AL
e

INTERNATIONAL JOURNAL OF
, APPR(E
3 REASONING
ELSEVIER International Journal of Approximate Reasoning 27 (2001) 263-283

www.elsevier.com/locate/ijar

Partial abductive inference in Bayesian belief
networks by simulated annealing

Luis M. de Campos %, José A. Gamez 5* Serafin Moral #

& Departamento de Ciencias de la Computaciéon e 1. A., Universidad de Granada,
18071 Granada, Spain
® Departamento de Informatica, Escuela Politécnica Superior, Universidad de Castilla-La Mancha,
Campus Universitario sin, 02071 Albacete, Spain

Received 1 March 2000; accepted 1 April 2001

Abstract

Abductive inference in Bayesian belief networks (BBN) is intended as the process of
generating the K most probable configurations given observed evidence. When we are
only interested in a subset of the network variables, this problem is called partial ab-
ductive inference. Due to the noncommutative behaviour of the two operators (sum-
mation and maximum) involved in the computational process of solving partial
abductive inference in BBNs, the process can be unfeasible by exact computation even
for networks in which other types of probabilistic reasoning are not very complicated.
This paper describes an approximate method to perform partial abductive inference in
BBNs based on the simulated annealing (SA) algorithm. The algorithm can be applied
to multiple connected networks and for any value of K. The evaluation function is based
on clique tree propagation, and allow to evaluate neighbour configurations by means of
local computations, in this way the efficiency with respect to previous algorithms (based
on the use of genetic algorithms (GAs)) is improved. © 2001 Elsevier Science Inc. All
rights reserved.

Keywords.: Simulated annealing; Bayesian networks; Abductive reasoning; Maximum a
posteriori hypothesis; Probabilistic reasoning

’ Corresponding author.
E-mail addresses. Ici@decsai.ugr.es (L.M. de Campos), jgamez@info-ab.uclm.es (J.A. Gdmez),
smc@decsai.ugr.es (S. Moral).

0888-613X/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.
PII: S0888-613X(01)00043-3

264 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

1. Introduction

Bayesian belief networks (BBNs) [23,15] are frequently used as the kernel of
Probabilistic Expert Systems, because they provide an efficient representation
of the joint probability distribution, and allow us to calculate probabilities by
means of local computation, i.e., only relevant information is considered when
a probability has to be calculated.

Although the most commonly used type of inference in BBNs is probabilities
(or evidence) propagation, in this paper we are interested in another type of
inference, known as abductive reasoning (also known as diagnostic reasoning
because it is in the field of diagnostic where abductive reasoning has its most
clear application [12,24,25]).

Abduction is defined as the process of generating a plausible explanation
for a given set of observations or facts [26], and in the context of probabilistic
reasoning, abductive inference corresponds to finding the maximum a pos-
teriori (MAP) probability state of the system’s variables, given some evidence
(observed variables) [22]. The increasing attention received by abductive in-
ference in BBNs over the last decade has yielded as a result the development
of both exact [4,9,21,22,28,31] and approximate solution methods
[10,11,19,27,34]. However, only some of these algorithms [11,21,27,28,34] do
not have any limitation on the structure of the network and are able of
searching for the K most probable configurations instead of only the best
one.

When we are interested in obtaining the K most probable configurations
only for a subset of the network variables called explanation set [20], the
problem is known as the Partial Abductive Inference or MAP hypothesis. Al-
though this problem seems to be more useful in practical applications (because
we can select the relevant ' variables as the explanation set) than toral ab-
ductive inference it has received much less attention.

Our goal in this paper is to approach the partial abductive inference problem
in BBNs by means of a search algorithm based on the well known simulated
annealing (SA) scheme. The rest of the paper is organised as follows: In Section
2 we briefly recall some concepts about BBNs and abductive inference. In
Section 3, the SA technique is described. In Section 4 we present our algorithm.
In Section 5 the experiments carried out are described, and finally, in Section 6,
we consider the conclusions.

! In this paper we suppose that the explanation set is known (provided by the user, by another
algorithm, etc.) Determining which variables must be included in an explanation is a related
problem [3,29,30].

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 265

2. Bayesian belief networks and abductive inference

A Bayesian belief network [15,23] is a directed acyclic graph (DAG) where
each node represents a random variable, and the topology of the graph shows
the (in)dependence relations among the variables. The quantitative part of the
model is given by attaching to each variable X; a probability distribution
P(X:|pa(X;)), where pa(X;) contains the parents of X; in the graph. If
Xy ={Xi,...,X,} is the set of variables in the network, then the joint proba-
bility can be calculated as:

P, = T P&ilpa(xy)). (1)
XieXy
Eq. (1) is known as the chain-rule.

Abductive inference in BBNs, also known as the most probable explanation
problem (MPE), corresponds to finding the MAP probability state of the
network, given the observed variables (the evidence). In a more formal way: if
Xo is the set of observed variables and Xy is the set of unobserved variables, we
aim to obtain the configuration xj; of Xy such that:

x(; = argmax P(xy|xo), (2)
Xy

where Xo = x¢ is the observed evidence. Usually, x{; is known as the MPE. It is
well known that the MPE can be found using probabilities propagation
methods but replacing summation by maximum in the marginalisation oper-
ator (due to the distributive property of maximum with respect to multipli-
cation) [4]. Therefore, the process of searching for the MPE has the same
complexity as probabilities propagation. However, in order to search for the K
MPEs more complex methods have to be used; for example, in [21] clique tree
propagation is combined with a divide and conquer algorithm that iteratively
identifies the K MPEs.

