these prob-

abilities and considering that in the inference process there is only one

document instantiated to relevant, the final probability pðQ ^ Dj ¼ trueÞ only
depends on the set of terms indexing document Dj that have been used to
formulate the query.

We shall now present a second model based on BNs: the Belief Network

Model [20]. This model has been designed to provide a Bayesian network-based

approach capable of simulating the vector space, and Boolean and probabi-

listic schemes. Like the inference network model, their network is composed of

three types of nodes: document nodes, concept (term) nodes, and the query

node. The arcs go from concept nodes to the document nodes where they

occur, and from the concept nodes (appearing in the query) to the query node.
This model is represented on the right hand side of Fig. 1. The ranking will be

obtained by computing the probability pðDj ¼ relevantjQÞ for each document

Dj.

Since a document can be indexed by hundred of terms, a straight compu-

tation of this probability becomes unfeasible. Therefore, and like the inference

d1 d2 d3

t1 t2 t3 t4 t5

Q

d1 d2 d3

t1 t2 t3 t4 t5

Q

Fig. 1. Inference network and belief network model.
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network model, the probabilities are defined in such a way that the compu-

tation will be reduced to a direct evaluation of a function. Also, depending on
the model to be simulated, different probability assessments might be used.

Using the probability assessment, in order to compute the final ranking of a

document, the individual contribution of each term of the document which also

belongs to the query is considered.

In short, both models use a fixed document subnetwork structure for a given

collection and a degenerated probability assessment in order to compute the

probabilities of interest without truly propagating the evidences through the

networks. Since these models use the same dependence model to represent any
document collection, they do not take into account the particular dependence

relationships between variables (terms and/or documents) that can be mined

from the document collection. In addition, the computed probabilities of rel-

evance will only depend on the terms used to formulate the query and not upon

other concepts that might be related (either directly or indirectly) to the query.

In the following section, we shall present our model to try to reduce these

problems.

4. Foundations of the Bayesian network retrieval model

Our objective is to obtain a Bayesian network representation of a given

document collection. Particularizing the definition given in [16] to the field of

IR, a Bayesian networks will organize the knowledge that can be mined from a

document collection by mapping out dependence relationships between terms
and documents and encoding them with probabilities representing the extent to

which they are related to each other. Once the network has been constructed, it

shall be used to obtain the relevant documents for a given query.

With this definition in mind, in our approach we shall not include a query

component (query nodes) as a proper part of the IR system, i.e. it will be a

query independent model. In our case, the query is considered as an evidence

that should be introduced into the system. This fact shall represent the first

difference between our model and previous ones.
In order to present the BNRM, we shall first describe how we can determine

the dependence relationships, i.e. the qualitative component; then we will

present the assessment of the probability values, that is to say, the quantitative

component; and finally, we shall consider how the inference process is carried

out.

4.1. Structure of the model

Since our objective is to obtain a model able to incorporate the most im-

portant dependence relationships in the collection, a learning procedure must
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be performed. This process will give the final structure of the network as a

result. In our model, we shall consider two sets of variables: Terms

(T ¼ fTi; i ¼ 1; . . . ;Mg, with M being the number of terms used to index the

collection) and Documents (D ¼ fDj; j ¼ 1; . . . ;Ng, N being the total number

of documents). These variables are bivaluated, taking values from the set

{relevant, not-relevant}. 4 In order to simplify the following expressions, we

shall note the �term Ti (or Dj for documents) is relevant’ as tiðdjÞ, and �the term
TiðDjÞ is not relevant’ as �ttið�ddjÞ.

Given a document collection, and due to the large number of variables in-

volved, mining all the dependence relationships is unfeasible. We propose that
a hybrid approach be followed whereby both ‘‘expert knowledge’’ (using a set

of general coherence criteria) and ‘‘collection knowledge’’ (mined from the

documentary data) will be taken into account.

4.1.1. Expert knowledge

Consists of a set of assumptions that the model must fulfill and allows us to

obtain a previous skeleton of the Bayesian network (limiting the automatic

learning process). These assumptions are

1. There is a strong relationship between a document and each of the terms by

which it has been indexed. This principle is translated into the graph using

links that connect each document node with all the term nodes that represent
the index terms associated to the corresponding document.

