
ELSEVIER Fuzzy Sets and Systems 103 (1999) 487-505 

sets and systems 

Independence concepts in possibility theory: Part I11 
Luis M. de Campos*, Juan F. Huete 

Departamento de Ciencias de la Computacirn e Inteligencia Artificial, Universidad de Granada, E-18071, Granada, Spain 

Received May 1996; received in revised form April 1997 

Abstract 

From both a theoretical and a practical point of view, the study of the concept of independence has great importance in 
any formalism that manages uncertainty. In Independence Concepts in Possibility Theory: Part I (de Campos and Huete, 
Fuzzy Sets and Systems 103 (1999) 127-152) several independence relationships were proposed, using different comparison 
criteria between conditional possibility measures, and using Hisdal conditioning as the conditioning operator. In this paper, 
we follow the same approach, but considering possibility measures as particular cases of consonant plausibility measures 
and, therefore, using Dempster conditioning instead of Hisdal's. We formalize several intuitive ideas to define independence 
relationships, namely 'not to modify', 'not to gain' and 'to obtain similar' information after conditioning, and study their 
properties. We also compare the results with the previous ones obtained in Part I using Hisdal conditioning. Finally, the 
marginal problem, i.e., how to obtain a joint possibility distribution from a set of marginals, and the problem of factorizing 
large possibility distributions, in terms of its conditionally independent components, are considered. © 1999 Elsevier Science 
B.V. All fights reserved. 
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1. Introduction 

The concept of independence allows us to represent 
that our belief about certain events or variables does 
not change when additional information is known. 
Therefore, we can use independence in reasoning 
models in order to perform inferences considering 
only relevant information, which implies that more 
efficient algorithms can be developed. Therefore, in 
addition to the theoretical interest, the study of the 
concept of  independence has great practical signi- 
ficance. When we consider different frameworks for 
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representing uncertain information, we can find sev- 
eral papers about the concept of independence [4, 5, 
10, 22, 26, 27]. In this paper, we focus our attention 
on the concept of conditional independence within 
the possibilistic framework [29, 12]. Some recent 
works studying this topic are also to be found in the 
literature [1-3, 7, 13, 16, 9, 17, 19]. 

In order to establish a conditional independence 
relationship between variables, our approach is to 
compare the previous ( 'a priori') information with 
the information that we obtain after a new piece of 
information has been known ('a posteriori'). We 
present different comparison criteria ('not to modify', 
'not to gain' and 'to obtain similar' information after 
conditioning), which give rise to different approaches 
to the concept of independence. Moreover, in order to 
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evaluate the different definitions of independence, a set 

of properties or axioms has been selected that would 
seem reasonable to demand from any relationship that 

capture the notion of independence (the well-known 

gruphoid axioms [24]), and our definitions are tested 
against this set. These axioms would also permit us 

to compare the given definitions with the definitions 

of independence obtained for other formalisms. 
In our study, we consider possibility measures as 

a special case of Dempster/Shafer evidence measures 

[ 11,251, namely consonant plausibility measures. An 

in-depth study of the same concept, but considering 
possibility measures in a closer way to fuzzy sets, 
can be found in Independence Concepts in Possibility 
Theory: Part Z [6]. In this paper, we present a parallel 
study to the one developed in [6], but using Dempster 
conditioning instead of Hisdal’s. However, in order to 

make the paper self-contained, some of the concepts 
and methods used in [6] will be briefly reconsidered. 

The paper is organized according to the following 

scheme: first, in Section 2 we briefly study possibility 
measures as particular cases of Dempster/Shafer mea- 

sures of evidence. Section 3 starts by introducing sev- 

eral intuitive definitions of conditional independence, 
as well as the abstract properties that these defini- 
tions should verify. Next, we formalize the previous 
definitions in the framework of possibility theory, us- 
ing Dempster conditioning, and study their properties. 
In Section 4, we study the marginal problem, that is 

to say, how to construct a joint possibility distribu- 
tion from a set of marginals, and as an application, the 
problem of storage of large possibility distributions is 

considered in Section 5. Finally, Section 6 contains 
the concluding remarks and some proposals for future 

research. 

2. Evidence measures and possibility measwes 

Perhaps one of the most general formalisms for 
dealing with numerical uncertainty is that of fuzzy 
measures [28]. A fuzzy measure is a mapping, g, from 
the power set of a given finite reference set DX (from 
which a variable X takes its values) to the interval 

[0, 11; for any A E Dx, g(A) represents our degree of 
belief in the occurrence of the event A (i.e., the value 
of the variable X belongs to A), and g must satisfy 
the following properties: g(8) = 0, g(Dx) = 1 (limit 

conditions) and for all A,B & Dx, if A G B, then 

g(A) <g(B) (monotonicity condition). However, 
fuzzy measures are usually too general for practical 
purposes, and we often have to restrict ourselves to 

considering appropriate subclasses, having a richer 
set of properties that make a more efficient compu- 
tation possible (for an interesting classification of 

fuzzy measures, see [21]). Two of the most interest- 
ing subclasses of fuzzy measures are probability and 
possibility measures [29, 151, which in turn belong 

to another wider and well-known class of fuzzy mea- 

sures: evidence measures [ 11,251. In order to study 
the concept of independence for possibility measures, 
and compare it with that of probabilities, we will use 
evidence measures as the common reference class. 
So, we briefly recall some basic concepts relating to 
these measures. 

Evidence measures (belief and plausibility) are par- 
ticular cases of fuzzy measures, based on the concept 
of basic probability assignment, m: 

Definition 1. A basic probability assignment (b.p.a.), 
m, is a mapping from B(Dx) (the power set of Dx) 
to the unit interval 

that satisfies the following conditions: 
1. m(0)=0, 

2. CAL& m(A)= 1. 

A b.p.a. m can be interpreted as follows: ‘There ex- 

ists an unknown element u belonging to the set Dx, 
and m(A) represents ‘that portion of the total belief 
exactly committed to hypothesis A (u belongs to A) 
given a piece of evidence’; in other words, m(A) rep- 

resents the direct support of evidence for A, without 
considering the evidence for any proper subset of A. 

Using the definition above, the concepts of belief 
and plausibility measures can be introduced: 

Definition 2. Given a b.p.a. m, the belief measure 

associated with m is defined by means of 

Bel:B(Dx)+[O,l] 

where, for each A & DX 

Bel(A)= c m(B). 
BCA 
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Bel(A) gives the total belief about the fact ' the un- 
known element u belongs to A' ,  and obviously sat- 
isfies the limit and monotonicity conditions, so Bel 
is a fuzzy measure. Every subset A in Dx such that 
m(A) > 0 is called a focal element of  m. Given a be- 
lief measure, the plausibility measure may be defined 
as its dual measure: 

Definition 3. Let Bel be a belief measure; its associ- 
ated plausibility measure, P1, is given by 

Pl : ~ ( D x )  ~ [0, 1] 

such that for each A C_ Dx 

PI(A) = 1 - Bel(A), 

where ,4 represents the complement of  A in Dx. 

Note that P1 is also a fuzzy measure. As Bel(,4) 
measures the doubt on A, PI(A) represents the extent 
to which the evidence does not rule out A. Plausibil- 
ity measures can be directly obtained from the values 
associated to the b.p.a, m by means of  the following 
expression: 

P I ( A ) =  Z m(B). 
BNAs~ 

Let us review how probability and possibility mea- 
sures can be considered as particular cases of  evidence 
measures: 

2.1. Bayesian evidence measures: probability 
measures 

A Bayesian evidence measure is any evidence mea- 
sure satisfying 

PI(A) = Bel(A) for all A C_ Dx. 

This is equivalent to 
1. Bel(O) = 0; 
2. Bel (Dx)  = 1; 
3. BeI(A U B ) = B e I ( A )  + BeI(B) whenever A NB 

The bayesian structure implies that the evidence 
assignment has no degree of  freedom, i.e., the sin- 
gletons of  Dx are the only possible focal elements 
(m(A) = 0 VA C_ Dx such that IAI > 1 ). In this case, 
the b.p.a., m, is equivalent to a probability distribution 

p,  or, in other words, every probability distribution 
can be associated with a Bayesian evidence measure 
where m({x} ) = p(x). 

2.2. Consonant evidence measures: possibility 
measures 

Any evidence measure is said to be consonant if  it 
satisfies 

1. Bel((~) = 0; 
2. Bel (Dx)  = 1; 
3. Bel(A NB)  = min{Bel(A),Bel(B)},  for all A, B 

C_Dx. 
The following well-known theorem represents a char- 
acterization of  consonant evidence measures: 

Theorem 1. An evidence measure is consonant if  
and only i f  the focal elements of  the b.p.a, m are 
nested, i.e., there exists a family of  subsets of Dx, 
Ai, i = 1,2 . . . . .  r, such that Ai C,4j whenever i < j  
and ~-~ir=l m(Ai)  = 1. 