In partial abductive inference, if we denote the explanation set by Xg C Xy,
then the goal is to obtain the configuration xj of Xg such that:

xy, = argmax P(xg|xo) = argmax ZP(XE,XR Ixo0), (3)
XE XE
XR
where Xg = Xy \ Xg. In general, x§ is not equal to the projection of the con-
figuration x{; over Xg, so we need to obtain xj; directly (Eq. (3)).

The process of finding the configuration xj; is more complex than that of
finding x{;, because not all clique tree obtained from the original BBN is valid.
In fact, because summation and maximum have to be used simultaneously and
these operations do not show a commutative behaviour, the variables of Xg
must form a sub-tree of the complete tree (we will refer to this kind of trees as
valid clique trees). Xu [33] gives a method for transforming the initial tree into
another one containing a clique in which the variables of Xg are included. The

266 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

(@ (b)
Fig. 1. Two moral graphs.

problem of this method is that if X contains many variables, then the problem
could be intractable due to the size of the probability table (potential)
associated with the clique containing Xg. Nilsson [21] outlines how to slightly
modify Xu’s algorithm in order to allow (when possible) the variables of Xt to
constitute a sub-tree and not a single clique. An alternative approach [6] is to
obtain a valid clique tree directly, by using constrained deletion sequences in
the triangulation step. However, trying to solve the problem of partial ab-
ductive inference by using these methods can be impossible (or too expensive in
time and space) even for networks in which probabilities propagation or the
total abductive inference problem can be solved efficiently. To illustrate this
situation we give the following example:

Example 2.1. Let us consider the moral graph (or interpret it as a fragment of a
bigger one) shown in Fig. 1(a). This graph is already triangulated and we can
see that it contains six cliques: * {X|,Ei}, {X1, B>}, {X1, Es}, {X1, E4}, {X1, Es},
and {Xl,E(,}.

This set of cliques can be structured in several ways. Thus, Figs. 2(a) and (b)
show two possibilities. If we consider that all the variables can take five dif-
ferent states, then the probability table (potential) associated with every clique
has 25 entries. We will refer to this data as the clique size, that is, for us the size
of a clique is the size of its associate potential (size of state space representa-
tion). The size of a clique tree is obtained by summing the size of all the cliques
it contains. In this case, the size of the clique tree is 150. If the number of cases
for each variable were 10, then the size of each clique would be 100 and the size

2 A clique is a maximal complete sub-graph.

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 267

®D @.@;»

e

GEED
CE1E2E3 XD
S CELTY
ELE2E3EAES XD
@@ o CEEEEEED

(d)

(@)

Fig. 2. Different clique trees.

of the whole tree would be 600. Therefore, the propagation over these clique

trees will be very efficient, because they have a small size (150 or 600).

Now, let us consider a partial abductive inference problem over the same
graph by taking X = {E|,...,Es} as the explanation set. Below we examine
the effect of applying the exact techniques cited above to this problem:

e Methods based on the variable elimination algorithm [9,18] or methods
based on a direct search of a valid clique tree [6]. In both methods the order-
ing in which the variables are going to be eliminated must contain the vari-
ables not in Xg in the first positions, so, in this case the first variable to
remove is X;. To eliminate variable X; the first step is the combination of
all the probability tables containing X;. Thus, a probability table over
{X1,E\,E»,E5,E4,Es,Eg} is built. The size of this probability table will be
78,125 if 5 states per variable are considered or 10,000,000 if 10 states per
variable are considered (Fig. 2(c)).

e Methods based on the modification of the clique tree [21,33]. Fig. 2(d) shows
the effect yielded by the application of Xu’s method. As we can see, a clique
containing the variables {X,, E|, E,, E3, E4, Es, E¢ } is included in the tree. The
size of this clique is 78,125 or 10,000,000 depending on the number of differ-
ent states per variable (5 or 10).

In this case the modification introduced by Nilsson does not have any
effect over the obtained tree. To give an idea of the difference, let us suppose
that a new variable E; is introduced in the explanation set, and that variable
is connected only with Es in the moral graph. Then, the method proposed by
Xu will introduce a clique {X,,E;, E,, Es, E4, Es, Eg, E;} into the clique tree,
while the modification proposed by Nilsson will introduce the following
sub-tree:

268 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283
(X] 7E17E2aE3)E47E5?E6) - (EéaE7))

which clearly has a smaller size.
The reader can check that the same situation is obtained when the moral
graph in Fig. 1(b) is considered.

With the previous example we have shown that the problem of partial
abductive inference can be intractable even for networks in which
probabilities propagation or total abductive inference can be solved effi-
ciently. The following example tries to deepen in this situation by showing
the effect of the explanation set cardinality in the size of the obtained valid
clique tree.

Example 2.2. To illustrate the increment of the clique tree size with respect to

the number of variables in the explanation set (|Xg|), we have carried out the

following experiment: we randomly generated explanation sets containing 1, 7,

13, 19, 25, 31, and 37 variables for the Alarm network [1] (which has 37

variables). Then, valid clique trees were obtained for every generated expla-

nation set. The results are shown in Table 1, where:

o the first row (#nodes) shows the number of nodes in the explanation set,

o the second row (CT size) shows the size of the obtained valid clique tree (av-
eraged over 100 explanation sets), and

o the third row (LC size) shows the size of the largest clique in the tree (also by
average).

Therefore, for this network exact partial abductive inference may require to
deal with a clique tree of size 10e5 or 10e6 approximately, while exact total
abductive inference or probabilities propagation requires to deal with a clique
tree of size 10e3 approximately. If the size of the largest clique in the tree is
considered, then it passes from 10e2 to values close to 10e6.