2. The relationships between documents are only present through the terms

that index them. This assumption implies that there are no links joining

the document nodes between them.

3. If we know the relevance or non-relevance of all the terms that occur in a

document, Di, our belief in its relevance is not affected by the fact that we

know that another document, Dj, or term, Tk, are relevant or not. This as-

sumption implies that documents are conditionally independent given the
terms by which they have been indexed. In the network, the links joining

the document nodes and their corresponding term nodes will be directed

from the second to the first ones.

Taking these three assumptions into account, the structure of our model is

similar to the Belief Network Model [20], except for the fact that we do not

consider a query node. In this network, the terms are independent between

each other. This point seems to be very restrictive because, in a collection, the

4 We talk about the relevance of a term in the sense that the user believes that the term will

appear in relevant documents (hence, he/she will explicitly use it when formulating a query).

Similarly, a term is not relevant when users believe that the relevant documents do not contain it:

they are not interested in documents containing this term.
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terms are related in different ways. This restriction will be removed by con-

sidering collection-dependent knowledge.

4.1.2. Collection knowledge

Considering the above assumptions, the natural step for obtaining a more

precise model is to incorporate the most important dependence relationships

between the terms into the collection. Thus, we may distinguish two different

layers of nodes: the term and the document layer. As we will see in Section 4.3,

the separation in these two layers will allow inferences to be carried out effi-

ciently.
In order to put this methodology into practice, we must use an automatic

learning algorithm to build the term layer. The first task is to decide the un-

derlying topology of the term layer. It is obvious that the more complex the

topology, the more accurate the dependence and independence relationships

will be reflected by the topology, although, at the same time, and considering

the number of terms and documents involved, the learning and propagation

algorithms will be a very time-consuming tasks. In order to tackle this problem,

we propose that simpler graphs be used. In this case, some precision is lost
because the independence and dependence relationships that they can represent

are more restrictive.

In this paper we consider that term to term dependences will be represented

by means of a polytree 5 because there is a set of very efficient learning [4,5,19]

and propagation [18] algorithms running in a time proportional to the number

of nodes, making the use of Bayesian networks in this context feasible. In

particular, the term layer will be completed using a polytree learning algorithm

which takes as input the inverted file of a collection (a data structured that
stores for each term those documents where it occurs), and generates a poly-

tree, whose nodes (variables) are the terms.

The algorithms, which is explained in detail in [5], is composed of three main

steps:

1. Computation of the degrees of dependency between all pairs of nodes.

2. Construction of the tree skeleton.

3. Orientation of the edges in the tree, finally making up a polytree.

Several remarks have to be made about these three parts. First, the measure
used to establish the dependency between nodes (which is, in some sense,

analogous to the functions usually employed in IR systems for measuring the

similarity between the terms in the collection) is the following:

DepðTi; Tjj;Þ ¼
X
Ti ;Tj

pðTi;TjÞ ln
pðTi;TjÞ
pðTiÞpðTjÞ

� �
ð1Þ

5 Graph in which there is no more than one directed path connecting each pair of nodes.
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where Ti is one of the possible values that the variable Ti can have. This

function is the Kullback–Leibler’s cross entropy (also called expected mutual
information measure), which measures the dependency degree between two

variables Ti and Tj (which is equal to zero if Ti and Tj are marginally inde-

pendent, and such that the more dependent Ti and Tj are, the greater

DepðTi; Tjj;Þ is). The probabilities pðTi;TjÞ are estimated from the inverted file

by counting frequencies. Here, we use the marginal cross entropy, in opposi-

tion to the approach in which the marginal dependency of two terms is com-

bined with the conditional dependencies of these two terms conditioned to the

rest of terms. The reason is that due to the great amount of terms in a col-
lection, the computation of the conditional dependencies, although it has to be

carried out only once, has been proved extremely time-consuming but also a

large storage is needed.

