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Abstract

Partial abductive inference in Bayesian belief networks (BBNs) is intended as the
process of generating the K most probable configurations for a set of unobserved
variables (the explanation set). This problem is NP-hard and so exact computation is
not always possible. In previous works genetic algorithms (GAs) have been used to solve
the problem in an approximate way by using exact probabilities propagation as the
evaluation function. However, although the translation of a partial abductive inference
problem into a (set of) probabilities propagation problem(s) enlarges the class of
solvable problems, it is not enough for large networks. In this paper we try to enlarge
the class of solvable problems by reducing the size of the graphical structure in which
probabilities propagation will be carried out. To achieve this reduction we present a
method that yields a (forest of) clique tree(s) from which the variables of the explanation
set have been removed, but in which configurations of these variables can be evaluated.
Experimental results show a significant speedup of the evaluation function when
propagation is performed over the obtained reduced graphical structure. © 2001
Elsevier Science Inc. All rights reserved.
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1. Introduction

Bayesian belief networks (BBNs) [19,13] are frequently used as the kernel of
Probabilistic Expert Systems, because they provide an efficient representation
of the joint probability distribution, and allow us to calculate probabilities by
means of local computation, i.e., only relevant information is considered when
a probability has to be calculated.

Although the most commonly used type of inference in BBNs is probabilities
(or evidence) propagation, in this paper we are interested in another type of
inference, known as abductive reasoning (also known as diagnostic reasoning
because it is in the field of diagnostic where abductive reasoning has its most
clear application [11]).

Abduction is defined as the process of generating a plausible explanation for
a given set of observations or facts [20], and in the context of probabilistic
reasoning, abductive inference corresponds to finding the maximum a poste-
riori probability state of the system variables, given some evidence (observed
variables) [18]. The increasing attention received by abductive inference in
BBNs over the last decade has yielded as a result the development of both exact
and approximate solution methods. However, only some of these algorithms
[10,17,21,22] will work for every network topology and search for the K most
probable configurations and not only for the best one. The algorithms pre-
sented in [17,22] are exact and based on clique tree propagation. On the other
hand, the algorithms presented in [10,21] are approximate and based on genetic
algorithms (GA), which follows from the fact that abductive inference in BBNs
can be viewed as a combinatorial optimization problem.

When we are interested in obtaining the K most probable configurations
only for a subset of the network variables called explanation set [16], the
problem is known as the partial abductive inference or the maximum a posteriori
hypothesis. Although this problem seems to be more useful in practical appli-
cations (because we can select the relevant ! variables as the explanation set)
than total abductive inference, it has received much less attention. Recently, the
authors have proposed to solve this problem by combining GAs (to guide the
search) and clique tree propagation (as the evaluation/fitness function) [7,9].

Our goal in this paper is to improve the efficiency of the evaluation function
proposed in [7] by reducing the size of the clique tree in which the propagation

!'In this paper we suppose that the explanation set is known (provided by the user, by another
algorithm, etc.).
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is carried out. The rest of the paper is organized as follows: In Section 2 we
briefly recall some concepts about BBNs and abductive inference. In Section 3
the process of compiling a network into a clique tree is studied. In Section 4 we
revise the method of absorption of evidence introduced by Lauritzen and
Spiegelhalter [15]. In Section 5 we discuss how to adapt it in order to absorb the
explanation set, and in Section 6 we present an algorithm to accomplish the
task of obtaining a reduced clique tree, that is, a clique tree in which the ex-
planation set variables have been absorbed. In Section 7 the experiments car-
ried out are described, and finally, in Section 8, we consider the conclusions.

2. BBNs and abductive inference

A BBN [13,19] is a directed acyclic graph (DAG), 4 = (Xy, &), where each
node represents a random variable, and the topology of the graph shows the
(in)dependence relations among the variables. The quantitative part of the
model is given by a probability distribution for each node conditioned to its
parents. If X = {X),...,X,} is the set of variables in the network, then the
joint probability can be calculated as:

PX,) = ] P(Xilpa(X)), (1)

Xi€Xuy

where pa(X;) contains the parents of X; in 4. Eq. (1) is known as the chain-rule.
In the rest of the paper we will use Fy, = {X;} U pa(X;) to denote the family of a
node/variable X;, and fy, = P(X;|pa(X;)) to denote the probability family of
variable X;.

Abductive inference in BBNs, also known as the most probable explanation
(MPE) problem, corresponds to finding the maximum a posteriori probability
state of the network, given the observed variables (the evidence). In a more
formal way: if Xy is the set of observed variables and Xy is the set of unob-
served variables, we aim to obtain the configuration x{; of Xy such that:

xy; = arg max P(xylxo), (2)
Xy

where Xo = xo is the observed evidence. Usually, xj; is known as the MPE. It is
well known that the MPE can be found using probabilities propagation
methods but replacing summation by maximum in the marginalization oper-
ator (due to the distributive property of maximum with respect to multipli-
cation) [6]. Therefore, the process of searching for the most probable
explanation has the same complexity as probabilities propagation. However, in
order to search for the K MPEs more complex methods have to be used; for
example, in [17] clique tree propagation is combined with a divide and conquer
algorithm that iteratively identifies the K MPEs.
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In partial abductive inference, if we denote the explanation set by Xg C Xy,
then the goal is to obtain the configuration xj, of Xg such that:

xg = arg max P(xg|xo) = arg max ZP()CE,xRpco)7 (3)
XE XE R

where Xz = Xy \ Xg. In general, x}; is not equal to the projection of the con-
figuration x{; over Xg, so we need to obtain xj directly (Eq. (3)).