Consonant evidence measures are the prototypes 
for possibility measures, where the plausibility mea- 
sure (P1) in Dempster-Shafer  theory plays the role 
of  the possibility measure, /7, and the belief mea- 
sure (Bel) plays the role of  the necessity measure, 
N. Another point of  view is considering possibility 
measures as an extreme case for the monotonicity 
condition (note that, as A,BC_A UB, then we have 
PI(A U B) ~> max{Pl(A), PI(B)}): 

VA,BC_Dx, FI(AUB)= max{H(A),II(B)}, (1) 

where H(A) represents the possibility of  the event A. 
So, I I (A)= 1 means that the event A is completely 
possible and H(A) = 0 means that the event A is im- 
possible (particularly I I ( X ) =  1 and H ( O ) =  0). Any 
possibility measure verifies that, given two events A 
and A, 

m a x { / / ( A ) , / / ( 4 ) }  = 1 

which expresses that if  we consider two contradictory 
and exhaustive events, at least one of  them must be 
completely possible. 

IfDx is a finite set (as we use it), then the possibility 
values for the singletons in Dx completely define the 
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possibility measure: 

VAC_Dx, / 7 ( A ) = m a x { n ( x ) l x E A  }, 

where rc(x)=/7({x}) and 7r is a mapping from Dx 
to [0, 1] called possibility distribution. This map- 
ping is normalized, i.e., there exists xo C Dx, such 
that n(x0)= 1. n(x) represents the degree in which 
x E Dx is the possible value that the variable X takes. 
Therefore, El(A) is the possibility that the value of 
the variable X is in A. 

2.3. Marg&alization and conditioning operators 

In order to illustrate the tools we shall need to use, 
let us first consider the case of  probabilities, where 
the concept of conditional independence has been ex- 
tensively studied. Consider two variables, X and Y, 
taking their values in the sets Dx = { X l , X 2  . . . . .  Xn} 

and Dr = {Yl, Y2 .. . . .  Ym}, respectively, and let p be 
a bidimensional probability distribution defined on 
Dx × Dr;  thenX and Y are said to be independent if 

p(xt y ) = p(x), 

VxEDx, yCDg such that p ( y ) > 0 .  

This definition asserts the independence of X and 
Y when all the conditional probabilities on X given 
any value for Y are equal to the marginal probabil- 
ity on X. Therefore, these concepts, marginalization 
and conditioning, should also be considered within the 
possibilistic framework. As we can consider both pos- 
sibility and probability measures as particular cases 
of  evidence measures, we shall study the concept of 
marginal evidence measure and conditional evidence 
measure and then, these concepts will be particular- 
ized for the narrower class of  possibility measures. 
We focus our attention on plausibility measures. 

Definition 4. Let P1 be a bidimensional plausibility 
measure defined on Dx × Dr.  The marginal plausibil- 
ity measure Plx on X (analogously for Ply on Y) is 
defined as 

Plx(A) = PI(A x D r )  = ~ m(C) 
C f-IA x D r ¢ 0  

= Z m(C), VAC_Dx, (2) 
cxna#O 

where Cx is the projection of C on X, i.e., Cx = 
{x C Dx I (x, y) C C for some y C Dr }. 

Considering consonant evidence measures, i.e., pos- 
sibility measures, the marginal possibility measure is 
defined in the same way: 

Definition 5. Given a bidimensional possibility mea- 
sure/7 defined on Dx x Dr ,  the marginal possibility 
measure on X, /Tx ,  (analogously on Y) is defined as: 

FIx(A)=/7(A xDy) ,  VA C_Dx. 

As the projections of nested focal sets are also 
nested, it is obvious that the marginal possibility 
measure is indeed a possibility measure. Thus, the 
marginal possibility distribution on X (analogously 
on Y) can be defined by means of: 

nx(X ) =/7x({x}) =/7(x x Dy ) 

= max n(x,y) VxEDx. (3) 
v~D 

Now, we shall consider conditional evidence mea- 
sures. In this case, there are several ways of defin- 
ing the conditioning (see [23] for a review). Here, we 
shall use the concept of  conditional evidence measure 
given by Dempster [11] and Shafer [25]. 

Definition 6. Let P1 be a bidimensional plausibility 
measure defined on Dx x Dr. The conditional plausi- 
bility measure given [Y=B] ,  Plxt r=s on X (analo- 
gously for Ply Ix-A on Y) is defined as 

PI(A x B) PI(A x B) 
Plxt y=e(A [B) = Plr(B) -- PI(Dx x B) (4) 

I f  we have a consonant evidence measure, then the 
conditional possibility measure can be defined in the 
same way: 

Definition 7. Let H be a bidimensional possibility 
measure defined on Dx x Dr.  The conditional possi- 
bility measure given [Y=B] ,  /7xl r=B on X (analo- 
gously for Hy IX=A on Y) is defined by means of 

/ /x l  y=8(A I B) = 
II(A x B) 

/7r(B) 
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We must note that conditional possibility measures 
are also possibility measures. So, we may limit our 
attention to conditional possibility distributions. More 
precisely, the possibility distribution on X, condi- 
tioned to the event [Y = y], denoted by ~Zd(. [y)  is 
defined as 

n(x, y) 7t(x, y) 
rCd(X ] y ) - -  7zv(y~ - -  maxx, cDx  rc(x',y)" (5) 

From now on, to simplify the notation of a marginal 
possibility distribution, we shall drop the subindex, 
thus writing 7z(x) and n(y) instead of Tzx(x) and zty(y), 
respectively. 

Definition 9 (Not gaining information). Given any 
value of the variable Z, if we know the value that the 
variable Y takes, we do not gain additional information 
about the values of X. 

Finally, a generic similarity relationship between 
conditional possibility distributions can also be used 
to establish the independence: 

Definition 10 (Obtaining similar information). Given 
any value of the variable Z, if we know the value that 
the variable Y takes, we obtain a piece of information 
about X similar to the one prior to learning the value 
of Y. 

3. Possibilistic conditional independence 

In this section we follow the same methodology 
developed in [6], where an intuitive approach to the 
concept of independence was proposed. If we de- 
note by I(X I Z I Y) the assertion 'X is independent 
of Y given Z',  in order to establish the concept of 
possibilistic conditional independence, a natural ap- 
proach consists in comparing the previous knowledge 
about X with the knowledge that we obtain after know- 
ing a new piece of information about Y. Therefore, 
a comparison between the conditional possibility dis- 
tributions, na(x I z) and rCd(X I yz), must be carried out. 
The same general idea underlies in the probabilistic 
framework [10], in different formalisms to represent 
the uncertainty [27] and also in the framework of pos- 
sibility measures [17]. With this comparison we try 
to detect a change in our current belief when a new 
piece of information is known. Bearing in mind that 
we have uncertain knowledge, different comparison 
criteria can be considered. The most obvious way (and 
also the strictest one) to define conditional indepen- 
dence is the following: 

Given these intuitive notions of independence, the 
next step is to formalize them within the possibilistic 
framework and then study the set of properties that 
each definition verifies. Pearl [24] identified the fol- 
lowing set of axioms or properties that seems reason- 
able to demand from any relationship that attempts to 
capture the intuitive idea of independence (a semantic 
interpretation of the axioms is to be found in [6, 24]). 

A1. Trivial Independence: 
i(x I z I o). 

A2. Symmetry: 
I ( x I z I  Y ) ~  I (Y IZIX) .  

A3. Decomposition: 
I(X IZIYU w ) ~  I (XIZI  Y). 

A4. Weak Union: 
I (X I Z l Y u  w)~z(x  IZU r l w). 

A5. Contraction: 
I(X [Z I Y) and I(X I Z U Y I W) 
~I(XlZI  Yu w). 

A6. Intersection: 
I (XIZU W IY ) andI(X]ZU Y I W) 
~I (X lz I  Yu w). 

Definition 8 (Not modifying the information). Given 
any value of the variable Z, knowing the value that 
the variable Y takes does not modify our information 
about the values that variable X can take. 

A softer definition of conditional independence can 
be obtained if we relax the notion of not modifying the 
information. In this case, an increase in our uncertainty 
after conditioning is allowed. 