The next step is the tree skeleton construction. If we assume that the com-

puted dependency values are link weights in a graph, this algorithm gets a

maximum weight spanning tree (MWST), i.e. a tree where the sum of the

weights of its links is maximum. We considered the Prim’s algorithm [2] to

obtain the MWST.
Due to the great number of terms that there are generally in a collection, the

values of the dependencies are very low in general, and sometimes the algo-

rithm does not have any good choice and selects as the highest value among all

the dependencies being considered a very low value, adding the corresponding

link to the tree. The problem lies in the fact that the two linked nodes are

almost more independent than dependent, and therefore the model we are

building loses accuracy with respect to the original one.

To solve this problem, the algorithm, once it has selected a new link Ti–Tj to
be added to the tree, performs an independency test between Ti and Tj; then it

really adds this link to the tree only if the independency test fails. In this way,

we can obtain a non-connected tree, i.e., a forest, as the result of this step.

Once the skeleton is built, the last part of the learning algorithm deals with

the orientation of the tree, getting as a result a polytree. In a head to head

pattern Ti ! Tk  Tj, the instantiation of the head to head node Tk should

normally increase the degree of dependency between Ti and Tj, whereas in a

non-head to head pattern such as Ti  Tk ! Tj, the instantiation of the middle
node Tk should produce the opposite effect, decreasing the degree of depen-

dency between Ti and Tj. So, we compare the degree of dependency between Ti
and Tj after the instantiation of Tk, DepðTi; TjjTkÞ, with the degree of depen-

dency between Ti and Tj before the instantiation of Tk, DepðTi; Tjj;Þ, and direct

the edges toward Tk if the former is greater than the latter. Finally, the algo-

rithm directs the remaining edges without introducing new head to head

connections. This strategy produced, in our preliminary experiments, struc-

tures where several nodes had a great number of parents; this fact leads to have
very big probability tables and, as a consequence, it causes problems of storage
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and reliability (in the estimation of these tables). For that reason we have re-

stricted a bit the rule that produces head to head connections, by including
another condition in the antecedent: we want to be sure that if we decide to

include a head to head connection Ti ! Tk  Tj, then the nodes Ti and Tj are
not conditionally independent given Ti. So, we also test this condition, once

again using a Chi square test of independency based on the value DepðTi; TjjTkÞ
(in this case with two degrees of freedom).

Once the polytree has been learned, the last step to finish the retrieval model

construction is to join each term node with its corresponding document node.

Fig. 2 shows an example of the final topology of the network.

4.2. Estimating the quantitative information

Once the structure of the network has been created, the second step in

specifying a Bayesian network completely is to estimate the strength of the

relationships represented. This process implies estimating a set of conditional

probability distributions. We have used several estimators [12], but the ones

that perform best are the following.

4.2.1. Root term nodes

Given a root node representing the variable Ti, it will have to store the

marginal probability of relevance, pðtiÞ, and the probability of being non-rel-

evant, pð�ttiÞ defined by means of pðtiÞ ¼ 1
M and pð�ttiÞ ¼ 1� pðtiÞ, withM being the

number of terms in the collection.

4.2.2. Non-root term nodes

In this case, for each non-root term node Ti, with parents PðTiÞ, we need to

estimate a set of conditional probability distributions pðTijpðTiÞÞ, one for each
possible combination of values that the parents of a node Ti can have, pðTiÞ.

Fig. 2. The Bayesian network retrieval model.
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Given any set of termsS ¼ fT1; T2; . . . ; Tkg, a configuration C is defined as a

vector ht1; t2; . . . ; tki, where each of its elements corresponds to a value that
each variable Ti 2S can take. Therefore, ti ¼ ti if the ith variable is relevant,

and ti ¼ �tti, if Ti is not relevant. For instance, for S ¼ fT1; T2; T3; T4g, two

possible configurations are ht1; t2;�tt3; t4i and ht1;�tt2; t3;�tt4i. Given a set of terms S
and a configuration C, we define nðCÞ as the number of documents that con-

tains all the terms that are included as relevant in the configuration, and do not

contain those that are non-relevant in it.