We can see, then, that given the increment in the clique tree size, the use of
approximate methods for partial abductive inference in BBNs is even more
necessary than for total abductive inference.

In the literature we can find approximate algorithms based on the reduction
of the probability tables size involved in computations, as in [10], where it is
shown how the mini-buckets scheme can be applied to the search of the best
explanation, although this method only search for the best explanation and not

Table 1
Sizes respect to |Xg|
Nodes 1 7 13 19 25 31 37

CT size 1.044¢3 8.094e3 2.404e5 8.531e5 1.282¢6 5.816e4 1.014e3
LC size 1.094¢2 4.478e3 2.273e5 8.303e5 9.065¢5 5.376¢4 1.08e2

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 269

for the K best. Another approach is based on the use of optimisation meta-
heuristics, as the genetic algorithm (GA) designed for searching the best K
configurations presented in [5].

The exercise of dealing with partial abductive inference using optimisation
methods could seem easier than that of dealing with total abductive inference,
because the size of the search space in the partial case is considerably smaller
than in the total abductive inference problem. However, this is not the case
because of the increasing complexity of the evaluation (fitness) function. In
fact, as P(xy|xo) is proportional to P(xy,xo), this value can be used to rank the
different configurations, and so in the total case the chain rule can be applied in
order to evaluate a configuration [11,27,34]. Thus, in the total case, to evaluate
a configuration |X;| multiplications are carried out.

Nevertheless, in the partial case, as we must remove (by addition) the
variables in Xz, the chain rule cannot be used to evaluate a configuration xg
because of the large number of necessary operations (additions and multipli-
cations). For example, if we have a network with |Xj| =50, |Xg| = 15,
|Xr| = 30 and |Xo| = 5, the number of operations is bounded by 2*° additions
and 50 x 2% multiplications. Clearly, this is computationally intractable given
the large number of evaluated individuals in this kind of algorithms. Because of
this, in [5] the fitness P(xg, xo) of a configuration xg is computed by the process
described in Algorithm 1, where 7 = {Cy,C|,...,C,} is a rooted clique tree,
being C, the root.

Algorithm 1 (Evaluation function).

1. Enter the evidence xo in 7,

2. Enter (as evidence) the configuration xg in .7,

3. Perform CollectEvidence from the root (Cy) (i.e., an upward propagation),
and

4. P(xg,x0) is equal to the sum of the potential stored in the root (Cp).

Therefore, to evaluate a configuration an exact propagation is carried out,
or more correctly half propagation, because only the upward phase is per-
formed and not the downward one (see [15] for details about clique tree
propagation). Furthermore, for this propagation we can use a clique tree ob-
tained without constraints and so its size is much smaller than the clique tree
used for exact partial abductive inference. In addition, in [5] it is shown how
the tree can be pruned with respect to the explanation set, reducing (on the
average) its size about 20% in our experiments. The following paragraph
outlines the prunning process.

Because the propagation is performed in a bottom-up way, it can be ob-
served that independently of the configuration being evaluated some compu-
tations are always the same. Concretely, if a leaf node in the tree does not
contain any variable belonging to Xk in its residual set (variables to be removed

270 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

@—®

not pruned

(b)

Fig. 3. An example of the prune operator.

by addition), then the message sent from this node is the same for every con-
figuration xg of Xg. This kind of message is calculated only the first time, then it
is combined with the potential stored in its parent clique and the leaf node is
deleted. The process is repeated (from leaves to root) until no more “leaf”’
nodes can be deleted. So, the complexity of the precomputation process is
equivalent to perform an upward propagation.

The following example shows the effect of the prune operation.

Example 2.3. Let us consider the moral graph in Fig. 3(a), which is obtained by
adding {Xa,...,X7} to the moral graph considered in Fig. 1(a). A clique tree for
this graph is shown in Fig. 3(b), where the links are labelled with the separator set.

Now, if we consider {E},...,Es} as explanation set, then we can prune all
the cliques below the dashed line. Therefore, the tree used to evaluate config-
urations has a smaller size.

Given that propagation is a time-expensive process, it would be desirable to
avoid the need of performing a whole upward propagation each time a dis-
tinct ® individual has to be evaluated. Following this idea, in [7] the authors
developed specific genetic operators that allow us to take advantage of the
calculations previously carried out when a new individual is being evaluated.
Thus, in the mutation operator only the computations involving ancestor cli-
ques of the one containing the mutated variable(s) have to be carried out, while
the rest of computations can be retrieved from previous evaluations. In the
crossover operator the situation is similar: as the parents interchange the genes
contained in a sub-tree of the clique tree, then if C is the root of the inter-

3 A hash table is used in order to store the fitness of individuals previously evaluated, so if an
individual is re-sampled by the GA its fitness can be retrieved efficiently.

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 271

changed sub-tree, only the computations involving ancestor cliques of C have
to be carried out. By using these specific operators the need of performing a
whole upward propagation is avoided, although more memory is needed be-
cause the messages sent during the propagation of the population individuals
are stored (details can be found in [7]).

In this paper we will try to show that if we change the metaheuristic from
GAs to SA [16,32], then it is possible to evaluate a new configuration by
carrying out only the computations that involve one clique and its neighbours.
Therefore, by using this way to evaluate an individual the calculations are
performed more locally than in the improved GA [7].

3. Simulated annealing

Simulated annealing [16,32] is an optimisation technique to solve (NP-hard)
combinatorial optimisation problems, inspired in the physical annealing pro-
cess of solids, and has been successfully applied to solve other NP-hard
problems in Bayesian networks, as decomposition of BBN [17], convex set of
probabilities propagation [2], or causal orderings approximation [8].