In order to formalize the previous definitions in the 
framework of possibility measures, we shall consider 
that X, Y and Z are disjoint variables or subsets of 
variables in a finite set of n variables, and n is an 
n-dimensional possibility distribution on these vari- 
ables. Any generic value that these variables can take 
on will be denoted by x, y, z, and particular instances 
for these variables will be denoted by subscripted or 
Greek letters. 
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The above possibilistic independence criteria 
can be formalized using different comparison op- 
erators G between conditional possibilities, i.e., 
~d(X I z) @ ~d(X i yz). The comparison operators will 
represent the notions of not modifying, not gaining, 
and obtaining similar information after condition- 
ing. In the following subsections, different compari- 
son operators will be considered, and thereafter, for 
each one of them, we shall study the set of axioms 
that the corresponding definition of independence 
verifies. 

ProoL The axioms A1, A2 and A5 have a direct 
proof. Axiom A4 may be deduced directly from A3. 
So, we only prove the axioms A3 and A6. 

Decomposition: I (X I Z ] Y U W) ~ I(X t Z [ Y). 

We find that Vxyzw such that ~(yzw)>O,  
Zd(X lyzw) = rCd(X ]Z). Then 

zr(xyzw) _ 7t(xz ) 7r(@z )) 
rffyzw) rt(z) ' i.e., lr(xyzw) = zr(yzw) , 

3.1. The equality operator Vxyzw such that ~(yzw) > O. 

The first idea was to define independence when we 
do not modify the original information at all after con- 
ditioning. An obvious way to capture this idea is to 
use an equality relationship as the comparison opera- 
tor. Formally: 

But the last equality is also true if ~(yzw) = 0, i.e., it 
is always true. Then, by taking maximum in w on both 
sides we obtain ~(xyz)=~(yz)(~(xz)/ lr(z))  Vxyz, 
and therefore ~d(X I yz)  = ~d(X I z) Vxyz such that 
r~( yz  ) > O. 

Definition 11. (D1) Not modifyin 9 the information. 

I (X  [Z [ Y) ~=~ gd(X I yz)  = gd(X [z), 

Vx, y,z  such that ~(yz) > O. (6) 

Observe that we must impose that the two condi- 
tional measures involved are defined, and this is the 
case if rffyz) > 0. This definition has also been pro- 
posed by Studen) [27] and, in a slighty different form, 
by Fonck [ 17]. 

The next proposition shows a simple characteriza- 
tion of the previous definition: 

Proposition 1. The definition of  independence D1 is 
equivalent to 

I ( X  I Z I Y)  ~ Zrd(xylz) = ~d(X I z)z~d(Ylz), 

Vx, y,z  such that 7r(z) > O. 

Proof. The proof is very simple, so we omit it. [] 

Let us study what properties definition D1 satisfies: 

Proposition 2. The independence relationship D1 
satisfies the axioms AI-A5,  and i f  the possibility 
distribution is strictly positive, it also satisfies A6. 

Intersection: I (X I Z U Y I W) & I (X I Z U W I Y) 
~ I ( X l Z l  Y u w ) .  

Considering a strictly positive distribution, and 
given the independence relationships on the left-hand 
side of the implication, we find that 

7Cd(x l y z w  ) = ~d(Xl yz  ) = rrd(X l ZW ), Vxzyw. 

In particular, we have ~d(X ] yz)  =/~d(X t zw), Vxzyw, 
and therefore ~(xzw) = ~(zw)~d(x ] yz)  Vxyzw. So, 
by taking the maximum in w we obtain ~(xz)=  
rr(Z)~d(X [ yz) Vxyz, and then rcd(x [z) = rEd(X [ yz) = 
~d(xjyzw),  i.e., I ( X l Z l  Y u w) .  [] 

As we have already commented, in the first part 
of this paper [6], we developed a similar study of 
different definitions of independence using Hisdal 
conditioning instead of Dempster's. When we used 
Hisdal conditioning together with the equality op- 
erator, we obtained the properties A1 and A3-A6. 
So, there are differences between the two forms of 
conditioning: A1, A3-A6 hold in both cases, but A6 
is only true for strictly positive distributions in the 
case of Dempster conditioning. Moreover, A2 holds 
for Dempster conditioning but it does not hold for 
Hisdal's. 
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3.2. The inclusion operator 

The concept of independence as a non gain of infor- 
mation after conditioning can be adequately formal- 
ized (see [6]) by using an inclusion relationship [14] 
between possibility distributions. This relationship es- 
tablishes when a possibility distribution is more or less 
informative than another one. 

Definition 12. Given two possibility distributions, n 
and n f, defined on the same reference set Dx, then n ~ 
is included in (or is less informative than) n if and 
only if n(x) <. n~(x), Vx ¢ Dx. 

Using this relationship, the independence in the 
sense of  not gaining information can be defined as 
follows: 

Definit ion 13. (D2) Not gaining information. 

I(XlZl Y) ¢~ nd(X l yz)>~nd(X IZ), 

Vx, y,z such that n(yz) > O. (7) 

Proposi t ion 3. The independence relationship D2 
satisfies the axioms A I - A 3  and A5. 

Proof. The axioms A1, A2 and A5 can be imme- 
diately proven. We only show the proof for the 
axiom AY 

Decomposition: / ( g l Z l  Y u w) ~ Z(XlZI Y). 

From I(X [ Z I Y U W) we obtain 

n(xz) n(xyzw) 
- -  <~ - -  Vxyzw such that n(yzw) > 0 
n(z) n(yzw) 

and therefore 

~(xz) 
n ( y z w ) - ~  <. n(xyzw) 

Vxyzw such that n(yzw) > O. 

This inequality also holds if n(yzw)= 0, i.e., it is 
always true. Then, by taking the maximum in w 
we obtain n(yz)[n(xz)/n(z)]<<,n(xyz) Vxyz, and 
thus na(xlz)<~nd(x[yz) Vxyz such that n(yz) 
>0 .  [] 

Unfortunately, the important property of Weak 
Union (A4) does not hold in general; in the next 
counterexample, we consider four bivaluated vari- 
ables X, Y, Z, W having the following joint possibility 
distribution: 

);1 y z w  

~lYlZlWl 

~flYlZlW2 

~fl YlZ2W1 

~fl Yl z2w2 

J¢l Y2Zl Wl 

~Cl Y2Z1 w2 

~q Y2Z2Wl 

Xl Y2Z2w2 

In that 

n(xl yzw) 
0.3 
0.4 
1 
1 
0.5 
0.5 
1 
1 

x2yzw n(x2yzw) 
xzylzlWl 0.4 
X2YlZIW2 0.4 

X2YlZ2Wl 1 

xzylzzw2 1 
Xzy2ZIWI 0.7 
x2Y2ZlW2 0.7 

x2Y2Z2Wl 1 

x2Y2Z2W2 1 

case, we find that n(x]yzw)>>,n(xlz ), 
Vxyzw, i.e., I(X ]Z] Y U W) holds; however, for 
example, n(xl ]ylztwl) = 0.75 < 0.4/0.4 = 1.0 = 
n(xllylzl), so that the inequalities n ( x l y z w ) )  
n(xlyz)  are not always true. Therefore, I ( X I Y  UZ] 
W) does not hold. 

When we used the inclusion operator together with 
Hisdal conditioning in [6], we obtained the properties 
A1-A5. So, in this case, Hisdal conditioning performs 
better than Dempster's, because the latter fails to sat- 
isfy A4. 

3.3. Default conditioning 

We think that the problem with the concept of in- 
dependence studied in the previous subsection is due 
to the fact that the idea of independence as non-gain 
of information has not been carried out till the finish: 
if after conditioning we lose information, it would be 
more convenient to keep the initial information. That 
is, if in a very specific context we do not have much 
information, then we can use the information available 
in a less specific context. This idea implies a change 
in the definition of conditioning. Therefore, we use 
a new conditioning operator, called Dempster default 
conditioning, denoted by nd~(. ].) (which is analogous 
to the one defined in [6] on the basis of  Hisdal condi- 
tioning): 

{ n(x) if n(xy)>~n(x)n(y) Vx, 

nd~(X ] y)  = na(x [ y)  if 3x' such that (8) 

n(x'y) < n(x')n(y). 
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The idea is the following: if  after conditioning we ob- 
tain a less informative distribution, then we preserve 
the previous more precise information; otherwise, 
we use the usual (Dempster)  conditional possibility 
distribution. 

Using this conditioning, a new definition of  inde- 
pendence can be stated as follows: 

Definition 14. (D3) Default conditioning. 

I ( X ] Z [ Y )  ~ nd¢(xlYz)=nd~(XlZ), Vxyzw. 
(9) 

Note that, as the default conditioning is always de- 
fined for every value of  the variables involved, it is 
not necessary to impose any restriction for the equality 
of  the two default conditional possibility distributions 
7Zd~(XlyZ ) and gdc(X [Z). 