The process of finding the configuration xj; is more complex than that of
finding xj;, because not all clique trees obtained from the original BBN are
valid. In fact, because summation and maximum have to be used simulta-
neously and these operations do not show a commutative behavior, the vari-
ables of Xg must form a sub-tree of the complete tree. The problem of finding a
valid clique tree for a given explanation set Xg is studied in [8]. From that study
it can be concluded that the size > of the clique tree obtained for partial ab-
ductive inference starts growing (in general) in an exponential way with respect
to the number of variables included in the explanation set, being the worst case
when Xg contains around half the variables in the network. Later, it decreases
being the size in the case in which Xt contains all the variables the same than
when Xg contains a single variable. Therefore, the computer requirements (time
and memory) necessary can be so high, that the problem becomes unsolvable
by exact computation, even for medium-size networks. Thus, the use of ap-
proximate methods for partial abductive inference in BBNs is even more
necessary than for total abductive inference. As it has been mentioned in the
introduction, given that abductive inference in BBNs can be viewed as a
combinatorial optimization problem, optimization metaheuristics in general,
and GAs in particular represent a good choice.

The exercise of dealing with partial abductive inference using optimization
methods could seem easier than that of dealing with total abductive inference,
because the size of the search space in the partial case is considerably smaller
than in the total abductive inference problem. However, this is not the case,
because of the increasing complexity of the evaluation (fitness) function. In
fact, as P(xy|xo) is proportional to P(xy, xo), this value can be used to rank the
different configurations, and so in the total case the chain rule can be applied in
order to evaluate a configuration [10,21]. Thus, in the total case, to evaluate a
configuration |X,| multiplications are carried out.

Nevertheless, in the partial case, as we must remove (by addition) the vari-
ables in Xz, the chain rule cannot be used to evaluate a configuration xg because
of the large number of necessary operations (additions and multiplications). For
example, if we have a network with |X,| =50, |[Xg| =15, |Xz| =30 and

2 The size of a clique is obtained as the multiplication of the number of different cases that each
clique variable can take. The size of a clique tree is obtained by summing the size of its cliques.
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|Xo| = 5, the number of operations is bounded by 2** additions and 50 x 2%
multiplications. Clearly, this is computationally intractable given the large
number of evaluated individuals in this kind of algorithms. Because of this, in
[7] the fitness P(xg,xo) of a configuration xg is computed by the process de-
scribed below, where 7 = {Cy, ..., C,} is a rooted clique tree, being C, the root.
1. Enter the evidence xo In 7,
2. Enter (as evidence) the configuration xg in 7,
3. Perform CollectEvidence from the root (C)) (i.e., an upward propagation),
and
4. p(xg,xo0) is equal to the sum of the potential stored in the root (C;).
Therefore, to evaluate a configuration an exact propagation is carried out, or
more correctly half propagation, because only the upward phase is performed
and not the downward one (see [13] for details about clique tree propagation).
Furthermore, for this propagation we can use a clique tree obtained without
constraints and so its size is much smaller than the clique tree used for exact
partial abductive inference. In addition, in [7] it is shown how the tree can be
pruned in order to avoid the repetition of unnecessary computations when a
new chromosome is being evaluated. An improvement to this algorithm can be
found in [9], consisting of the use of specific genetic operators that allow us to
take advantage of the calculations previously carried out when a new indi-
vidual is being evaluated. In this way the need to perform a whole upward
propagation is avoided, although more memory is needed.

3. Building a clique tree

Nowadays, the most frequently used propagation algorithms are based on
the transformation (compilation) of the BBN in a secondary structure called
clique tree, in which the calculations are carried out. Using clique tree propa-
gation we do not constrain the topology of the network. To obtain a clique tree
a two-stage process has to be carried out: (1) the cliques are determined, and
(2) they are given a tree structure in which the running intersection property is
verified. In this paper we assume that % is a connected graph, this assumption
does not imply any loss of generality, because if % is a disconnected graph the
process can be applied to each component in turn.

In order to obtain the cliques of a graph ¥, the following steps have to be
carried out (see [4] or [13] for a detailed description of the process):

1. Obtain the moral graph %™ by: (1) adding a link between every pair of nodes
with a common child in ¢, and (2) dropping the directionality of the links in
%. Fig. 1(b) shows the moral graph for the network in Fig. 1(a).

2. Obtain a triangulated graph %'. A graph is triangulated if there are no
cycles of length 4 or more without a chord (link). If 4™ is not already tria-
ngulated, it will be needed to be filled in (by adding links). Fig. 1(c) shows a
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Fig. 1. (a) A belief network %. (b) Moral graph ™. (c) Triangulated graph %". (d) A rooted clique
tree 7 for 4.

triangulation of ™. The triangulation process is usually guided by a dele-

tion sequence of the nodes in the graph. Different sequences can yield differ-

ent triangulations, and this is a key point in the process, because clique tree
size depends on the deletion sequence used during triangulation. Although
searching for the best deletion sequence is an NP-hard problem, suitable

heuristic algorithms have been proposed [2,14].

3. Give a label to each node of 4" using the maximum cardinality search [23].

Fig. 1(c) shows a possible labeling for the triangulated graph.

4. Get the cliques (maximal fully connected sub-graphs) of 4T and rank them
according to the label of the nodes included in each clique.

Thus, after this process we obtain an ordered list of cliques
¥ ={C),Cy,...,C}. In Fig. 1(d) we can see the cliques and their associated
label.