The problem to solve is the optimisation of a cost function cost(x) in a
search space W defined for a set of random variables N. The way to proceed is
similar to a hill climbing algorithm, but some times the algorithm accepts cost-
function increases, in order to avoid to be trapped at local optima. The
probability of accepting cost-function increases is controlled by a parameter ¢,
called temperature. Initially, the temperature is high and cost-increases are
accepted easily, but in successive iterations the temperature is decreased ac-
cording to a cooling procedure, and the probability of accepting cost-increases
also decreases. Concretely, if we are minimising cost(x) the algorithm changes
from configuration x to another configuration x' with probability
g~ (costl)—cost)/t If £(4) is the cooling function and N(x) represents the neigh-
bourhood of x, i.e., configurations obtained by applying a small perturbation
to x, then the structure of the simulated annealing algorithm is shown below.

Algorithm 2 (Structure of SA).
1. Set the initial temperature z.
2. Set the number of iterations n for each value of .
3. While not (stopping condition) do
(a) Fori=1tondo
(i) Select x' € N(x)
(i) if cost(x’) < cost(x), then accept x'
else accept x’ with prob. e~ (costx)—cost(x)/r
(b) 1= /(1)

4. Return x as solution.

272 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

Under theoretical conditions the algorithm converges to the global optimum
[13], but this ideal annealing has an excessive time complexity. Therefore, in
order to get more efficient implementations some convergence conditions are
relaxed. Thus, our cooling procedure will be based on the simple scheme in-
troduced in [16], that is, a geometric decreasing of the temperature according to
the formula: #,, = o - t;,, with o € [0.8, 1).

4. The proposed simulated annealing algorithm

It is clear that we can implement a SA program for solving our problem by
using the structure described in Algorithm 2 (modifying the acceptance crite-
rion to e~ (cost)—cost))/r ojven that we want to maximise P(xg,xo)), and the
evaluation function in Algorithm 1. However, our goal is to take advantage of
the SA structure in order to evaluate the configurations by means of local
computations.

4.1. Local computation of neighbour configurations

Consider the rooted clique tree in Fig. 4(a), and the explanation set
Xg = {A,C,E, G,H}. Variables inside brackets represent the separator of a cli-
que with its clique parent (intersection), and variables outside brackets are the
residual set. Variables in the explanation set have been underlined for a clearer
identification. Fig. 4 shows the state (messages) of the tree after the evaluation

X, = (A=a, C=c, E=e, G=g, H=h) X,=(A=a, C=—c, E=e, G=g, H=h)

7 N\ g/4 \h
2 5 3 .
. \h
@) o
(a)

Fig. 4. Local computation of a neighbour configuration.

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 273

of configuration x; = (a, c, e, g, h) using the procedure described in Algorithm
1, where the message labels represent the information contained in the message
related to the configuration being evaluated.

As we know, N(x) is the set of configurations that can be obtained from x
by means of a small perturbation. To make possible the evaluation of x
neighbours by local computation, we define N(x) as the set of configurations
that can be obtained from x by modifying the state of one variable contained
in an adjacent clique to the one actually being considered as root (or more
precisely in a clique such that there is no clique containing an explanation
variable in the path connecting it to the root). In the example, the actual root
is Cy and the only clique connected with it is Cj, so N(x;) contains only the
configurations that differ from x; only in the state taken by C. If we suppose
that all the variables can take two states, then N(x;) = {(a,—c,e,g,h)}.
Fig. 4(b) shows that considering C; as the new root, then to evaluate this new
configuration only the message from the old root to the new one has to be
calculated, because the rest of the messages can be reused. So, only two
cliques (the new and the old root) are involved in new computations. The
process is:

1. Compute the message M % where C,, denotes the old root and C,, de-
notes the new root.

2. Combine the potential stored in C,, with M Cor—=Car,

3. Choose a configuration of N(x) and evaluate it by addition in C,,.

4. Select a neighbour of the actual root as new root and continue the process.

Some important remarks have to be done at this point:

R1. To avoid the need of reloading (or recalculating) the initial clique poten-
tials, the computations are performed without modifying them, that is:

M= = ((Cor) ® {®ckeadj(cor)\cnl.Mcﬁc""})lc‘"ﬁCm,

P(xg,x0) = (Y(Cur) © {®ck6adj(cnr)MCwC"r})mv

where adj(C;) is the set of adjacent cliques to C;, ® denotes combination (point-
wise multiplication), and | 4 denotes marginalisation (summation over vari-
ables not in A).

R2. For the same reason as in the previous point, the configuration being
evaluated cannot be entered in the clique potentials. To avoid this difficulty we
modify the marginalisation operator in the following way:

L SY(X,Y) if XNzZ=40,
Y, Y)eet =g Y(X,Y), ifXNZ#0,

xxhX¥N2) —z1(xnz)

274 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

where x'“ denotes the configuration obtained from x by removing the literals
not in A (notice the double use of the | operator, projection for configurations
and marginalisation for potentials). That is, if we use | .y, with xg the
configuration actually being evaluated, we are working as if the configuration x
had been entered in the clique tree. Keeping this in mind and for the sake of
simplicity we will abbreviate | .y, ..} by |..

R3. If the next root is previously known, then the computations in R1 can be
simplified. Note that a great deal of the computations carried out during the
calculation of P(xg,xo0) in Cy;, are repeated in the calculation of the message
sent from Cy; to Cy; (the future root), as we can see in the following expression:

M= = (Y(C) ® {®Ckeadj<cm>\cﬁMcﬁc"'})l"(cmmcf’).