The estimator is based on the Jaccard similarity measure [28]. Given two sets

X and Y , it computes the similarity between them as the quotient of the number
of elements composing the intersection and the cardinality of the union of both

sets, i.e. jX \ Y j=jX [ Y j. This measure (also used by Savoy [23]) is adapted to

our model using the following expression:

pð�ttijpðTiÞÞ ¼
nðh�tti; pðTiÞiÞ

nðh�ttiiÞ þ nðpðTiÞÞ � nðh�tti; pðTiÞiÞ
ð2Þ

In this formula, pð�ttijpðTiÞÞ is initially estimated and later pðtijpðTiÞÞ is ob-

tained by duality ðpðtijpðTiÞÞ ¼ 1� pð�ttijpðTiÞÞÞ.

4.2.3. Document nodes

In this case, the probability pðDjjPðDjÞÞ must be estimated, i.e. the proba-

bility of a document node given the set of its parents (the nodes representing

the terms by which it has been indexed).
The main problem to be faced in this task is that if a document has been

indexed by mj terms, and taking into account that each term is represented by a

binary variable, the number of probability distribution to be estimated is 2mj .

Taking into account that in a common size collection, the number of index

terms per document may be around 100 or 200, the total number of possible

combinations is huge, leading to several problems such as the long time needed

to estimate the probabilities, the low reliability of the estimation, the great

amount of disk space required to store the distributions, and finally, the
slowness of the propagation process to manage them. The existence of these

four chained problems lead us to consider an alternative way to estimate the

probability matrices completely, and resulted in what we have called proba-

bility functions, also known as canonical models of multicausal interaction [18].

In the inference process, the probability functions will compute the required

conditional probabilities just at the moment when they were needed. In this

way, the explicit representation of the probability matrix is substituted by an

implicit one, avoiding most of the previously explained problems.
We have developed a new general canonical model: for any configuration

pðDjÞ of PðDjÞ, we define the conditional probability of relevance of Dj as

follows:
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pðdjjpðDjÞÞ ¼
X

Ti2RpðDjÞ

wij ð3Þ

with RpðDjÞ being the set of terms that are relevant in pðDjÞ, and the weights wij

have to verify that 06wij and
P

Ti2Dj
wij 6 1. So, the more relevant terms in

pðDjÞ, the greater the probability of relevance of Dj.

4.3. The retrieval engine: inference in the Bayesian Network Retrieval Model

Once the Bayesian network has been built, it can be used to predict the

values that certain variables can take. This process is known as inference and
computes the probabilities of the different cases that an unknown variable can

have, given the values of the known variables or evidences.

Focusing on the BNRM, the query formulated by the user (or more spe-

cifically, the terms in the query) plays the role of a new piece of evidence

provided to the system. The last aim is to obtain the probability of relevance of

each document in the collection given a query. The terms from the query are

instantiated to relevant in the network. This information will be propagated

toward the document nodes, finally obtaining pðdjjQÞ, 8Dj. The documents are
presented to the user decreasingly sorted according to their corresponding

probabilities of relevance.

Taking into account the number of nodes in our Bayesian network and the

fact that it contains cycles and nodes with a great number of parents, general

purpose inference algorithms cannot be applied due to efficiency consider-

ations, even for small document collections. Therefore, we ought to look for a

solution to carry out the inference in an acceptable time. Our proposal for

solving this problem has been named Propagation+Evaluation, and consists
of a two-stage approximate propagation:

1. Exact propagation in the term layer, obtaining pðtijQÞ, 8Ti. Bearing in mind

that the evidences will always be term nodes composing the query, we could

use Pearl’s exact propagation algorithm [18] in order to obtain the posterior

probability of each term node. These probabilities can be computed in a

polynomial time in an exact way.

2. Evaluation of a probability function in the document nodes, computing

pðdjjQÞ 8Dj, using the posterior probabilities obtained in the previous stage.
With this evaluation, we are modifying the strength with which the terms in-

fluence the relevance of the documents.