Proposit ion 4. The independence relationship D3 
verifies the axioms A1 and A 3 - A 6  (A6 even for non- 
strictly positive distributions). 

Proof.  Once again, the axioms A1 and A5 are imme- 
diately deduced, and the axiom A4 can be obtained 
directly once the axiom A3 is proven. 

Decomposition: I (X I Z I Y U W ) ~ I (X I Z I Y ). 

I (X  I Z I Y 0 W) means that 7td~(X ] yzw  ) = ~d~(X I z) 
Vxyzw. Our aim is to prove that ~d~(X [ yz) = 7tdc(X [Z) 
Yxyz. For any given z, we shall study the two different 
cases that may appear: 

(1) Suppose that ~Zdc(XlZ)=n(x), i.e., 7z(xz)>~ 
~(x)~(z) Vx. 

Then, we find that nd~(X I yzw)  = rtdc(X [Z) = ~(X), 
Vxyw. Therefore, using the definition of  default con- 
ditioning, we have rc(xyzw)>~zt(x)rc(yzw), Vxyw, 
and taking the maximum in w, we obtain n(xyz)>~ 
rt(x)rc(yz) Vxy, that is 7~d~(X [ yz )=  ~Z(X)= 7Zdc(X [Z) 
Vxy. 

(2) Suppose that ndc(x I z) = rc(xz)/Tt(z) 7~ rffx), i.e., 
exists 6 E Dx such that z(6z) < 7r(6)rc(z). In that case 
we find that 

~(xz) 
gd~(X IZ)= ----gd~(XlyZW), Vxyw 

~(z )  

and therefore 

7z(xz) rc(xyzw) 
rt(z) 7z(yzw) ' 

Vxyw. 

So, we obtain maxw{n(xyzw)n(z)}=maxw{Tt(xz) 
7z(yzw)} and then g(xyz)rc(z)=Tr(xz)rt(yz) Vxy. 
Now, we must prove that ndc(x[yz)¢n(x) .  Con- 
sidering that ~Zdc(.[z)¢Tz(.), that is to say, there is 
6 E Dx such that rt(6z) < rt(6)lt(z), then we have, for 
all x, y 

z ( x y z ) _ z ( x z )  

~(yz)  ~(z) ' 

particularly, for 6 we have - -  
n(6yz) n(6z) 
~(yz)  ~(z) 

- -  < r e ( 6 ) ,  

so that 

rc(xyz) zffxz) 
Vxy, rtdc(xlyz) . . . .  rCd~(X [ Z). 

rt(yz) re(z) 

Therefore, we deduce I (X I Zl Y). 

Intersection: I (X I Z u W [ Y) and I (X  I Z U Y [ W) 
~ z ( x l z l  YU w) .  

Once again, given any z, let us consider two different 
cases: 

(1) Suppose there exist yo and wo such that Vx, 
rc(xyozwo ) >~ 7r(x )Tz( yozwo ), i.e., Vx, ~c (x l yozwo ) = 
~(x). 

Then, from I (X I Z U W I Y) and I (X  I Z U Y [ W), 
we have ~Zdc(X I zw) = rCd~(X I yz) = 7tdc(X [ yZW)VXyW, 
and therefore we can easily deduce that 7Zd~(X [ yzw)  = 
7~(x), Vxyw. So, we obtain 7z(xyzw)>>,Tz(x)rffyzw) 
Vxyw, and then we have, for all x 

max n(xyzw)>~ max {rc(x)~z(yzw)}, 
yw yw 

which implies 7t(xz) >~ rc(x)rc(z) Vx, and then 7td~(X I z) 
= r~(x) = ~d~(x / yzw) .  

(2) Supppose that for all y and w, ~dc(Xl yzw)  = 
[~z(xyzw)/~z(yzw)] Vx. Then from the hypothesis we 
obtain that 

rc(xzw ) = .~(xyz ) 
~ac(x I zw)  = - -  

z(zw) z (yz)  

= rrdo(xlyz )= ~dc(Xl yzw), Vxyw. 
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Therefore, we find that maxw{n(x zw)rc (y z ) }=  
maxw { rff x y z ) rff z w ) } and then zt( x z )~z( y z ) --- rt( x y z ) 
=(z), i.e., 

~(xyz) ~(xz) 
rc(yz) ~(z) 

Finally, 

ztdc(xl yzw) 
l t (xyzw)  

7t(yzw) 
_ rt(xyz) _ ~(xz)  

=(yz) =(z) - -  - = ~ c ( x l z ) ,  

and therefore, I ( X  I zI Y U W) holds. [] 

In order to see that D3 does not verify Symme- 
try in general, consider the following counterexample, 
where X, Y, Z are bivaluated variables and 7t is the fol- 
lowing possibility distribution: 

xyz  zc(xyz) 
x ly l z l  1.0 
XIYlZ2 0.3 
xly2zl 0.6 
Xl yza2 O. 1 

x2ylzl 0.6 
x2ylz2 0.2 
x2yzal 0.4 
x2Y2Z2 0.1 

In this case, we find that rce~(xlyz)=rtdc(xlz)  
(= rffx)), i.e., I ( X I Y  I Z).  However, 7rd~(y2 ]x2z2) = 
0.5 ¢ 0.33 = rtc~ (Y2 [z2 ), and therefore - 7 1 ( Y I Z I X ) .  

So, by using the default conditioning we have re- 
covered the important property of Weak Union, but 
we have lost Symmetry. This property can easily be 
recovered by using a symmetrized definition of in- 
dependence, such as I s (X  [Z [ Y)  ~=> I ( X  ] Z ] Y)  and 
I ( Y I Z  IX), but in this case it is not clear so far that 
all the other axioms will still be satisfied. 

So, in the case of using the default conditioning 
to define independence, the two underlying condition- 
ing operators, Dempster's and Hisdal's [6], perform 
equally well with respect to the graphoid axioms: both 
verify A1, A3-A6 and fail A2. 

With respect to the relationships existing among 
the three definitions of independence considered so 
far, it is obvious that D1 -+ D2, but (contrary to what 
happened when using Hisdal conditioning [6]), D3 is 

not implied by D1 and D2 is not implied by D3. The 
following examples show these facts: 

In this first example, we have three bivaluated vari- 
ables X, Y and Z, whose joint possibility distribution 
is given in the table below. 

xyz  7r(xyz) 
x ly lz l  1.0 
xlylz2 0.4 
Xl yZzl 0.6 

xl Y2Z2 0.0 
XzylZl 0.5 

X2YlZ2 0.1 

xzy2zl 0.3 
Xzy2Z2 0.0 

It may be seen that rcd(x lyz )=rcd(x l z )  Vxyz  
such that r t (yz)>0 (i.e., for all yz  except yzzz). So, 
l ( X  I Z I Y )  holds when using definition D1. How- 
ever, rtc~(x2 I z2) = 0.25, whereas 7td~(x2 ] Y2Z2) = 0.5, 
SO that ~ I ( X I Z  ] Y)  if we use definition DY 

In the second example, once again we have three 
bivaluated variables X, Y and Z, and the following 
joint possibility distribution: 

xyz  ~z(xyz) 
x ly lz j  1.0 
xlylz2 0.3 
XlY2Zl 0.5 
xl y2z2 0.7 
x2ylzl 0.8 
xzylz2 0.25 
X2yz21 0.4 

X2yZZ2 0.6 

It is easy to check that rc(xyz)>~rc(x)rc(yz) Vxyz, 
and rt(xz)>>, ~z(x)n(z) Vxz, so that r~d~(x l y z )  = rt(x) = 
zd~(x I z) Vxyz, i.e., I ( X  ]Z[ Y) is true if we use 
definition D3. However, gd(x2lyt z2) = 0.833 < 0.857 
= rtd(x2 [z2), hence l ( Y  ]Z] Y) is not true when we 
use definition D2. 

3.4. Similarity operators 

In order to define independence relationships, the 
third intuitive idea was to use a similarity criterion 
between conditional distributions. Thus, given a sim- 
ilarity relationship _~, defined on the set of possibility 
distributions for the variable X, the independence may 
be defined in the following way: 
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Definition 15. (D4) Obtainb~g similar information. Proofl 

I ( X l z l  Y) ~ rid(. I yz) " ~  Zrd(. I z ) ,  

Vy, z such that n (yz )>O.  (lo) 

First, we shall study what kind of  properties of  -~ 
are sufficient to guarantee that some of  the axioms 
hold. Using the same criterion as in [6], we consider 
that an equivalent relationship is a good candidate to 
define independence in the sense of  similarity. In that 
case, we find that A1 (Trivial Independence) and A5 
(Contraction) are immediately obtained, and we can 
guarantee that A3 (Decomposition) is verified if and 
only if A4 (Weak Union) is verified. Therefore, we 
must look for the additional conditions which assure 
the fulfilment of  A3. Particularly, we shall impose 
that the similarity relationship verifies the following 
property. 