However, if we know the future root when computing P(xg,xo), then these
repetitions can be avoided by using a temporal potential (7), and structuring
the computations in the following way:

Y(T) = (Y(Cur) ® {Qcyeadiicone M }),
Pl x0) = ((T) @ MCw o) <G,
M= (1),

In order to know the next root in advance, the solution adopted has been the
use of a sequence of cliques (¢) to drive the iterative process. The sequence
must verify the following conditions:

(i) a(0) is the clique used as root in the initial topology of the rooted clique

tree (Cy). This is necessary because of the (bottom-up) evaluation of the first

configuration.

(i) Vj,0<j < ||, it holds that ¢(;) and ¢((j + 1) mod |g|) are adjacent cli-

ques in the tree.

(iii) All the cliques in the tree are in ¢ (some of them more than once in order

to guarantee the previous condition).

Therefore, the algorithm uses an index that iteratively goes through this se-
quence to select the root cliques. So, the next root is always known. This se-
quence is computed in runtime just before starting the SA iterations.

An additional consequence of using a sequence o to drive the iterative
process is that it avoids the possibility that the process gets stuck in a clique. In
fact, by using o we are sure that all the cliques will be visited in a near future,
and so the probability of every configuration to be visited is greater than zero,
which is a required condition by SA convergence properties.

Example 4.1. Let us consider the rooted clique tree shown in Fig. 3(b) in its
pruned version. Let us also identify each clique by the index of the explanation
variable contained by it (that is, C; for {E, X}, C, for {E|, X5}, etc.). Then,
can be computed as (Cy, Cy, C3, Cy, Cy, Cy, Cy, Cs, Cs, Cs).

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 275

R4. After precomputing the clique tree, we are sure that all the leaves contain
at least one variable belonging to the explanation set. However, this may not be
the case for all the inner cliques. When one of these cliques is selected as root,
the process is exactly the same as for the rest, except that the current config-
uration does not change.

R5. As we are interested in the K best configurations and not only in the best
one, when a new configuration is evaluated, it is studied whether it must be
included in K best (an array containing the K best configurations found until
this moment). When the algorithm finishes, if Xo # () the probability associated
to the configurations in K best is divided by P(xo) in order to get P(xg|xo).

R6. A modification that can improve the efficiency of the SA algorithm was
proposed by Greene and Supowit [14]. According to it, when |N(x)| is small,
and so we can calculate the cost of all its members, then instead of selecting a
configuration of N(x) randomly, it is better to choose a configuration,
x' € {N(x) U {x}}, with probability proportional to e~ =)/’ In our case, if
we restrict N (x) to N'(x), with N'(x) being the set of configurations x', such that,
only the state of variables in the actual root changes with respect to x, |[N'(x)] is
small. Furthermore, given that Vx' € N’(x),cost(x’) can be computed from the
potential stored in the actual root by using |, this modification can be used in
our algorithm.

As we search for the K MPEs and not only for the best one, the imple-
mentation of the modification proposed by Greene and Supowit could be
specially interesting for us, because it allows us to explore the neighbourhood
of good configurations.

On the other hand, this modification makes more probable the re-sampling
of some configurations. In order to avoid re-evaluating the same configurations
over and over again, we use a hash table in which pairs (configuration,
probability) are stored, so, when a previously visited configuration has to be
evaluated its probability is (efficiently) retrieved from the hash table.

4.2. About the cooling procedure

As we have said in Section 3 our cooling procedure will be based on the ex-
pression #; = o - t;_1. So, two parameters have to be selected: the cooling factor
(), and the initial temperature (#). In general, the selection of a does not rep-
resent a difficult problem, because it is known that values in the interval [0.9, 0.99]
are good choices. However, we have detected some problems related with ¢.

Theoretically, the initial temperature, ¢, should be set to some large value,
such that the probability to accept a worse configuration is close to 1. How-
ever, very often it is enough to take an initial temperature such that worse
configurations are accepted with high probability. In related problems [2,8]

276 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

usual values for #, are 0.5, 1.0, 2.0,. .., and so values in these ranges were our
first choice. However, the results were not good and after a preliminary study
we discovered that under these conditions the algorithm needs too many it-
erations before the search is focused (that is, before the probability of accepting
bad moves is small).

In fact, as we use P(xg,xo) as cost function, P(xp) can be used as an upper
bound for the value taken by a configuration xg. In general, this upper bound
can be a very small value, because very often the evidence represents states
rarely taken by the observed variables. So if we set ¢, to values as 1.0, 2.0, ...,
the number of iterations to carry out until ¢ is close to the values taken by the
cost function is too high. To dismiss these large number of iterations we set £,
to P(xo), but the result did not improve very much because the large distance
between P(xo) and P(xg,xo) — for the majority of configurations xg — made the
number of iterations to perform very large. Because of this we normalised the
cost function using the actual configuration, that is, if x is the actual config-
uration then we use e(C*)/€®)/* instead of e“™)/* to calculate the probability of
accepting x' as the new configuration. With this change and using an initial
temperature £, that allows us to accept worse configurations (than the actual)
with a large probability (¢, = 1.0,2.0,...), the accuracy and efficiency of the
algorithm has been improved significantly.

5. Experimental evaluation

In order to evaluate our algorithm we have performed seven experiments.
For the first six experiments we have used the Alarm belief network [1], and
two artificially generated networks (artificial3 and artificial5). Some of these
networks have been used to test the genetic algorithms proposed in [5,7]. The
Alarm network has 37 variables which can take 2, 3 or 4 different states. Both
artificial networks have 25 variables, each one taking three different states in
artificial3 and 5 in artificial5.