Therefore, the computation of pðdjjQÞ can be carried out as follows:

pðdjjQÞ ¼
Xmj

i¼1
wij � pðtijQÞ ð4Þ

In the following theorem, we show the conditions under which we could put

the two-stage propagation into practice, with total equivalence in results with

respect to an exact propagation:
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Theorem 4.1. Given a set of evidences corresponding to the terms of a query Q,
if the probability function used can be expressed as

pðdjjpðDjÞÞ ¼
X

Ti2RpðDjÞ

wij; 8j ¼ 1; . . . ;N ð5Þ

that is to say, as the sum of weights for the relevant terms of a document, where
06wij, 8i ¼ 1; . . . ;mj,

P
Ti2Dj

wij 6 1 and RpðDjÞ is the set of terms that are rel-
evant in a configuration of parents of Dj, pðDjÞ, then the exact propagation in the
term layer plus the evaluation of a probability function in each document (Eq.
(4)) is equivalent to carrying out an exact propagation in the entire Bayesian
network.

Proof. The posterior probability obtained applying to the exact inference

process, pðdjjQÞ can be expressed as

pðdjjQÞ ¼
X
pðDjÞ

pðdjjpðDjÞ;QÞ � pðpðDjÞjQÞ

As the set of terms indexing a document makes the document and the evidences

independent, then

pðdjjQÞ ¼
X
pðDjÞ

pðdjjpðDjÞÞ � pðpðDjÞjQÞ

Substituting in the previous expression the value of pðdjjpðDjÞÞ in Eq. (5), we

obtain:

pðdjjQÞ ¼
X
pðDjÞ

X
Ti2RpðDjÞ

wij � pðpðDjÞjQÞ

0
@

1
A ð6Þ

The next step is to break down the previous expression into two parts. In the

first, we include the configurations where the term Tmj is relevant, and in the

second, those where it is not relevant. In order to make this fact explicit, we will
use notation hp�ðDjÞ; tmj

i, where ðp�ðDjÞÞ corresponds with the configuration

ht1; t2; . . . ; tmj�1i, i.e. without the last variable, Tmj , in pðDjÞ.

pðdjjQÞ ¼
X

hp�ðDjÞ;tmj i

X
Ti2Rhp�ðDjÞ;tmj i

wij � pðpðDjÞjQÞ

0
@

1
A

þ
X

hp�ðDjÞ;�ttmj i

X
Ti2Rhp�ðDjÞ;�ttmj i

wij � pðpðDjÞjQÞ

0
B@

1
CA ð7Þ
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Considering that
P

Ti2Rhp�ðDjÞ;tmj i
wij � pðpðDjÞjQÞ is equal toX

Ti2Rhp�ðDjÞi

wij � pðpðDjÞjQÞ þ wmjj � pðpðDjÞjQÞ

and that
P

Ti2Rhp�ðDjÞ;�ttmj i
wij � pðpðDjÞjQÞ ¼

P
Ti2Rhp�ðDjÞi

wij � pðpðDjÞjQÞ, and sub-

stituting them in expression (7), the posterior probability is

pðdjjQÞ ¼
X

hp�ðDjÞ;tmj i

X
Ti2Rhp�ðDjÞi

wij � pðpðDjÞjQÞ þ wmjj � pðpðDjÞjQÞ

2
4

3
5

þ
X

hp�ðDjÞ;�ttmj i

X
Ti2Rhp�ðDjÞi

wij � pðpðDjÞjQÞ

2
4

3
5

Notice how both sums in the configuration have
P

Ti2Rhp�ðDjÞi
wij � pðpðDjÞjQÞ in

common when Tmj is taken into account and when it is disregarded. We could

unify these two addends into only one by means of a marginalization operation

over the variable Tmj . Consequently, the variable Tmj will be removed from the

resultant addend.

Therefore, the posterior probability of the document will be

pðdjjQÞ ¼
X
p�ðDjÞ

X
Ti2Rp�ðDjÞ

wij � pððp�ðDjÞÞjQÞ þ
X

hp�ðDjÞ;tmj i
wmjjpðpðDjÞjQÞ

Focusing our attention on the second addend in the previous expression:X
hp�ðDjÞ;tmj i

wmjjpðpðDjÞjQÞ ¼ wmjj �
X

hp�ðDjÞ;tmj i
pðpðDjÞjQÞ

which implies that we are considering all the possible configurations in p�ðDjÞ,
and therefore the final result is wmjj � pðtmj jQÞ. Note that pðtmj jQÞ has been ob-
tained previously by applying the exact propagation process in the term layer.