Definition 16 (Maximum Property). We say that a 
similarity relationship ~_ satisfies the maximum prop- 
erty if, for any family {n~} of  possibility distributions 
verifying 

=s(x)- L(x), Vx 
L 

where 2~ are positive real numbers less than or equal 
to 1 (therefore maxx f~(x) = Zs), and with n '(x) being 
the possibility distribution obtained by means of  

n'(x) - max, fs(x) gx, 
maxs Zs ' 

and n any other possibility distribution, then 

7~s ~ l~ Vs ~ 7~t ~,~ TL 

The next proposition says that by using this property 
we can guarantee the fulfilment of  the Decomposition 
and Intersection axioms. 

Proposition 5. Given an equivalence relationship 
between possibility distributions, ~_, a sufficient con- 
dition for the fulfilment of  Decomposition is that ~- 
verifies the maximum property. Moreover, Jbr the 
case of strictly positive distributions, the fulfilment 
of  the properties above also guarantees the fulfilment 
of  Intersection. 

Decomposition: I(X JZIYU W ) ~ I ( X [ Z I Y ) .  

We find that no( .[yzw)~--nd(.[z) ,  Vyzw such 
that n(yzw)>O. For any y,z such that n (yz )>O,  
let us define, J~{':(x)= n(xyzw), Jt;,.'v: = n(yzw) and 
P~: = {w E Dw ] n (yzw)  > 0}. In that case, nd(x[yzw) 
= .£~':(x)/2~'.: Vw C p~Z and 

m vz v: 
zdY:(x) = ax,,cp,;: f~;. (x) = maxw~D,, ,£;. (x) 

~VZ maxwc~;i: ,;~, maxw~D,, )4','. z 

n(xyz) 
- - -  - ~ ( x l  yz). 

n(yz) 

Then, using the maximum property we obtain 
nd(.[YZ)--~nd(.[z) Vyz such that n ( y z ) > 0 ,  thus 
concluding that I ( X I Z[ Y) holds. 

Intersection: I ( X I Y U Z [ W ) & I ( X I Z U  W[ Y) 
~Z(XlZlruw). 

Considering strictly positive distributions, we find 
that rid(. [ yzw)  ~ rid(-lYz) and rid(. j yzw)  ~-- rid(. [ZW) 
for all yzw. Using the fact that _~ is an equivalence re- 
lationship, particularly the properties of  symmetry and 
transitivity, we have that rid(. ]yz)~--ha(. I wz) Vyzw. 
Let f~(x)  = n(xzw) and 2~,, = n(zw), then 7Zd(X [ZW) = 

J~.(x )/2~,, and 

n':(x) = maxw fw(X) _ n(xz) _ nd(X [z). 
maxw 3,~,. n(z) 

Therefore, using the maximum property, we obtain 
/I'd(. [Z)~ Gd(. l YZ). Now, taking into account that 
ha(. [ yzw)  ~-- ha(. [ yz), then once again using transi- 
tivity and symmetry we have rid(-[ yzw)  ~_ rid(. [Z), 
Vyzw. [] 

The following corollary can be immediately 
deduced from the previous proposition: 

Corollary 1. The independence relationship D4, 
where ~- is any equivalence relationship verifying 
the maximum property, satisfies the axioms A1, and 
A3-A5.  Moreover, if  the possibility distribution is 
strictly positive, then A6 is also verified. 
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Once again, the only property excluded from this 
context is A2 (Symmetry).  In this case, and if we 
require to the similarity relationship the appropriate 
properties for each case, both Hisdal and Dempster 
conditioning perform almost identically [6]: they do 
not verify A2 and do verify A1, A3-A6 ,  although A6 
only for strictly positive distributions in the case of  
Dempster conditioning. 

Different examples of  relationships ~_, which are ap- 
propriate to define the independence D4 follow (they 
were also successfully used in [6]): 

Isoordering." In that case, we are considering that 
a possibility distribution essentially establishes an or- 
dering among the values that the variable can take on, 
and the possibility degrees are of  a secondary impor- 
tance. So, the similarity can be asserted when the two 
possibility distributions establish the same ordering 
among their possibility values, i.e., 

7~_7~' ~ Vx, x' [rc(x)<~(x') ¢, 7~'(x)<rc'(x')]. 

which is equivalent to 

C(n, ~0) = C(n',  :~0) and n(x) = n'(x) 

Vx E C(n, ~o). 

We should note that the above similarity relation- 
ships are equivalence relationships and verify the max- 
imum property. Therefore, using Proposition 5, we 
may conclude that: 

Corollary 2. The definition of independence D4, 
where the similarity relationship ~_ is either 
Isoordering, Resemblance or ~o-Equality, verifies 
the properties A1 and A3-A5.  Moreover, i f  the pos- 
sibility distribution is strictly positive, then D4 also 
verifies A6. 

Finally, we shall see that the Symmetry axiom does 
not hold in general using the following examples, 
which show cases where l ( Y  [ 0 ] Y) but ~I(Y I 0 IX). 

Resemblance: In that case, we consider that two 
possibility distributions are similar when the possi- 
bility degrees for each distribution, for each value, 
are alike. Formally, let m be any positive inte- 
ger and let {~k}k-0 ...... be real numbers such that 
~0 <~1 < • • • <~m, with c~0 = 0 and C~m = 1. We denote 
Ik=[O~k_l,~k) , k =  1 . . . .  , m -  1, and lm=[~m_l,~m]. 
Then, the similarity relationship _~ is defined by 
means of  

n "~ n I ¢* Vx 

~k E {1 . . . . .  m} such that n(x), rff(x) EIk. 

An equivalent version, using ~-cuts, is the following: 

7r~_rd ¢e~ C(n, cq.)=C(n',~k) V k = l  . . . . .  m - l ,  

Isoordering: Let X, Y be bivaluated variables, with 
the following joint possibility distribution 

xy n(xy) 
x~ Yl 1 
xl Y2 0.8 
xzy 1 0.7 
x2Y2 0.7 

In that case, considering the marginal distribution on 
X, we obtain the ordering x2 ~ xl, and after condi- 
tioning to y (rid(. [Yl) and rid(. I Y2)), the same or- 
dering results. So, we obtain I (X [01 Y). On the other 
hand, if we marginalize on Y, we have y2 -< Yl, but 
when conditioning to x2 we obtain y2 7~ yl, so n(y)  
and 7Cd(y ]X2) are not similar, hence ~I(Y[O IX). 

where C(n, a ) =  {x ] n(x)>~ a}. 

~o-Equality: In this case, we are considering 
a threshold ~0, and supposing that only for values 
greater than :~0 it is considered interesting to differ- 
entiate between the possibility degrees of  two distri- 
butions. In terms of  c~-cuts, this relationship may be 
expressed as follows: 

n ~ n '  '~ C(m~)=C(n ' , :O V~>~o, 

Resemblance." We use the same distribution as 
above, and consider the following discretization 
for the unit interval: I1 = [0,0.7)12 = [0.7,0.9);13 = 
[0.9, 1]. In that case, we find that n(xl ), na(xj I Y) E 13 
Vy and n(x2),nd(x2[y)EI2 Vy, and therefore 
I (X  ] 0 [ Y). However, n(y2) c 12 but nd(y2 Ix2) E Ii, 
hence I(Y[O I X)  does not hold. 

~o-Equality." Consider two variables X, Y, with 
X taking values in Dx = {xl,x2} and Y taking values 
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i n D r  = {Yl, Y2, Y3}. Let us use any threshold ~0 >0.5,  
and suppose the following joint possibility distribu- 
tion: 

xy n(xy) 
xlyl 1.0 
xl Y2 0.4 
xly3 1.0 
x2y! 0.5 
x2Y2 0.2 
x2Y3 0.4 

In that case, we find that n(xl ) = nd(Xl [ y )  = 1 Vy, 
and ?r(x2),nd(X2 ]Y)<~o Vy. Then, as our interest 
is in the equality only for values greater than the 
threshold, we can conclude that I (XIO[Y)  holds. 
On the other hand, we may find that nd(y 3 [Xl )=  
re(y3) = 1 ¢ 0.8 = nd(Y3lX2) and then the indepen- 
dence relationship I (Y IOIX)  does not hold. 