The running intersection property says that is C; and C; are two cliques in the
tree, then the variables in C; N C; are contained in every clique along the path
between C; and C;. To obtain a tree satisfying this property the following
process is carried out:

e Let S; denote the separator of clique C;. Take S; as the empty set, and

S;=CnN(CU---UCiy).

e Let R; denote the residual of clique C;, with R, = C; \ S;.
e Set C; as the root of the tree, and fori =2,...,¢ select as parent of C; a cli-

que C; such that §; C C;.

Finally, a potential function () defined over the variables in a clique is
associated to every clique in the tree. Each probability family fy, presented in
the network is assigned to one (and only one) clique C;, such that, Fy, C C; (the
existence of such a C; is ensured by moralization). If there is a clique w1th an
empty set of as51gned families, it is given an unitary potential. For the re-
maining cliques, do Y/(C;) < [[, cp(c,) fx;» With F(C;) being the set of families
assigned to C;. !
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After this process, the clique tree represents a factorization of the joint
probability distribution:

Pxy) =[] w(c)). (4)

CieT

Fig. 1(d) shows a rooted clique tree, with C; as the root. Variables inside
brackets represent the separator set, and variables outside brackets are the
residual set.

Clique tree propagation efficiency depends on the clique tree size, which
strongly depends on the largest clique in the tree. As the evaluation of a
chromosome is carried out by means of clique tree propagation, by reducing
the size of the clique tree we will improve the efficiency of the genetic algo-
rithm (GA). In Section 6 we will present an algorithm that, by taking ad-
vantage of the fact that the explanation set is known a priori, allows us to
obtain a reduced clique tree. Before that, we will revise Lauritzen and Spie-
gelhalter’s absorption of evidence, because our algorithm is based on this
idea.

4. Lauritzen and Spiegelhalter’s absorption of evidence

Usually, evidence Xo = x¢ is entered to the clique tree using the following
process (by x'¥ we denote the configuration obtained from x after removing the
literals corresponding to the variables not in Y):

e YC; € 7 such that C;NXo # (), V configuration ¢; of C; do

s |GiNX, CinX,
W(Ci) = lﬁ(C,‘) lf cil °= xé) 07
0 in other case.

In this way the clique tree structure is left unmodified and can be used for other
problems (supersets of the current evidence, or even with different evidence sets
by using fast retraction of evidence [5]). However, Lauritzen and Spiegelhalter
propose in [15] to enter the evidence by a process that they define as absorption
of evidence, which basically consists in absorbing evidence by conditioning the
potential representation. The process is performed in two steps: (1) projection
of the potentials involving evidence items onto a new reduced clique, * and (2)
removal of non-maximal clusters (if any). This process can be seen in the next
example:

3 As a consequence of this process the clique tree can be split into several disconnected
components. In this case we obtain a forest of trees.
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Example 4.1. Consider the clique tree in Fig. 1(d) and let us assume that all
the variables contained in it are propositional variables with two possible
values, for example, {a,a} for variable A4. Suppose that evidence
xo=(4=a, G=g) has been found. Then, cliques C;,Cs and Cs are
modified by removing the evidence variables, and their potential functions
are modified as follows:

¥ (C1) =y (B,C) < Y(a,B,C),

¥ (Cs) =y (E.F) « Y(E,F,g),

W(Cﬁ) - ‘//*(F,H) — w(FagaH)
Fig. 2(a) shows the result of this step. As we can see, cliques C; and Cs are
subsets of other cliques in the tree. If a clique C; is a subset of a clique C;, C; can
be removed by combining its potential with C;. So, we obtain the clique tree in
Fig. 2(b) as follows:

lnb*(CZ) = W*(B,C,D) — lﬂ(B,C,D) X l//*(B,C),

‘V(Cét) = w*(DaEaF) — l//(DaEaF) X l//*(EvvFv)
Making y*(C;) < ¥/(C;) for unmodified potentials, in the initial clique tree we
have

P(B7 C)D) E’F7H7a7g) = lp(B7 C’ a) x W(B7 C7 D) X lp(c7 D7 E)

XY(D,E,F)xY(E F,g) x y(F,H,g),

and in the reduced clique tree we have

P(B,C,D,E,F,H,a,g) = y*(B,C,D) x *(C,D,E) x Y (D, E, F)
XY (F, H).

We can now obtain P(a,g) by means of an upward propagation in the re-
duced clique tree, whose size is 26, whereas the size of the initial clique tree
is 48.

Therefore the propagation over this clique tree will be faster. Van der
Gaag [24] has shown how the idea of the evidence absorption can improve
the average-case computational cost of probabilistic inference.

(@ [BC| -[D.BC}| ~[ECD}]| ~[F{DE}| ~[{EF}| ~[H{F}]

() [BCD] —[E{CD}]| —[F{DE}] —[H(F}]

Fig. 2. (a) Join tree after absorbing 4 and G. (b) Join tree after incorporating non-maximal clusters.
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5. Absorption of the explanation set

The following reflection can be made at this point: When the genetic algo-
rithm is running and a new chromosome has to be evaluated, the chromosome
represents the state taken by all the variables in the explanation set, i.e. we are
trying to evaluate p(xo,xg). In this computation, xo and xg play a very similar
role, with the only difference that xq is fixed for a given problem and that xg
changes in different chromosomes. If we assume that the explanation set does
not change from case to case, then we can consider that the variables in Xg are
always evidence variables, and then try to obtain a reduced clique tree, in
which the evaluation function will be faster.