Therefore,

pðdjjQÞ ¼
X
p�ðDjÞ

X
Ti2Rp�ðDjÞ

wij � pððp�ðDjÞÞjQÞ þ wmjj � pðtmj jQÞ

It should be noted that the first addend is completely analogous to the initial
expression, Eq. (6), but where the term Tmj has been removed. We now repeat

the process applied to this first addend to remove a new variable Tmj � 1 and

extract the addend wmj�1j � pðtmj�1 jQÞ. By repeating the process until we have

removed all the terms, we obtain a final expression of the probability of a

document given all the evidences:

pðdjjQÞ ¼
Xmj

i¼1
wij � pðtijQÞ
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We conclude that we can compute the probability pðdjjQÞ exactly, 8Dj running

an exact propagation only in the term layer. h

4.4. Two modifications to the basic retrieval process in the BNRM

Until now, we have assumed that the presence of a term in a query implies

its instantiation to relevant, assigning the same �strength’ to all of them.

However, it might be interesting to highlight the importance of a term with

respect to others that could be classified as secondary. This information is
naturally used in the vector space model [22].

In the BNRM, these terms which occur more frequently in the query, will

have a greater influence in the propagation stage than those that appear a few

times. In order to put this idea into practice, we could clone these query terms

in the network. Therefore, if the query frequency (qf) of a term Ti were three,

then two new fictitious nodes would be created in the network with the same

information contained in the node Ti. These nodes would be used in the

evaluation of each document which was indexed by Ti. In this case, the pos-
terior probability can be computed (see [12]) as

pðdjjQÞ ¼
Xmj

i¼1
wij � pðtijQÞ � ½qf i�

In this expression, the factor ½qf i� will have the value 1 if the ith term is not in

the query, and the corresponding qf i if it occurs, which is why it has been noted
between brackets.

A second modification to the basic process set out in the previous subsection

is the following: a high posterior probability of relevance after propagating

might be due to a positive influence of the instantiated query terms on a

document, or to the fact that the prior probability is high and the influence

received by the query terms does not decrease the posterior probability of

relevance of the document. The first case implies that the document is very

relevant. However, the second means that if documents are ranked according
to their posterior probabilities, mistakes can be made, and greater importance

given to a document which has briefly increased its belief and therefore,

worsening the retrieval performance.

Therefore, the ranking could be generated by taking the difference

pðdjjQÞ � pðdjÞ, 8Dj into account. In this case, the important fact is the relative

value (the increment of probability) and not the particular value of pðdjjQÞ.

5. Measuring the performance of the model: experiments and results

Our objective in this section is to measure the effectiveness of the retrieval.

This evaluation can be carried out with different methods, but the main one is
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that based on recall and precision estimates [22,28]. The first measures the

ability of the IR system to present all the relevant documents (recall ¼ number

of relevant documents retrieved/number of relevant documents). The second,

precision, measures its ability to present only the relevant documents (preci-

sion ¼ number of relevant documents retrieved/number of documents re-

trieved). For each experiment, we offer the mean precision for the eleven recall
points [22], A-11PTSPTS.

In this section, we shall present the experimentation that we have carried out

in order to determine the quality of the proposed model. We have applied the

BNRM to five well-known test document collections: ADI, CACM, CISI,

CRANFIELD and MEDLARS. The main characteristics of these collections

with respect to the number of documents, terms and queries are shown in

Table 1.

For each collection, our objective is to show the behavior of the proposed
methodology and to compare the obtained results with other IR systems like

SMART, based on the vector space model, 6 and with other Bayesian network-

based models such as the Inference Network Model.

All the collection has been indexed by SMART, not only for the experiments

carried out by our system, but also for those run by SMART and INM.