We have carried out two experiments over each network. In the two ex-
periments over the Alarm network, four variables were selected (randomly) as
evidence. In the experiments over the networks artificial3 and artificial5 three
variables ({X2, X23, X24}) were selected as evidence. In all the experiments the
observed states were selected in a random way. The K = 50 MPEs were cal-
culated using (1) an exact algorithm — giving it enough time and memory —, (2)
the improved GA presented in [7], and (3) our SA algorithm. Table 2 shows
some data about the experiments.

At the end of each experiment several statistics were obtained.

e topl. % of runs in which the best MPE was obtained.
e topl0. % (in average) of MPEs found between the second and the tenth. For

example, topl0=33.3% means that three explanations in the range 2-10

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 277

Table 2
Description of the experiments

Exp. | Xe| Network Xe Qx|

1 12 alarm Roots 9216
2 12 alarm Randomly 248,832
3 11 artificial3 Even index 177,147
4 11 artificial3 Odd index 177,147
5 11 artificial5 Even index 48,828,125
6 11 artificial5 Odd index 48,828,125

were found. However, the positions are not considered, so (2,3,6) or (7,8,9)
yield the same value for topl0.

e top25. Similar to topl0 but with the range 11-25.

e top50. Similar to topl0 but with the range 26-50.

e massl. If p, is the probability of the real true MPE, and p, is the probability
of the best MPE found by the algorithm, then massl = p, - 100/p;.

e massT. Similar to massl, but taking

Respect to the stopping condition, the algorithm is run N = 50 iterations in
the outer cycle and # - |g| in the inner one. In the experiments, n was set to 2
(exp. 1-4), and 8 (exp. 5 and 6). The value of o depends on the number of
iterations in order to ensure that the algorithm finishes with a small value of ¢.
In our case we have selected ¢, = 0.1. When ¢ = ¢, the probability of accepting
a configuration 10 times worse than the actual is lower than Se — 5. In order
to be sure that the algorithm ends with ¢ =1¢,, we have calculated o as
(tr /1)

Tables 3-8 show the results obtained by the SA algorithm averaged over 100
runs. Table 9 shows the results obtained by the GA.

From these results we can see that the algorithm has a high accuracy,
obtaining similar results to the GA. In fact, some improvement can be ob-
served over the GAs, but not by an overwhelming margin. From Tables 3-8
we can see that the algorithm finds the MPE in almost all the runs, finding

Table 3
Results for the experiment 1

N topl topl0 top25 top50 massl massT
10 50.00 37.11 41.73 25.24 79.89 43.62
20 79.00 63.89 64.93 45.44 96.46 70.42
30 93.00 83.00 85.07 62.64 99.72 87.90
40 100.00 92.33 94.67 75.96 100.00 95.44

50 100.00 97.78 98.53 84.88 100.00 98.47

278 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283
Table 4
Results for the experiment 2

N topl topl0 top25 top50 mass] massT
10 66.00 50.67 39.40 34.68 86.75 55.17
20 98.00 79.78 68.67 60.04 99.30 82.77
30 100.00 94.78 86.60 79.84 100.00 94.54
40 100.00 98.78 92.53 87.44 100.00 97.57
50 100.00 99.33 93.27 88.68 100.00 97.97
Table 5
Results for the experiment 3

N topl topl0 top25 top50 mass] massT
10 13.00 18.22 16.87 18.88 74.94 53.01
20 29.00 35.44 32.07 35.16 87.27 72.10
30 59.00 56.11 49.07 53.72 94.33 84.43
40 81.00 74.56 66.27 68.08 97.60 91.64
50 83.00 79.33 71.13 72.40 97.62 93.18
Table 6
Results for the experiment 4

N topl topl0 top25 top50 massl massT
10 29.00 27.22 28.73 27.00 82.68 61.93
20 64.00 52.44 50.27 49.96 94.30 79.57
30 84.00 76.22 74.80 70.24 98.61 91.29
40 97.00 93.33 90.53 83.36 99.80 97.31
50 98.00 95.67 92.93 87.12 99.87 98.18
Table 7
Results for the experiment 5

N topl topl0 top25 top50 massl massT
10 14.00 9.89 9.67 6.44 47.87 26.43
20 43.00 25.11 23.07 17.12 73.29 47.40
30 81.00 56.56 51.20 37.16 92.93 73.54
40 95.00 85.44 80.40 62.96 98.37 90.72
50 96.00 89.33 85.53 68.24 98.76 92.94
Table 8
Results for the experiment 6

N topl topl0 top25 top50 massl massT
10 14.00 12.56 6.20 6.48 64.64 22.42
20 32.00 29.78 15.87 15.16 81.41 41.49
30 75.00 64.67 38.93 37.24 94.65 69.74
40 98.00 94.00 77.93 72.40 99.59 93.09
50 99.00 96.00 83.80 78.72 99.80 95.13

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 279

Table 9

Results obtained by genetic algorithms

Exp. topl topl0 top25 top50 massl massT
1 100.00 99.78 88.80 81.48 100.00 97.32
2 98.00 98.33 93.07 92.64 99.30 97.21
3 95.00 85.78 73.73 76.24 98.78 95.04
4 95.00 90.33 78.67 75.80 99.08 95.02
5 100.00 97.78 93.53 76.96 100.00 97.13
6 100.00 100.00 99.93 98.76 100.00 99.95

another high quality solution in the rest (see column massl). Furthermore, the
algorithm is able to find the majority of the K best explanations (columns
topl0, top25, top50 and massT). With respect to the efficiency of the proposed
algorithm, it is more efficient in memory than the GA presented in [5] and
much more efficient than the GA presented in [7] (because this algorithm
needs to store the messages — potentials — sent during the evaluation of each
individual actually included in the population). Time requirements are heavily
dependent on the parameters N and n for SA, and number of generations and
population size for GAs. For the results presented here the proposed SA al-
gorithm needs (rougly speaking) between the 25% and the 35% less time than
the optimised GA proposed in [7], and less than half the time than the GA
presented in [5].