Returning to our example, if Xg = {4, G}, we can evaluate the chromosome
(a, g) using the reduced clique tree obtained. However, we also need to be able
to evaluate the remaining chromosomes, that is, (a,2), (@, g), and (@, g). This is
possible if we modify the previous method, as follows:

e Let C,. be the set of explanation set variables included in clique C;

(Ci, = CiN Xg). Now, when C;, is absorbed, we split the potential /(C;) in

as many potentials as different configurations of C;, exist. That is, for each

configuration c¢;, of C;,, we make

Y (Ci\ Cip)lew] «— Y(Ci\ Cigy i) (5)

Thus we are now storing in () an array of potentials rather than a single one.
e [f some non-maximal cluster has to be removed by combination with its sup-
erset clique, we now have to perform a set of combinations instead of a sin-
gle one, because the superset clique will contain an array of potentials.
In our example, we will have the following potentials after the absorption
phase (only potentials involved in absorption are listed):

( )[a] lﬁ(B,C,a),

* Cl — B7C =
Y (Cr) =y (B,C) { W*(B,C)la) — y(B,C,a),
Y(E,F)[g] — W(E,F,g),

* CS — E,F =
V() = W (ESF) { V' (E.F)lg) — Y(EF.g),
. . V' (F.H)lg) — Y(F,H,g),

Cs) = F.H) =
W (Cs) = ¢ ( ) {w(FH)[]Htﬁ(RH’g)

The deletion of non-maximal clusters yields the following potentials for C,
and Cy:

W(Q) = {
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¥ (Ca)lg] — ¥ (Ca) x Y (Cs)lgl,
Y (Ca)lgl « Y(Ca) x Y (Cs)lg]-

Although some cliques have arrays of associated potentials, this is not a
problem because a single potential will be considered in the course of propa-
gation. The concrete potential to be used in a particular clique C; is determined
by the chromosome xg being evaluated, i.e., we use xéC‘E as the index for the
potential to be used in C;. In our example, if we are evaluating xg = (g, g), then
W (Cy)lal, Y(Cq)|g] and ¥(C)[g] will be the potentials used in cliques C,, C4 and
Cs during the propagation.

W(CO = {

6. Obtaining a reduced clique tree

In this section we propose a new algorithm in order to obtain a reduced
clique tree. Instead of building a clique tree for all the variables in the BBN,
and then reducing it, our idea is to obtain a clique tree containing only the
variables in X \ Xg. In this way we hope that the size of the obtained clique
tree would be smaller, because we start the triangulation process with a sparser
graph than the initial one and the clique tree is specific for this explanation set.
That is, instead of optimizing the clique tree size and then reducing it, we re-
duce the initial undirected graph and then we optimize the clique tree (or better
clique tree forest) built from it.

Of course, the obtained cliques have to be enlarged with the variables in the
explanation set, in order to obtain a potential representation of the joint
probability distribution factorized by the original network. We will denote
these new clusters of variables as Cy.

We now give the detailed version of the proposed algorithm, which we have
called get-reduced-forest because in most occasions a forest of trees, and not a
single tree is obtained. A detailed description of each step is given below.

Algorithm (Get-reduced-forest (9, Xg)).

Input: The BBN G = (Xy, &) and the explanation set Xg.
Output: The reduced forest for Xg.
1. Obtain the moral graph @M.
2. Obtain g{':/' as the projection * of ™ over the variables in X, \ Xz.

* The projection is carried out by deleting all the variables in X and all the edges X; — X; such
that {X;, X;} N Xg # (. This produces a much simpler graph than the marginalization process in [3],
but it is enough for a factorization of the joint probability given that the values of variables in the
explanation set are known.
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. Obtain a forest # from gM by applymg the process described in Section 3 to

each connected component of 54 . Only graphical structure is obtained, not
potential representation.

. Let {Cy,.. C,} be the set of cliques contained in 7.
. For every C in Z consider an enlarged cluster C¢ which is initialized to C;:

C; — C.

. Let & = {Fy,...,Fx,} be the list of families contained in the network. At-

tending to the variables of Xg contained in each family, we divide the list of
families in three sub-lists:
Ly ={Fx |Fy, C{Xu \ Xe}},
= {Fx | Fy, € Xe}.

. For every Fy, € £y assign fy, to an enlarged cluster Cy such that Fy, C Cj.
. For every Fy, € ¥p assign fy, to an enlarged cluster C; such that

{XJ// \XE} - Ce Make CE — Ce UFX

. Cons1der that L = {FX - FX 1.

For every Fy, € ¥g if there is an enlarged cluster C{ such that Fy, N CY # 0
then assign f, to it. Make C7 «— Cf U Fy.. In other case, ° consider a new
cluster C; < () and the ass001ated enlarged cluster Cf « Fy,. Assign fy, to
it. This new cluster will be the root of a new tree of the forest.
For every C/ obtain y(CY).
For every C¢
if C¢ = C; make y"(C;) — y(CY),
if C‘ # C; assign to " (C;) an array of potentials: Y (C;)[c] — ¥(C¢ Ac),
with as much potentials as different configurations ¢ of C¢\ C; exists.
Return #

Now, we describe each step of the algorithm:

Steps 1 and 2. As we want to obtain a reduced tree containing only variables
not in Xg, we remove variables in Xg from the graph. However, we previ-
ously obtain the moral graph in order to maintain the original dependences.
In Step 2 it is very usual to break the graph up into a set of disconnected
components. As was stated in Section 3 this causes no inconvenience because
we can treat each component separately, obtaining a forest and not a single
clique tree. In fact, it is an advantage because propagation will be faster.
Steps 3 and 4. The graphical structure for the variables not in the explana-
tion set is obtained.

Step 5. In order to build a potential representation of the joint probability
distribution, all the families in the network have to be included in at least

> For example, if the initial graph is disconnected, and all the variables in a connected component
belong to Xg.
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one clique, so we need to enlarge the cliques with the variables in Xg. We be-
gin by making a copy of the original cliques.