Specifically, after removing stop words, a stemming process is run, leading each

word to its corresponding stem. The SMART weighting scheme with which the

experiments have been run is ‘‘ntc’’, because it is the one with which this IRS
obtains the best results with these five test collections.

The specific weights wij, for each document Dj and each term Ti 2 Dj, used

by our models (see Eq. (3)) are: 7

wij ¼ a�1
tf ij � idf2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Tk2Dj

tfkj � idf2k
q ð8Þ

Table 1

Main features of the standard test collections

Collection No. documents No. terms No. queries

ADI 82 828 35

CACM 3204 7562 64

CISI 1460 4985 112

CRANFIELD 1398 3857 225

MEDLARS 1033 7170 30

6 These values can also be considered the ones obtained with the Belief Network Model when

simulating the vector space model.
7 Other probability functions designed for BNRM are shown in [12].
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where tf ij is the frequency of the term Ti in document Dj, idf i is the inverse

document frequency of the term Ti in the collection 8 and a is a normalizing
constant (to ensure that

P
Ti2Dj

wij 6 1 8Dj 2 D). This weight has been designed

with a similar form to those used in the cosine similarity formula [22].

First, we shall consider the effect of the structure of the term layer, i.e. the set

of dependence relationships between terms, on the performance of the system.

As mentioned in Section 4.1, we restrict the topology of this subnetwork to a

polytree (mainly due to reasons of efficiency). We shall therefore consider two

different polytrees that have been obtained using the same learning algorithm:

the first where we consider the dependences between all the terms in the col-
lection, T, and the second where we only consider the relationships in a subset

of T, T�, which only contains those terms that can be considered as good

discriminators to distinguish between relevant and non-relevant documents.

Thus, the terms in T nT� will only be connected to the documents that they

belong to. In order to obtain the T� set, we consider a frequency-based ap-

proach: Ti 2T� if the term has a document frequency in the interval ½5;N=10�,
with N being the number of document in the collection. A more detailed study

of this problem can be found in [7].
Table 2 shows the average precision for the eleven standard recall points for

all the queries of each collection, obtained by SMART [22] and the Inference

Network (INM) [24], and the behavior of our model with respect to the par-

ticular experimentation.

With respect to INM, we have built our own implementation, and used the

configuration parameters proposed by Turtle in [24]:

pðtijdj ¼ trueÞ ¼ 0:4þ 0:6 � tf ij � idf i and pðtijall parents falseÞ ¼ 0:3

ð9Þ

Taking these results into account, we could conclude that the proposed

methodology shows a good performance, being comparable with SMART and

INM. However, the best results were obtained by considering a particular

combination of the parameters: on the one hand, if we fix the structure of the

term layer and we study the results of the inclusion (or not) of the �qf’ in the

evaluation of the probability function, we can say that the behavior is quite

homogeneous, and is clearly dependent on the collections (CACM and CISI

support the use of the frequency of query terms whereas CRANFIELD and
MEDLARS do not). On the other hand, when fixing the inclusion of the �qf’,
we generally obtain better results when considering all the terms in the col-

lection. If we do not include the �qf’, it seems convenient to consider the re-

duced model.

8 idf i ¼ lg N
ni
, where N is the number of documents in the collection, and ni is the number of

documents that contain the ith term.
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Our last experiment attempted to discern which method is better for gen-

erating the document ranking: sorting the documents according to their

probability of relevance, pðdjQÞ, or by means of the difference of the posterior

and prior probabilities, pðdjQÞ � pðdÞ. In this case, and in order to reduce the

number of experiments, we carried out this last test using all the terms in

the collection ðTÞ. We also considered the best results obtained in each case,

the use of the �qf’ in ADI, CACM and CISI, and CRANFIELD and MED-

LARS without using it. The results are presented in the last column of Table 1.
Again, it seems that we have a collection dependent behavior: CRANFIELD

and MEDLARS perform better when considering the difference of probabili-

ties and the opposite is true for the other collections.

6. Conclusions and future work

In this paper, we have presented an IR model based on Bayesian networks.
The topology of the network (qualitative information) that supports the model

has been specified, as well as the different probability distributions stored in the

nodes (quantitative information). Finally, we have provided it with an infer-

ence mechanism to retrieve documents.