Once we have analysed the results and the accuracy of the SA algorithm has
been tested in problems for which exact results were also calculated (requiring
lot of time and space in some of them), we have carried out another experi-
ment. An artificial network that we have called extremel00 has been artificially
generated. The network has 100 variables which can take two different states.
The probabilities have been generated as follows: two random uniform num-
bers, x and y are generated, and the probability of the two values (marginals
for root nodes and conditionals for the rest) of a variable are determined by
normalising x> and y°, which give rise to extreme probabilities.

Table 10 shows some data about the experiment performed over the net-
work extremel00. As we can see 30 variables were selected as the explanation
set, in the following way: several sets containing 30 variables were randomly
generated and then that being more difficult to be solved by exact computation
was choosen. Six variables were randomly selected as evidence, fixing them to
their less probable state (the probability of the evidence was 7.41e—12).

Table 10
Description of experiment 7
Exp. | Xe| Network Xe |Qx, |

7 30 extremel00 Pseudo-random 1,073,741,824

280 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

We have not been able to solve this problem in our computer (an Intel
Pentium IIT (500 MHz) with 384 MB of RAM), because of memory require-
ments. Exact computation was feasible with subsets of the whole explanation
set containing the first 3, 6, 9, 12, 15, 18 and 24 variables. To give you an idea
of the problem complexity, the time employed by the exact algorithm (imple-
mented in Java, virtual machine jdk 1.2) searching for the best explanation
when all the unobserved variables are selected as the explanation set was 9 s,
while the time employed when the first 24 variables of the explanation set are
selected as the explanation set was 4420 s.

We have run the SA algorithm presented here and the GA presented in [7]
100 times over the problem, using the same parameters as for the artificials
network. As we do not know the exact results the statistics calculated for the
six first experiments cannot be calculated now. Figs. 5 and 6 show the histo-
gram of the 5000 (50 x 100) configurations found by both algorithms, where
the height of each bar corresponds to the number of times of the 100 repetitions
in which the configuration with that probability was found.

Although we cannot be sure if we have really found the best 50 MPEs, given
the obtained results and the accuracy exhibited by both algorithms (SA and
GA) in the six first experiments, we can be almost sure that the best expla-
nations have been found. Respect to the obtained results, the SA algorithm
(clearly) shows a better performance than the the method based on GAs,
finding the three most probable configurations in all the runs. With respect to
the computation time required by both algorithms (implementation in C), was

ocurrences

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
probability

Fig. 5. Histogram for the extremel00 network using SA.

ocurrences

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
probability

Fig. 6. Histogram for the extremel00 network using GA.

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 281

152 s for SA and 250 s for GAs. Of course, with respect to memory require-
ments the comparison is clearly advantageous for the SA approach.

6. Concluding remarks

The problem of performing partial abductive inference in BBNs has been
studied. This type of probabilistic reasoning has the disadvantage that de-
pending on the selected explanation set, exact inference can be unfeasible
even for networks in which exact inference is feasible for others types of
probabilistic reasoning (like probabilities propagation or fotal abductive in-
ference).

We have presented a SA algorithm for partial abductive reasoning in BBNs.
The algorithm has an anytime performance, i.e., it can continue the search
while time is available or can be stopped at any time to yield the K MPEs found
until this moment. The experiments have revealed that the algorithm has a high
accuracy, improving in some cases the results obtained by previous methods
based on GAs.

With respect to the efficiency of the proposed algorithm, it is more efficient
in memory than the GA presented in [5] and much more efficient than the GA
presented in [7]. With respect to time requirements, the SA approach is clearly
faster than the previous approach based on GAs, even for the optimised GA
presented in [7] which take advantage of the individuals previously evaluated
by means of specific genetic operators.

The algorithm is gemeral in the sense that as it is based on clique tree
propagation, it can be applied to multiple connected networks, and it does not
impose any constraint about the number of MPEs to be found.

The algorithm is approximate in the sense that we cannot be sure that the
optimum has been really found, but as the evaluation function used here is
based on exact propagation, we can be sure of the probability assigned to each
explanation, so if explanation e; is ranked before explanation e,, then e; is
(really) more probable than e;.

The two previous remarks are good consequences of using an evaluation
function based on clique tree propagation. However, this implies to assume
that the network is such that an exact probabilistic propagation is feasible. In
the future we plan to relax this assumption by evaluating configurations using
approximate techniques.

Acknowledgements

This work has been supported by the Spanish Comisién Interministerial de
Ciencia y Tecnologia (CICYT) under Project TIC97-1135-CO4-01.

282 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283

References

[1] LA. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system:
a case study with two probabilistic inference techniques for belief networks, in: Proceedings of
the Second European Conference on Artificial Intelligence in Medicine, Springer, Berlin, 1989,
pp. 247-256.

[2] A. Cano, J.E. Cano, S. Moral, Convex sets of probabilities propagation by simulated
annealing, in: Proceedings of the Fifth International Conference on Information Processing
Management of Uncertainty (IPMU), Paris, France, 1994.