Step 6. Depending on the variables contained in each family their treatment
will be different, so we begin by classifying the families in three groups: fam-
ilies without variables in Xg (%), families contained in Xg (Zg), and fam-
ilies with variables in Xg and in X \ Xg (Zp).

Step 7. As families in ¥y are contained in X \ Xg, moralization ensures the
existence of at least one clique C; (and so a cluster C¢) containing each family
Fy, in Ly.

Step 8. In this step we begin to enlarge the clusters with variables belonging to
Xg. The idea is to find a cluster C} containing all the variables in
Fy. N (X4 \ Xg), and enlarge it with the variables in Fy, N Xg. To ensure the ex-
istence of such a cluster, we have to prove that for all family Fy, € £ at least
one clique C; € 7 exists that is a superset of (Fy,)'*”*¥)_ From the following
sequence of operations we can see that this clique always exists:

1. When the moral graph is obtained, variables in Fy, constitute a fully
connected sub-graph in ¥M.

2. When ¥M is obtained, variables in Xz and all their incident links are re-
moved, but no link between variables in (X, \ Xg) is removed. Thus, the
variables in Fy, N (X, \ Xg) constitute a fully connected sub-graph and
they will be included in the same clique C; (because triangulation could
add links but does not remove any link). It is clear that C; is the clique
we are looking for.

If for a family more than one cluster is found as a candidate to be enlarged, we
select (heuristically) the smaller one.

Step 9. The way we proceed in this step is similar to that in the previous one,
but now we search for non-empty intersections between the variables be-
longing to X and not for the variables belonging to X \ Xg. In this step
we can also have several candidate clusters to be enlarged for a given family.
In this situation we operate as in the previous step, that is, enlarging the can-
didate of smallest size.

Step 10. The potential associated with every enlarged cluster is obtained. At
this point

I v

i=1.t

is a factorization of the joint probability distribution stored in %.

Step 11. Finally, the array of potentials associated with every clique C; is ob-
tained. Notice, that for those cliques C; such that C; = C¢ the array will have
dimension equal to 1.

We apply now the algorithm to our previous example. Fig. 3(a) shows the

projection of the moral graph over the variables not in the explanation set
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| BD |
[ F{D} | 7

[cF ] ™

(a) (b)

Fig. 3. (a) Projected moral graph %) (Note that this graph is also %)). (b) A forest # for 4.

{4, G}; as we can see, the resulting graph has two disconnected components,
and so, a forest with two trees # = {7 |,7,} is obtained (Fig. 3(b)).

Once we have obtained the graphical structure, we begin to process the list of
families. Attending to the variables in X the following classification is obtained:

FD:{D B} FB:{B?A}7
20 Fe={C, A},
Zy={ Fe={EC), 2o={ 7100l 2= (F= (1)
FF:{F,D}a FH:{H,F,G},

The treatment of the families belonging to %y yields the following initial as-
signment:

{B7D}(_fDa {FaD}<_fF7 {H7F}(_ 17 {C7E}<_fE

We begin now to enlarge the cliques by processing the families in #p:

o Processing Fp: The only candidate clique to be enlarged is {B, D}, so we as-
sign the family to this clique and enlarge it with variable 4. Fig. 4(a) shows
the result.

.1 —— .1 7 .1
L f’l’? I f’l’]ﬂ Ja L 131’]3 14
[ FD | [ FD | [ FD |
I | I

[ mF | [ BF | [ HF |

cr] [TEial [oijae!

L——"1 —— ]
(a) (b) (c) (d)

Fig. 4. Processing ¥Zp.
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e Processing F¢: In this case we also have only one candidate to be enlarged:

{C,E}. Fig. 4(b) shows the result.

e Processing Fg: The only candidate is {C,E, A}, so we enlarge it. Fig. 4(c)
shows the result.

e Processing Fy: The only candidate is {F,H}, so we enlarge it. Fig. 4(d)
shows the result.

As the treatment of F; does not yield the enlargement of any cluster we can
select randomly between the two candidates {B,D,A} and {C,E, 4, G}. If the
first one is selected, the following assignment of families to enlarged clusters is
obtained:

{B7D7A} <;fD XfB Xf:‘lv {F7D} <;fFa
{H,F,G} «— fu, {C,E,A,G} — fg X fc X fc.

Finally, we obtain the following array of potentials for the cliques in %

V' (B,D) — {Y(B,D)a], ¥(B,D)lal},
Y (F,D) — y(F,H),

Vi (H, F) — {y(H,F)g], y(H,F)g]},
lp*(C7 {l/j(C’E)[avg]v lﬁ(C>E)[a7gL W(C,E>[ﬁ7g], w(ch)[aag]}

After this process we have obtained a (forest of) clique tree(s), defined over
Xu \ Xg. However, the potentials associated with the cliques in that graphical
structure do not represent a factorization of P(X, \ Xg), but a factorization of
P(Xy \ Xg, xg) for all configuration xg of Xg, by selecting from the array of
potentials associated with each clique the potential indexed by xg.

Therefore, when we want to evaluate a configuration xg we work as if xg had
been entered as evidence. It is well known that if the clique tree factorizes over
P(Xy \ Xg, xg), and a collect evidence phase is called on some clique C; (usually
the root), then the normalization factor f can be obtained by the following
marginalization:

f=>%(C)

and this normalization factor coincides with the probability of the instantiated
evidence, that is, /' = P(xg). If some observed evidence Xo = xo has been en-
tered, then f = P(xg,xo). This is the basis for the evaluation function proposed
in [7] and described in Section 2.