The following table summarizes the different prop- 
erties that the different definitions of  independence we 
are considering verify. The symbol 'X '  means that the 
corresponding property holds, and 'P '  means that the 
property holds only for strictly positive distributions. 

AI A2 A3 A4 A5 A6 

D1 (Eq. (6))  X X X X X P 
D2 (Eq. (7))  :X X X X 
D3 (Eq. (8))  X X X X X 
D4 (Eq. (10)) X X X X P 

satisfying the following conditions: 
1. X and Y must be independent given Z, i.e. 

l ( X l Z I  Y). 
2. The marginal measure on XZ must be preserved, 

i.e.: n(xz) = maxy n(xyz) = nl(xz). 
3. The marginal measure on YZ must be preserved, 

i.e.: n(yz) = maxx n(xyz) = n2(yz).  
I f  we want to meet these requirements, we must 

impose a compatibility condition on the original 
distributions, nl and n2, which ensures that both dis- 
tributions represent the same information about the 
common variable Z. This compatibility relationship is 
defined in the following way: 

Definition 17. Let nl and n2 be two possibility dis- 
tributions on XZ and YZ, respectively. We say that nx 
and n2 are compatible on Z if and only if 

~ z E a z ,  7rl (Z)  = 7r2(Z). 

I f  the two original distributions are not compatible 
on Z, then obviously we cannot build n, in fact in this 
case it makes no sense to try it, because we are mixing 
incoherent information. In the case of  compatibility, 
we must fix an independence criterion that allows us 
to determine the joint distribution n(xyz). We shall 
impose that X and Y are conditionally independent 
given Z, using definition D I. The next proposition 
shows that the use of  D1 guarantees the fulfilment of  
the previous requirements. 

4. The marginal problem 

Following the scheme given in [6], we shall study 
the marginal problem: suppose that X, Y, Z are three 
disjoint subsets o f  variables, and that nl and n2 are 
two possibility distributions defined over XZ and YZ 
respectively. The problem is how to construct, from n l 
and n2, a joint possibility distribution, n, over XYZ. 
In that case, it is reasonable to assume that there 
exists some kind of  conditional independence rela- 
tionship among the variables X, Y and Z, particu- 
larly I (X [Z[ Y). Another natural requirement is that 
the marginal distributions of  n over the domains XZ 
and YZ should coincide with the original distributions 
n~ and n2. Therefore, starting out from n~ and n2, 
we want to construct a joint possibility distribution n 

Proposit ion 6. Let nl and n2 be two possibility 
distributions, defined on X Z  and YZ, respectively, 
and compatible on Z. Then, the joint possibility 
distribution, n, when defined by means of 

{ rcl(x [z)rc2(yz)  

= n l ( x z ) ~ 2 ( y l z )  

7~(xyz )= _ r c l ( x z ) n z ( y z )  

~ l ( z )  
0 

if hi(z)>0, 
if'hi(z):0 

satisfies: 

1. IDI(X I ZI Y ), i.e., rid(X[ yz ) = nd(X I Z), Vxyz such 
that n(yz) > O. 

2. n (xz )  = ~1 (xz) ,  Vxz. 
3. n(yz) = n2(yz), Vyz. 
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Proof.  Requirements 2 and 3 are immediate and, 
using them, the independence property is immediate 
too. [] 

Example 1. Let 7q and 7t2 be the possibility dis- 
tributions displayed in the tables below. Assuming 
I(X I zI Y), we can construct the following joint 
possibility distribution 7z: 

X g 7TI ( X Z )  y Z 7t:2 ( y z )  

xl zl 0.25 Yl zl 0.5 
xl z2 0 Yl z2 0.75 
x2 zl 0.5 Y2 zl 0 
x2 z2 1 Y2 z2 1 

x z y zt(xyz) 
xl Zl Yl 0.25 
xl zl Y2 0 
xl z2 Yl 0 
xl zz Y2 0 
x2 zl Yl 0.5 
X2 Zl Y2 0 

x2 z2 Yl 0.75 
x2 z2 Y2 1 [] 

5. Storage of large possibility distributions 

Regardless of  the way that we interpret a possibil- 
ity distribution, one important question we have to 
deal with is how to store the values of  a joint distri- 
bution. Obviously, we can simply use a table of  val- 
ues, but then we need a size which is exponential (in 
the number of  variables) to store all the information. 
In this section we present two approaches, where the 
use of  the conditional independence relationship D1 
permits us to reduce the memory requirements. The 
independence relationships are used to factorize the 
joint possibility distribution in terms of  its condition- 
ally independent components. Then, using the method 
presented in the previous section, we can construct the 
original distribution without losing information. 

Both methods use a tree structure to represent the 
joint distribution, the first one will be called Possi- 
bilistic Tree Structure (PT) (and is similar to the one 
proposed in [6], but now using Dempster condition- 
ing instead of  Hisdal 's)  and the second one will be 
called Dependence Tree Structure (DT). The main 

XI.X2,...,X 10 

I(XI .....X4 I X5 IX6.....X I 0) 

J 
X 1 .....X 5 

I(XI I X2 I X3.....XS) 

X 1, X2 X 2 ,....X 5 
I(X2 1 X3 I X4,XS) 

/ \  
X2.X3 X3,X4,X5 

XS....,X 10 
I(XS,...,X71 X81X9,X 10) 

X5,...,X8 

I(X5 I X6 I X7.X$) 

XS.X6 X6,XT.X8 

I(X61 X7 I X$) 

X6,X7 X7,X8 

xg .x9 .x I0  

Fig. 1. Possibil ist ic tree.  

differences between them are the way in which the 
possibility values are stored, the different meaning of  
the nodes, and how the set of  independence relation- 
ships is used to construct each tree. 

Possibilistic tree structures. Let X, Y, Z be disjoint 
subsets of  variables and n a joint possibility distri- 
bution. I f I ( X I Z I Y  ) holds using definition DI ,  i.e., 
nd(x ly z  ) = na(x lz  ), then we can recover the joint 
distribution on XYZ by means of  its marginals on XZ 
and YZ, using the equality n( x yz ) = n( xz )n( yz ) / n( z ). 
In order to generalize this idea, consider a set U with 
n variables, U = {X1,X2 . . . . .  Xn}, and let X/ be the 
variable (equivalently for a set o f  variables) such that 
I({XI . . . . .  Xi-1 } IXi I {Xi+l . . . .  ,An}). In that case, we 
can split the initial distribution into two components 
defined on {X~ . . . . .  X~_~,X;} and {X,,X~+~ . . . .  ,An}. 
The same idea can be recursively applied to both sub- 
sets, thus forming the PT structure. We only have 
to store the marginal possibility distributions on the 
leaves of  the tree. Let us look at an example: 

Example  2. Let U = {Xl . . . . .  Xl0} be a set ofbivalu-  
ated variables, and suppose that the independence re- 
lationships indicated in the nodes of  the tree in Fig. 1 
are true. We only have to store the following set o f  
marginal distributions: 

~(XI,X2),~(X2,X3),~(X3,X4,X5),~(X5,X6),~(X6,X7), 

n(x7,xs), n(xs,x9,xlo) 
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and therefore we considerably reduce the memory 
requirements (we store only 36 values instead of the 
210 = 1024 values that completely define the joint dis- 
tribution). 

The joint distribution can be obtained by combining 
the marginal distributions in a bottom-up approach, 
using the method proposed in Proposition 6; for ex- 
ample, in Fig. 1, g(X2,X3,X4,X 5) =/~(X2X 3)7~(X3X4X 5)/ 
re(x3 ), and also rr(xi, x2, x3, x4, xs) = ~(xt, x2)rc(x2, x3, 
x4, xs)/rr(x2 ). This process can be continued until the 
root node is reached. 

The general method for building a Possibilistic Tree 
is based on the recursive procedure SPLIT,  which 
is described below. The parameters F and node in 
SPLIT(F,  node) represent a subset of variables in U 
and a node in the tree, respectively. Initially, the al- 
gorithm takes as the input a node, root, labelled with 
U, and gives as the output the tree structure. 
• The recursive procedure SPLIT(F,  node) is defined 

as follows: 
- Find disjoint subsets L, R, S in F such that L U 

S U R = F and I(L ] S I R). 
- If  this is possible, then attach the set S to node, 

create two new child nodes of  node, leftchild 
and rightchild with respective labels L U S and 
R U S, and call SPLIT(L U S, leftchild) and 
SPLIT(R U S, riohtchild). 

- Otherwise, attach the marginal possibility distri- 
bution ~ZF to node. 

The next proposition shows how to obtain the joint 
distribution. 