IR is a very complex problem due not only to the intrinsic uncertainty re-

lated to many aspects of the field, but also because of the size of the problem in

terms of the number of documents and terms. We have therefore had to de-

velop several techniques which are able confront the complexity of the prob-
lems considered:

• Regarding the learning problem, we propose that the structure be restricted

to a type of simplified networks (polytrees) in order to reach acceptable

learning and, above all, acceptable inference times. We have also used a spe-

cific algorithm which combines useful methodologies from other existing

algorithms and incorporates particular features.

• Estimating the qualitative information also presents a very important prob-

lem: the huge number of parents that document nodes have in the net-
work. Consequently, this makes any attempt to estimate and later store

Table 2

Experiment with BNRM with and without �qf’

Exp. SMART INM T�, not

�qf’
T� and

�qf’
T, not

�qf’
T and

�qf’
P ðdjQÞ � P ðdÞ

ADI 0.4706 0.4612 0.4632 0.4605 0.4130 0.4613 0.4581

CACM 0.3768 0.3974 0.3692 0.3983 0.3759 0.4046 0.3996

CISI 0.2459 0.2498 0.2104 0.2454 0.2007 0.2301 0.2299

CRAN. 0.4294 0.4367 0.4395 0.4101 0.4314 0.4116 0.4421

MED 0.5446 0.5534 0.6180 0.5764 0.6200 0.5792 0.6407
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the probability distributions impossible. It was for this reason that we devel-

oped the probability functions, which allow the probability matrices to be
used implicitly.

• The last problem is the inference in our model, because the common meth-

ods of propagation in Bayesian networks showed themselves to be totally

unable to deal with the large size of the I.R. networks. We therefore designed

an inference technique, Propagation+Evaluation, which was completely

adapted to our topologies. With this mechanism, we obtain some benefits

from the specific topology of our network as well as from the probability

functions. Consequently, we have been able to put an exact inference in a
globally complex network into practice.

The performance of the BNR model clearly depends on the collection as well

as the different values of the parameters. For instance, the inclusion of the

frequency of the terms of a query in the evaluation of a probability function is

good for three collections and not so good for the rest. The same situation

arises, when document ranking is carried out, with the use of the difference

between probabilities than with only the posterior probability.

The experimentation that we have carried out has attempted to determine
the suitability of our new model for document retrieval. In this case, we were

able to clearly observe our model’s behavior and not be distracted by any other

element from our main objective (for instance, the management of greater

collections such as those included in TREC). Of course, our next target will be

to test our model with real size collections.

With respect to this last matter, the application to this model to very large

document collection should suffer some modifications. On the one hand, and

considering in a first stage the learning of the polytree with all the terms, as this
task must be carry out only once, it is not so important the learning time.

Despite this fact, using the idea presented in Section 5, by which only a set of

dependences among terms in the collection would be represented in the poly-

tree, the time required to learn this type of graph must be reduced. A more

developed selection method than the one presented in this paper is shown in [9],

where using a clustering algorithm, terms are divided into two sets: those which

are classified as �good� and those labeled as �bad�, from the point of view of the

retrieval. The size of the first class is usually very small, allowing this situation
an application of a fast learning, and subsequently also a fast propagation in

retrieval time.

On the other hand, and once the polytree has been built, we could apply the

techniques presented in [8] to reduce the propagation time. The two approxi-

mation methods, modifications of the Pearl’s propagation algorithm [18], try to

save time by not performing unnecessary inference steps. The reduction of time

is considerable with the additional advantage that the loss, in terms of retrieval

effectiveness, is almost null. Putting into practice these techniques, the size of
the polytree could be very large.
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Another of our future lines of research that we are considering is the study

of new mechanisms to represent the dependence relationships between terms
and/or documents. We are also interested in the development of a method to

automatically set up the best values for each parameter of the BNR model.

This will be put into practice by analyzing the main characteristics of several

collections (idf, document length, term lengths––in the inverted file, and so on)

and attempting to obtain common patterns between them.
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