If we have a forest # of clique trees {7 ,...,7,}, then we can operate
separately over each tree, avoiding the computational cost of passing messages
that serve to rescale the clique potentials [12]. In this case, due to the inde-
pendence relations that allow us to work with a forest of clique trees, we can
obtain the normalization factors f,.. ., f, by applying the previous procedure
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over each clique tree, and then to obtain the whole normalization factor, that
is, P(xg) or P(xg,xo) as

r=11x
i=1

If we compare the result obtained when we apply Lauritzen and Spiegelhalter
absorption of the explanation set (Fig. 2(b)) with that obtained by our algo-
rithm (Fig. 3(b)), we can see that our expectations have materialized, because
of the smaller size of the structure obtained by our method. Furthermore, we
have obtained a forest and not a single tree, so that if a multiprocessor com-
puter is available, propagation over each tree could be carried out in a different
processor, and the gain would be greater.

7. Experimental evaluation

In this section we compare the efficiency of evaluating a chromosome by
using the reduced forest with respect to the evaluation functions proposed in
previous works [7,9]. We have carried out different experiments using four
networks. The first one is the Alarm network [1], a real network that has been
very commonly used in specialized literature. As this network can be consid-
ered to be small, we have generated three random networks with 50, 75 and 100
variables. The number of cases for each variable is 2. Table 1 shows some
information about the four networks.

As the efficiency of our evaluation function depends on the size of the clique
tree in which the propagation is carried out, we have performed the following
experiment over the four networks:

Experiment 1. First, we obtain a clique tree for the network. The size of this
clique tree and the size of its largest clique will be used for comparisons with
the reduced trees obtained when an explanation set is considered. Second, we
have randomly generated 50 explanation sets for each considered size. For each
explanation set a reduced forest is obtained by applying our algorithm, storing
the size of the whole forest, the size of the largest tree in the forest, and the size

Table 1

Some data about the networks used in the experiments
Network Nodes Links Node potential size

Min Max Mean

Alarm 37 46 2 108 20.3
Random50 50 116 2 256 22.16
Random?75 75 155 2 128 12.98
Random100 100 185 2 128 11.82
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of the largest clique in the forest. We also compute the amount of memory
necessary to store the different structures, assuming that 4 bytes are used for a
real number. Therefore, for the clique tree memory requirements are obtained
as clique tree size x4. However, the memory requirements for a forest are
calculated using the size of the array of potentials, that is, the enlarged cluster
size and not the clique size is used. The obtained results (averaged over the 50
different explanation sets) are presented in Tables 2-5.

Experiment 2. The aim of this experiment is to observe the impact of re-
placing previous evaluation functions in the GA by that proposed in this paper.
We have performed the comparison in particular for the three following GAs:

Table 2
Experiments with the Alarm network (average over 50 runs)
Forest size Max clique Max clique Memory size
tree size size (Kb)
|Xe| = 4 771.64 763.64 102.36 6.3
|Xe| =8 511.18 467.52 84.00 10.4
|Xe| = 12 303.14 254.12 57.00 18.6
|Xe| =16 198.92 155.56 43.12 47.7
Clique tree 1014.0 108.00 4.0

Table 3
Experiments with the Random50 network (average over 50 runs)
Forest size Max clique Max clique Memory size
tree size size (Mb)
|Xg| =5 61,542.04 61,540.32 24,657.92 0.80
|Xe| = 10 13,496.16 13,492.48 4623.36 0.94
|Xe| =15 3444.12 3437.92 1212.16 1.75
|Xe| =20 699.40 689.04 201.92 3.84
|Xe| =25 184.44 168.24 40.80 6.84
Clique tree 226,292.0 65,536.00 0.86
Table 4
Experiments with the Random?75 network (average over 50 runs)
Forest size Max clique Max clique Memory size
tree size size (Mb)
|Xe| =7 501,471.04 501,467.92 265,420.92 14.54
|Xe| = 14 71,897.40 71,890.48 30,924.80 18.63
|Xe| = 21 10,288.80 10,279.28 3287.04 12.25
|Xe| = 28 1612.04 1598.32 339.20 18.77
|Xe| =35 411.76 394.24 60.96 20.24

Clique tree 2,471,312.0 524,288.00 9.45
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Table 5

Experiments with the Random100 network (average over 50 runs)

137

Forest size Max clique Max clique Memory size

tree size size (Mb)
|Xe| = 10 202,609.00 202,602.56 85,852.16 6.17
|Xe| =20 33,804.32 33,791.76 11,991.04 13.93
|Xe| = 30 4828.92 4810.48 1367.04 17.68
|Xe| = 40 930.56 902.64 159.68 20.47
|Xe| = 50 288.08 238.56 28.96 36.79
Clique tree 1,296,524.0 524,288.0 4.94

GA1l. An upward propagation over the clique tree is used as the evaluation

function [7].

GAZ2. The first population is evaluated as in the previous point, but for the

remaining of populations, only partial upward propagation is required, be-

cause of the problem-specific genetic operators used in the algorithm [9].

GA3. An upward propagation over the reduced forest obtained by applying

the algorithm presented in Section 6 is used as evaluation function.

The problem-specific genetic operators introduced in [9] cannot be directly
combined with the use of a reduced forest, because these operators are based
on the presence of explanation set variables in cliques.

In this paper we do not show results about the accuracy of GA3. This is due
to the fact that GA3 has the same accuracy as GA1 (propagation over a clique
tree defined over Xy ) [7], because both methods implement exact propagation.
Experiments showing the good behavior of GA1 (and so of GA3) can be found
in [7]. A detailed comparison between the accuracy of GA1 and GA2 can be
found in [9].