P r o p o s i t i o n  7. Let T be a Possibil&tic Tree for the 
set of  variables U = {X1,X2 . . . . .  An}, L/, J = 1 . . . . .  m 
the leaves in T and Ik, k =  1 . . . . .  r the internal 
nodes in T. Then the joint possibility distribution on 
Xj ,X2 . . . . .  Xn can be obtained by means ~f 

- I  

j=l  k=l 

where ~L, is the maroinal possibility distribution 
stored in the leaf L j, and ~zt~ represents the mar(final 
possibility distribution over the set of  variabh's at- 
tached to node lk (which splits the set of  variables 
that constitute the label of  lk into two conditionally 
independent subsets). 

Proof. The proof is immediate, using the indepen- 
dence relationships represented in the possibilistie tree 
and the definition of independence D1. [] 

If  we are interested in obtaining some marginal pos- 
sibility distributions (instead of the joint distribution), 
then we can take advantage of the independence re- 
lationships represented in the PT, and we do not use 
all the variables in the tree, i.e., it is not necessary 
to construct the joint distribution first (using the pre- 
vious proposition) and after marginalizing (see the 
algorithm proposed in [6], which can be adapted to this 
case by simply changing the combination operator). 

Dependence tree structures. In order to better 
explain what Dependence Trees are, it is interesting 
to remark that a Possibilistic Tree has the following 
characteristics: 
• There are two kind of nodes: leaf nodes, which store 

possibility distributions for subsets of variables, and 
internal nodes that store conditional independence 
assertions. 

• The leaf nodes store marginal possibility distribu- 
tions. 

• The possibility distributions for different leaf nodes 
may share common variables, i.e., the leaf nodes 
do not represent mutually exclusive subsets of vari- 
ables. 

• The tree does not explicitly represent the marginal 
distributions for the subsets of  variables attached to 
the internal nodes, although these distributions are 
needed to construct the joint distribution. Anyway, 
these distributions can be easily computed from 
the distributions stored in the leaves (note that the 
Possibilistic Trees constructed in [6] using Hisdal 
conditioning did not need to use these 'internal' 
distributions). 
Now, we look for a different tree representation, 

which will use only one kind of node instead of 
two, will store conditional distributions instead of 
marginals, the nodes will represent mutually exclu- 
sive subsets of variables, and the computation of 
the joint distribution will be done directly using the 
information stored in the nodes. 

In a Dependence Tree we use a similar scheme to 
the one employed in probabilistic dependence graphs 
[24]. In these structures, nodes represent variables, 
links represent direct dependence relationships among 
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variables, which are quantified by means of condi- 
tional probability distributions, and the absence of a 
link between two variables represents a conditional in- 
dependence relationship. In our case, and in order to 
always obtain a tree structure, we will allow the nodes 
to represent subsets of variables. 

Before studying the general case, let us see an 
illustrative example: 

Example 3. Let U = {XI,X2 . . . . .  X8} be a set of vari- 
ables and suppose that I(X1 [X2X3 IX4XsX6X7Xs) 
holds. In that case, the set of variables U can be 
split as in Fig. 2(a), where in the root node, (X2X3), 
we store the marginal distribution ~Zx2x~ and for each 
leaf we store the conditional possibility distribu- 
tions, ~tx, IX:,V~ and ~Zx4..x~tx:x~. Thus, using the above 
independence relationship, we can obtain the joint 
distribution by means of 

~ = TEX~. X~ * ~Xi Ig~.ga * 7EXz..g~lg2gs" 

Now, let us suppose that the independence relation- 
ship I(X8 I)(2)(3 I X4XsX6X7) is verified. Again, we 
can split the leaf (X4XsX6XTX8) as in Fig. 2(b), where 
the conditional distributions gx~ I~x~ and ~x~..xTl~x3 
must be stored at nodes (X8) and (X4XsX6XT), respec- 
tively. Note that 

rcx4..x~ Ix2xs = ~x~ Ix:x, * rcx4..x7 Ig~_x~ 

and therefore the joint distribution can be written as 

7r = rC~x, * rCx~ I x:x~ * nxs IX:X3 * ~zx.,.x~ I X:X,. 

Suppose now that I (X6X7IX4XsIXzXs)  also holds. 
In this case, we can create a new level in the tree 
(see Fig. 2(c)). Again, at each new node, we store 
the conditional possibility distribution given its par- 
ent. Note that rtx~x~ lx2x ~ • 7tx~x~ ix~x~ = ~x~x~ lx.X~ • 
rcx~x~ I~..x~ = rtx,..x~ I~X,, so that the joint distribution 
can be decomposed as 

7z = rCx:x, * ltx~ I~X.~ * 7Zxs I x:A~, * rtx4g~ I x_,x, 

• rCx~x71 x4x,. 

Finally, if the independence relationship I(X61X4X5 I 
X7) holds, the tree structure becomes as in Fig. 2(d), 
with rtx6 I X4X5 and rtx: I X~X~ being the conditional distri- 
butions stored at nodes (X6) and (X7) respectively, and 

verifying ltx6x7 i x4x, = nxo b x4x5 * ~x7 I x4xs. Therefore, 
using all the independence relationships considered, 
the joint possibility distribution can be obtained by 
means of 

= rC~x, * rtx~ I ~x: ,  * rcxs I X~_X~ * rCx4~ [x2Y, 

• TZx6 I x4x, * 7tx7 I x4X~. 

So, we have to store a marginal possibility distribu- 
tion in the root node, and for any other node in the 
structure we store the conditional possibility distribu- 
tions given its parent node in the tree. Note that the 
joint possibility distribution can be written (as it hap- 
pens for probabilistic dependence graphs [24]), as a 
product of  the distributions stored in the nodes. [] 

Given a joint possibility distribution, the follow- 
ing procedures, D I V  and F A C T ,  permit us to build a 
Dependence Tree structure. D I V  has as input a set of 
variables, U, and the root node for the tree structure. 
Therefore, initially it must be called as DIV(U,  root). 
This procedure produces the Dependence Tree as out- 
put. On the other hand, F A C T  is a recursive proce- 
dure, used by DIV,  that takes as input the list of nodes 
at level i in the tree, denoted by NL(i),  and then, using 
independence relationships, the tree grows by creating 
a new level i + 1. 

DIV(U, root): 
• Find disjoint subsets L , R , P  in U such that U =  

L t.3 R t_3 p and I (L [ P I R )  holds. 
• If  this is possible and P ~ 0, then label the root 

node with the subset P, attach to it the marginal 
possibility distribution 7re, create two child nodes 
of  root, with labels L and R, and insert in the list 
of nodes at level 1, NL(1),  the subsets L and R. 
Then call the procedure FA CT(NL(1 )) and return 
the tree obtained. 

I f P  -- (3, i.e., I(L I 0 JR), then create two new tree 
structures with roots rootL and rootR, and call to 
DIV(L,  rootL ) and DIV(R,  rootR). 

• Otherwise, attach the joint distribution zu to root. 

FACT(NL( i ) ) :  We denote by n any node in NL(i), 
by N the subset o f  variables in n, by p ,  the parent 
o f  node n in the structure, and by P, the subset o f  
variables in p,. 
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(a) 

% 
® 

(c) (b) 

Fig. 2. Construction of a Dependence Tree. 

(d) 

• Whenever there is a node n E NL(i) verifying that 
exist disjoint subsets L, R C N such that L U R = N 
and I(L ] t9,, I R), then remove node n from the struc- 
ture and N from NL(i), create two new child nodes 
of  Pn with labels L and R, and insert in the list of  
nodes NL(i) the subsets L and R. 

• For each node n E NL(i) 
- If  there are disjoint subsets Ni,N,-+l C_N such 

that Ni U N,.+] = N and I(P, I Ni[ Ni+j ), then re- 
move N from NL(i), change the label of  node 
n from N to Ni and attach to n the conditional 
distribution nU, I P,, ; create a new child node of  n 
with the label N/+t, and insert ~+1 in the list of  
nodes at level i + 1, NL(i + 1 ). 

- Otherwise, attach the conditional distribution 
7~N I P,, to node n. 

• If  NL(i + 1) ¢ ~ then call FA CT(NL(i + 1)). 

Using these procedures, a tree structure represent- 
ing the original joint distribution may be obtained. We 
need to store a marginal possibility distribution in the 
root node, and for any other node n in the tree, we 
store the conditional possibility distributions o f  the 
label of  n given the label of  its parent pn in the tree, 
7~N 4P,," Then, the joint possibility distribution can be 
obtained, in a similar way to the case of  the proba- 
bilistic dependence graph, as follows: 

P r o p o s i t i o n  8. Let T be a Dependence Tree for a set 
of  varhTbles U, with nodes nl . . . . .  n m .  Then, the joint 
possibility distribution on the variables in U can be 
obtained by means of  

m 

= H [ P,~, , 
i - - I  

where Ni is the set of  variables that form the label of  
node ni, and P,, is the set of  variables that form the 
label of  the parent node of  ni in T ( i f  nl is the root 
node, it is assumed that Pn, = 0). 