[3] U. Chajewska, J.Y. Halpern, Defining explanation in probabilistic systems, in: Proceedings of
the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), Morgan
Kaufmann Publishers, San Francisco, CA, 1997, pp. 62-71.

[4] A.P. Dawid, Applications of a general propagation algorithm for probabilistic expert systems,
Statistics and Computing 2 (1992) 25-36.

[5] LLM. de Campos, J.A. Gdmez, S. Moral, Partial abductive inference in Bayesian
belief networks using a genetic algorithm, Pattern Recognition Letters 20 (11-13) (1999)
1211-1217.

[6] L.M. de Campos, J.A. Gamez, S. Moral, On the problem of performing exact partial abductive
inference in Bayesian belief networks using junction trees, in: Proceedings of the Eighth
International Conference on Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU’00), vol. 111, 2000, pp. 1270-1277.

[7] L.M. de Campos, J.A. Gamez, S. Moral, Partial abductive inference in Bayesian belief
networks: an evolutionary computation approach by using problem specific genetic operators,
IEEE Transactions on Evolutionary Computation, to appear.

[8] L.M. de Campos, J.F. Huete, Approximating causal orderings for Bayesian networks using

genetic algorithms and simulated annealing, in: Proceedings of the Eighth International

Conference on Information Processing and Management of Uncertainty in Knowledge-based

Systems (IPMU’00), vol. I, 2000, pp. 333-340.

R. Dechter, Bucket elimination: a unifying framework for probabilistic inference, in:

Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence

(UAI-96), Portland, Oregon, 1996, pp. 211-219.

[10] R. Dechter, I. Rish, A scheme for approximating probabilistic inference, in: Proceedings of the
13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), Morgan
Kaufmann Publishers, San Francisco, CA, 1997, pp. 132-141.

[11] E.S. Gelsema, Abductive reasoning in Bayesian belief networks using a genetic algorithm,
Pattern Recognition Letters 16 (1995) 865-871.

[12] E.S. Gelsema, Diagnostic reasoning based on a genetic algorithm operating in a Bayesian
belief network, Pattern Recognition Letters 17 (1996) 1047-1055.

[13] S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the Bayesian restoration
of images, IEEE Transaction on Pattern Analysis and Machine Intelligence 6 (1984)
721-741.

[14] J.W. Greene, K.J. Supowit, Simulated annealing without rejected moves, in: Proceedings of the
IEEE International Conference on Computer Design, Port Chester, 1984, pp. 658-663.

[15] F.V. Jensen, An Introduction to Bayesian Networks, UCL Press, 1996.

[16] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220
(1983) 671-680.

[17] U. Kjerulff, Optimal decomposition of probabilistic networks by simulated annealing, Statistic
and Computing 2 (1992) 7-17.

[18] Z. Li, B. D’Ambrosio, An efficient approach for finding the mpe in belief networks, in:
Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, Morgan and
Kaufmann, San Mateo, 1993, pp. 342-349.

9

—

L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 263-283 283

[19] R. Lin, A. Galper, R. Shachter, Abductive inference using probabilistic networks: randomized
search techniques, Technical Report KSL-90-73, Knowledge Systems Laboratory, Stanford
University, California, 1990.

[20] R.E. Neapolitan, Probabilistic Reasoning in Expert Systems. Theory and Algorithms, Wiley/
Interscience, New York, 1990.

[21] D. Nilsson, An efficient algorithm for finding the M most probable configurations in Bayesian
networks, Statistics and Computing 8 (1998) 159-173.

[22] J. Pearl, Distributed revision of composite beliefs, Artificial Intelligence 33 (1987) 173-215.

[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, 1988.

[24] Y. Peng, J.A. Reggia, A probabilistic causal model for diagnostic problem solving — Part One,
IEEE Transactions on Systems, Man, and Cybernetics 17 (2) (1987) 146-162.

[25] Y. Peng, J.A. Reggia, A probabilistic causal model for diagnostic problem solving — Part Two,
IEEE Transactions on Systems, Man, and Cybernetics 17 (3) (1987) 395-406.

[26] H.E. Pople, On the mechanization of abductive logic, in: Proceedings of the Third
International Joint Conference on Artificial Intelligence, 1973, pp. 147-152.

[27] C. Rojas-Guzman, M.A. Kramer, Galgo: A genetic algorithm decision support tool for
complex uncertain systems modeled with Bayesian belief networks, in: Proceedings of the
Ninth Conference on Uncertainty in Artificial Intelligence, Morgan Kauffman, San Mateo,
1993, pp. 368-375.

[28] B. Seroussi, J.L. Goldmard, An algorithm directly finding the K most probable configurations
in Bayesian networks, International Journal of Approximate Reasoning 11 (1994) 205-233.

[29] S.E. Shimony, The role of relevance in explanation I: irrelevance as statistical independence,
International Journal of Approximate Reasoning 8 (1993) 281-324.

[30] S.E. Shimony, The role of relevance in explanation II: disjunctive assignments and
approximate independence, International Journal of Approximate Reasoning 13 (1995) 27-60.

[31] B.K. Sy, Reasoning MPE to multiply connected belief networks using message passing, in:
Proceedings of the 11th National Conference on AI, AAAI, 1993, pp. 570-576.

[32] P.J.M. Van Laarhoven, E.H.L. Aarts, Simulated Annealing, Reidel Publishers, 1988.

[33] H. Xu, Computing marginals for arbitrary subsets from marginal representation in Markov
trees, Artificial Intelligence 74 (1995) 177-189.

[34] X. Zhong, E. Santos Jr., Directing genetic algorithms for probabilistic reasoning through
reinforcement learning, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 8 (2000) 167-186.