The number of generations and the population size are the same for the three
GAs, and these values have been increased with the number of variables in the

]
o
5
/

-
o 4 ,//”/// X
g /
:
e 3 o ¢

/ g X

10 12 14 16
Number of nodes in the explanation set
Fig. 5. Time comparison for the Alarm network using the different alternatives of chromosome
evaluation.
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Table 6
One chromosome evaluation CPU time for the random50 network (average over 10 runs)
CPU Time (s) Speedup
|Xe| = 10 0.00141 x3156
|Xg| =15 0.00033 x 13,484
|Xe| =20 0.00006 x 74,166
Clique tree 4.45
Table 7
One chromosome evaluation CPU time for the random?75 network (average over 10 runs)
CPU Time (s) Speedup
|Xe| =7 0.05270 %884
|Xe| = 14 0.00594 %7845
|Xe| =21 0.00077 %x60,519
|Xe| = 28 0.00018 x258,888
Clique Tree 46.6
Table 8
One chromosome evaluation CPU time for the random100 network (average over 10 runs)
CPU Time (s) Speedup
|Xe| = 10 0.04127 x969
|Xe| = 20 0.00591 x 6768
|Xe| = 30 0.00083 x48,192
|Xe| =40 0.00016 x250,000
Clique tree 40.0

explanation set. Fig. 5 shows a plot of the CPU time used by the GAs for the
Alarm network.

For the other networks we show (Tables 6-8) the CPU time required to
evaluate one chromosome using propagation over the clique tree and propa-
gation over a reduced forest. This experiment cannot be performed for the
evaluation function used in GA2 [9] because this evaluation function is based
on the information stored when the chromosomes were evaluated. In any case,
we can see from Fig. 5 (and also from experiments performed in [9]) that this
evaluation function requires, roughly speaking, between 50% and 70% of the
time required by propagation over the clique tree (GA1).

In these experiments the results are averaged over 10 different runs, that is,
10 different explanation sets for each size.

7.1. Experimental conclusions

After analyzing the results we are in a position to draw the following con-
clusions:
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e The size of the graphical structure (to be used during propagation) obtained
with the method proposed in this work is significantly smaller than the size
of a clique tree obtained for all the variables in the network.

e The size of the obtained reduced forest decreases (in general) with the num-
ber of variables in the explanation set. This is due to the following: (1) if we
have fewer variables the probability tables will be smaller, and (2) the re-
moval of links yields a reduction in the number of variables included in a
clique, so its associated potential will have a smaller size.

e The amount of memory necessary to store the whole structure, that is, to
store the array of potentials is significantly greater than that needed to store
the clique tree.

e The amount of memory necessary to store the array of potentials increases
with the number of variables in the explanation set. This is due to the way
these variables are assigned to the enlarged clusters.

e The use of this new approach to evaluate the chromosomes yields a signifi-
cant time gain even for small networks.

e In the execution of a GA, hundreds or thousands of chromosomes have to
be evaluated, so the amount of time needed to perform an evaluation
should be very small. From the experiments performed in this paper, we
can deduce that for large networks the evaluation functions proposed in
[7,9] are unsuitable because of the amount of time required for propaga-
tion. However, we can see that propagation over a reduced forest can be
successfully applied.

8. Conclusions

The problem of performing partial abductive inference in BBNs has been
studied. This type of probabilistic reasoning has the disadvantage that de-
pending on the selected explanation set, exact inference may be unfeasible even
for networks in which exact inference is feasible for other types of probabilistic
reasoning (such as probabilities propagation or total abductive inference).

In previous attempts to find an approximate solution to this problem [7,9],
the evaluation function was based on an exact probabilities propagation over a
clique tree. This type of approach requires assuming the network to be such
that an exact probabilistic propagation is feasible. However, for complex
problems this assumption falls short and requires redefining as follows: we
assume that the network is such that an exact probabilistic propagation is feasible
and can be performed swiftly, because hundreds or thousands of propagations
have to be carried out during the execution of the GA.

In this paper we have presented an algorithm that by using our a priori
knowledge (the explanation set), allows us to obtain a forest of trees with a
size considerably smaller than the original clique tree defined over all the
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variables in the network. By using this forest for propagation we have sig-

nificantly improved the evaluation function (up to 250,000 x speedups in some

cases).

The disadvantage involved in using this new structure to evaluate a chro-
mosome is the greater demand upon computer memory requirements. This
might seem to contradict the foregoing, where we argue that the reduced
forest has a size considerably smaller than the initial clique tree, but the
contradiction is only apparent. In the computer memory we have to store an
array of potentials for each clique in the forest, which needs as much memory
as the enlarged cliques obtained by the algorithm. However, when propaga-
tion is carried out a single potential is considered for each clique, so that its
size is much smaller. The concrete potential used for each clique is determined
on line using the chromosome being evaluated as the index for the different
arrays.

We are also aware that the obtained reduced forest is only valid for a specific
problem, i.e., is only valid for the explanation set used to reduce the clique tree.
However, it is clear that this particular solution performs better than the
general one (clique tree).

Another advantage stemming from the approach taken in this paper is the
ease with which a certain parallelism level may be implemented. In fact, coarse
grain parallelism can be implemented by distributing the different trees in-
cluded in the graph among the available processors.