Proof. The proof is immediate, taking into account 
the independence relationships used to build the de- 
pendence tree. [] 

Bearing in mind the way in which the Dependence 
Tree has been built, we can obtain the following graph- 
ical independence criterion for these structures: 

P r o p o s i t i o n  9. Let T be a Dependence Tree for a set 
of  variables U, and let X, Y, Z be disjoint subsets in U. 
I f  all the paths connecting nodes that include a vari- 
able in X to nodes that include a variable in Y con- 
tain some node whose associated subset of  variables 
is included in Z, then I ( X I Z  [ Y). 

Proof. The result can be easily deduced using the 
independence relationships represented in the struc- 
ture and the properties of  the definition o f  indepen- 
dence D1. [] 

The previous proposition permits us to deduce new 
independence relationships from the ones used to build 
the tree. For example, for the dependence tree in Fig. 
2(d), we can deduce that I(X6 IX2X4X5 [XlX8) is a 
true conditional independence assertion. Let us see 
how this assertion can be derived from the axioms 
verified by DI :  we start out from three o f  the indepen- 
dence statements used to construct the tree, namely 
l(XllX2X3tX4..g8) (I1), I(XslX2X3lX4..X7) (I2) and 
l(g6g7lg4gsIg2g3) (I3) From (I1) we obtain, using 
weak union and symmetry I ( X4 .. X7 [X2 X3 Xs ]Xi ) (I4); 
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from (12) we obtain I(Xa..X7[X2X3[Xs) (I5) by us- 
ing symmetry; then, from (14) and (15) we deduce 
I(Sa..XTIX2X31XtXs) (16) by applying contraction; 
now, from (I6), and using symmetry, decomposition, 
weak union and symmetry (in this order), we obtain 
I(X6 IXeX3X4X5 [X1X8 ) (I7); if we apply symmetry, de- 
composition and once again symmetry to (I3), we get 
1(X6 [X4X5 I)(2)(3) (18); now, contraction applied to 
(17) and (18) produces 1(X6 [XaX5 [XIX2X3X8) (I9); 
finally, decomposition and weak union, when applied 
to (I9), give I(X6 [X2XaX5 [XIXs). This derivation 
gives us an idea of the power of Proposition 9. 

It should be noted that the algorithms proposed to 
obtain PT and DT structures representing joint possi- 
bility distributions are not deterministic, i.e., we have 
some freedom to decide what independence assertions 
we should test for, and in the case that more than one 
independence assertion were true, we have also free- 
dom to select which of them to use to build the tree. 
In other words, we could obtain different PT and dif- 
ferent DT representations of the same joint distribu- 
tion, depending on the search strategy we use. This 
leaves open the important topic of studying heuristic 
methods to find optimal PT and DT representations 
of joint distributions (with the word optimal meaning, 
for example, minimum storage requirements, or max- 
imum efficiency when using these structures for infer- 
ence tasks). It should also be pointed out that the two 
tree representations proposed do not rely on the uncer- 
tainty formalism being used, possibility theory in this 
case, but they can be also used for other uncertainty 
theories, provided that we have the appropriate con- 
cept of conditional independence within each theory. 

Although the two tree representations of joint distri- 
butions discussed, Possibilistic Trees and Dependence 
Trees are quite different, there are some connections 
between them; for example, from a Dependence Tree 
we can always obtain an equivalent Possibilistic Tree 
(i.e., representing the same set of conditional indepen- 
dence assertions), but the converse is not necessarily 
true. In Fig. 3, a PT equivalent to the Dependence Tree 
of Fig. 2(d) is displayed. The transformation process 
is quite obvious. 

From a Possibilistic Tree we can also obtain a 
Dependence Tree, but in this case we cannot guar- 
antee that both trees represent the same conditional 
independences. For example, from the Possibilistic 
Tree in Fig. 1 we can construct the DT displayed in 

X I,X2,...,X8 
l(Xl I X2,X3 I X4,XS,Xr,X7.X8) / ",, 

XI,X2,X3 X2.X3,...,Xg 
I(X8 I X2,X3 I X4.XS,X6.XT) 

X8,X2.X3 X2,X3,...,X7 
l(X2,X3 I X4,X5 IX6,XT) 

/ \ 
X2,X3,X4.X5 X4.XJ,X6,X? 

l(X6 l X4,X5 1 X7) 

/ \ 
X4,XJ,X6 X4,XS,X7 

Fig. 3. A Possibilistic Tree equivalent to the Dependence Tree in 
Fig. 2(d). 

~,X9,XI0~ 
Fig. 4. Dependence tree obtained from the Possibilistic Tree in 
Fig. 1. 

Fig. 4 (using the independence relationships repre- 
sented explicitly in the PT, and some others which 
can be deduced from them through the axioms, con- 
cretely I(X5 [XsX4 [XIX2) ,  I(Xs IX6 IX7 . .XI0)  and 
I(X6IX7[X8XgXlo)). Note that the independence 
statement l(Xi I X2[X3X4Xs), which appears in the 
PT, cannot be deduced from the independence state- 
ments used to build the DT. 

Although this brief analysis of the relationships be- 
tween Possibilistic and Dependence Trees should be 
further investigated, it seems to point out that Possi- 
bilistic Trees are more expressive than Dependence 
Trees, from the point of view of the independence 
relationships that can be represented. However, DT 
structures could be extended to more general struc- 
tures, using graphs instead of trees, which would be 
expected to have a representational power comparable 
to or even greater than possibilistic trees. 
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6. Concluding remarks 

We have proposed and analyzed several concepts 
of possibilistic conditional independence. In order 
to define it, our approach has been based on using 
several criteria to compare conditional possibility dis- 
tributions (before and after obtaining new pieces of 
information, i.e., 'a priori' and 'a posteriori' possibil- 
ity distributions). Particularly, in this paper we have 
approached possibility measures as consonant plausi- 
bility measures, and therefore Dempster conditioning 
has been used (in the first part of this paper [6] we 
developed a similar study using Hisdal conditioning 
instead of Dempster's). 

Three different comparison criteria have been pro- 
posed: the first establishes the independence when the 
'a priori' information is not modified at all after con- 
ditioning (D1); then we relaxed this criterion and for- 
malized the independence when we obtain less precise 
information (D2, D3) or obtain similar information 
(D4) after conditioning. In order to compare these in- 
dependence criteria, we used a well-known set of ax- 
ioms (the graphoid axioms) that capture the intuitive 
notion of independence. We saw that D1 satisfied all 
the axioms, whereas for D3 and D4, the only axiom 
which was not verified is Symmetry, and D2 did not 
verify Weak Union and Intersection. 

Moreover, we have studied the marginal problem, 
i.e., how to construct a joint possibility distribution 
from marginal distributions, assuming a conditional 
independence relationship. As a direct application, we 
found that it is possible to factorize a joint possibility 
distribution using the independence criterion D1, and 
then recover the original distribution. This amounts 
to a considerable saving in the storage requirements 
of large joint possibility distributions and should lead 
to efficient inference algorithms, using local compu- 
tations. 

It is obvious that a lot remains to be done. For 
example, considering other points of view to define 
independence which are not based on conditioning; 
studying the relationships of Possibilistic Trees with 
other structures to perform inferences within this 
framework, such as Hypergraphs [15, 20], and also 
to tackle the problem of how to construct efficiently 
a Possibilistic Tree from a joint possibility distribu- 
tion; it is also interesting to consider how to use these 
structures with respect to the problem of extracting or 

estimating possibility distributions (from expert judg- 
ments or from raw data); in the latter case, we could 
use the expert knowledge to construct a Possibilistic 
Tree and then estimate the possibility distribution for 
each leaf, or we could design procedures to build the 
tree directly from databases. 

Another interesting problem is the use of more 
complex structures to store possibility distributions, 
such as Dependence Graphs [24] (and not only Depen- 
dence Trees). In these structures we are representing 
dependence and independence relationships among 
variables. Therefore, an important problem is that of 
propagating (i.e., updating using local computation) 
the information using the independence relationships 
represented in the Dependence Graph. Finally, the 
study of the consequences of a non-symmetrical def- 
inition of independence with respect to its graphical 
representation (by means of Possibilistic Trees or 
Dependence Graphs) is also an interesting task. 
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