In order to reduce the amount of memory needed by the algorithm, in future
work we plan to investigate the following potential solutions:

e Using the method proposed by Lauritzen and Spiegelhalter but without per-
forming the step in which non-maximal clusters are absorbed. In this case
the amount of memory necessary will be smaller than that required to store
the clique tree defined over all the variables. However, the structure used to
perform the propagation will have a greater size than the reduced forest ob-
tained when non-maximal clusters are absorbed, with the result that propa-
gation will be slower. It is, of course, the case that the strategy of absorbing
only some non-maximal clusters can be used, by trying to achieve an equi-
librium between the size of the structure used for propagation and the
amount of memory necessary to store the array of potentials.

e Modifying our algorithm by allowing the presence of clusters that are not
cliques in the junction tree. This case is similar to the previous one.

e Modifying the step in which families of ¥y are assigned, by allowing the
repetition of some variables. In this way we expect to find some smaller-sized
arrays.

For the future we also plan to investigate the adaptation of the specific genetic

operators designed in [9] to this reduced graphical structure and the use of the

method proposed above to evaluate individuals in other schemes, such as
simulated annealing or tabu search.



L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 121-142 141

Acknowledgements

This work has been supported by the Spanish Comisién Interministerial de
Ciencia y Tecnologia (CICYT) under Project TIC97-1135-CO4-01.

References

[1] LA. Beinlich, H.J. Suermondt, R.M. Chavez, G.F. Cooper, The ALARM monitoring system:
A case study with two probabilistic inference techniques for belief networks, in: Proceedings of
the Second European Conference on Artificial Intelligence in Medicine, Springer, Berlin, 1989,
pp. 247-256.

[2] A. Cano, S. Moral, Heuristic algorithms for the triangulation of graphs, in: Proceedings of the
5th International Conference on Information Processing and Management of Uncertainty in
Knowledge Based Systems (IPMU), vol. 1, Paris (France), 1994, pp. 166-171.

[3] E. Castillo, J. Ferrandiz, P. Sanmartin, Marginalizing in undirected graph and hypergraph
models, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-
98), Morgan Kaufmann, San Mateo, 1998, pp. 69-78.

[4] E. Castillo, J.M. Gutiérrez, A.S. Hadi, Expert systems and probabilistic network models, in:
Monographs in Computer Science, Springer, New York, 1997.

[5] R.G. Cowell, A.P. Dawid, Fast retraction of evidence in a probabilistic expert system,
Statistics and Computing 2 (1992) 37-40.

[6] A.P. Dawid, Applications of a general propagation algorithm for probabilistic expert systems,
Statistics and Computing 2 (1992) 25-36.

[7] LM. de Campos, J.A. Gdmez, S. Moral, Partial abductive inference in Bayesian belief
networks using a genetic algorithm, Pattern Recognition Letters 20 (11-13) (1999) 1211-1217.

[8] L.M. de Campos, J.A. Gamez, S. Moral, On the problem of performing exact partial abductive
inference in Bayesian belief networks using junction trees, in: Proceedings of the 8th
International Conference on Information Processing and Management of Uncertainty in
Knowledge-based Systems (IPMU’00), 2000, pp. 1270-1277.

[9] L.M. de Campos, J.A. Gdmez, S. Moral, Partial abductive inference in Bayesian belief
networks: An evolutionary computation approach by using problem specific genetic operators,
Technical Report #DECSAI-00-02-02, Dpto. de Ciencias de la Computacién e IA,
Universidad de Granada, 2000.

[10] E.S. Gelsema, Abductive reasoning in Bayesian belief networks using a genetic algorithm,
Pattern Recognition Letters 16 (1995) 865-871.

[11] E.S. Gelsema, Diagnostic reasoning based on a genetic algorithm operating in a Bayesian
belief network, Pattern Recognition Letters 17 (1996) 1047-1055.

[12] C. Huang, A. Darwiche, Inferencie in belief networks: A procedural guide, International
Journal of Approximate Reasoning 15 (1996) 225-263.

[13] F.V. Jensen, An introduction to Bayesian Networks, UCL Press, 1996.

[14] U. Kjerulff, Triangulation of graphs — algorithms giving small total space, Technical Report R
90-09, Department of Mathematics and Computer Science, Institute of Electronic Systems,
Aalborg University, March 1990.

[15] S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical
structures and their application to expert systems, Journal of Royal Statistics Society B 50 (2)
(1988) 157-224.

[16] R.E. Neapolitan, Probabilistic Reasoning in Expert Systems. Theory and Algorithms, Wiley/
Interscience, New York, 1990.



142 L. M. de Campos et al. | Internat. J. Approx. Reason. 27 (2001) 121-142

[17] D. Nilsson, An efficient algorithm for finding the M most probable configurations in Bayesian
networks, Statistics and Computing 8 (1998) 159-173.

[18] J. Pearl, Distributed revision of composite beliefs, Artificial Intelligence 33 (1987) 173-215.

[19] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, 1988.

[20] H.E. Pople, On the mechanization of abductive logic, in: Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, 1973, pp. 147-152.

[21] C. Rojas-Guzman, M.A. Kramer, Galgo: A genetic algorithm decision support tool for
complex uncertain systems modeled with Bayesian belief networks, in: Proceedings of the 9th
Conference on Uncertainty in Artificial Intelligence, Morgan and Kauffmann, San Mateo,
1993, pp. 368-375.

[22] B. Seroussi, J.L. Goldmard, An algorithm directly finding the K most probable configurations
in Bayesian networks, International Journal of Approximate Reasoning 11 (1994) 205-233.

[23] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of grapstext
acyclicity of hypergraphs and selectively reduce acyclic hypergraphs, SIAM Journal Comput-
ing 13 (1984) 566-579.

[24] L.C. van der Gaag, On evidence absorption for belief networks, International Journal of
Approximate Reasoning. 15 (1996) 265-286.



