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Abstract

The notion of independence is of great importance in any formalism for managing uncertainty, for both theoretical and
practical reasons. In this paper we study the concept of independence in the framework of possibility theory. Our approach
to defining conditional independence relationships is based on comparing conditional possibility measures. Different com-
parison criteria are presented, based on the ideas of ‘not to modify’, ‘not to gain’, and ‘to obtain similar’ information
after conditioning. For each definition of independence considered, an axiomatic study has been carried out. Moreover,
there are different operators to define conditional possibility measures, which are related to different views of possibility
theory. Particularly, in the first part of the paper, we use Hisdal conditioning (whereas Dempster conditioning will be
used in the second part). Finally, we study the marginal problem for possibility measures and, as an application, we show
that it is possible to store large n-dimensional possibility distributions efficiently, using independence relationships among
variables. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Independence relationships, between events or variables, permit us to modularize the available knowledge
about a given domain in such a way that, in order to perform inference tasks, we only need to consult relevant
or dependent pieces of information. Dependence is a relationship stating a possible change in our current belief
due to a specific change in our knowledge. When a variable X is considered independent of another variable Y,
given the state of knowledge Z, then our belief about X does not change as a result of knowing additional
information for ¥. Thus, for example in belief network-based systems [24], the use of independence permits
us to obtain efficient storage and updating of the information.

The concept of conditional independence (dependence) has been studied in depth mainly for probability
measures [11,23,28]. However, there are some works about the same topic in other frameworks that han-
dle uncertain information {4,5,9,27,30], and works that consider independence relationships in an abstract
way [24,25,29]. In this paper, our aim is to study the concept of independence in Possibility theory. Different
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works about this topic have recently appeared: Benferhat et al. [1] approach this problem from a logical point
of view; Dubois et al. [14] and Farifias and Herzig [18] study independence between events and its application
to default reasoning; Cooman and Kerre [10] propose different definitions of independence, considering events
and variables; Fonck [19] studies conditional independence for variables; Campos, Huete and others have also
studied possibilistic conditional independence for variables in previous works [2,3,7,21].

In order to establish an independence relationship between variables, our approach is to compare the pre-
vious (‘a priori’) information with the information that we obtain after a new piece of information has been
added (‘a posteriori’). In this paper we consider possibility measures in a way similar to fuzzy sets, and
therefore Hisdal [20] conditioning has been used (in the second part of this paper [6] we study the concept
of independence using Dempster [12] conditioning for possibility measures). We present different comparison
criteria, which give rise to different approaches to the concept of independence. Particularly, considering that
possibility measures represent imprecise and uncertain knowledge, we try to include this fact in the compar-
ison criteria. Moreover, in order to evaluate the different definitions of independence, a set of properties or
axioms that seems reasonable to demand of any relationship that captures the notion of independence has
been selected (the well-known graphoid axioms [24]), and our definitions are tested against this set. These
axioms would also permit us to compare the given definitions with the definitions of independence obtained
for other formalisms.

The paper is organized as follows: first, Possibility Theory is briefly summarized. In Section 3, we propose
an intuitive approach to the concept of conditional independence and also review an axiomatic framework
for this concept. In Section 4, we formalize the intuitive definitions of independence, and study the set of
properties that each one verifies. In Section 5, we consider the marginal problem, i.e., how can we construct
a possibility measure from a set of marginals and, as an application, we study the problem of how to store
large possibility distributions efficiently using independence relationships between variables. Finally, Section 6
contains the concluding remarks.

2. Possibility measures

A fuzzy measure [31] permits us to consider problems where uncertainty appears as ambiguity, that is to
say, problems where it is difficult to select one alternative among a set of possible ones. A possibility measure
is a particular case of a fuzzy measure. Formally, let Dy be a reference set where a variable X takes its
values, and 4, B events in Dy. A fuzzy measure associates to each event, 4 C Dy, a value in [0,1], denoted
by g(4), which expresses the belief in the occurrence of the event 4. By convention, g(4) increases as the
confidence in the event A increases. In any case, the following requirements must be satisfied:

1. Limit values: g(#)=0 and g(Dx)=1.

2. Monotonicity condition: VA4, B C Dy, if AC B, then g(4) <g(B).

When we require other additional properties, we obtain more specific types of fuzzy measures, for instance
upper and lower probabilities, evidence measures, probability measures or possibility measures. We will only
review briefly the main concepts of possibility theory which are necessary for subsequent development. Several
texts can be used for a more detailed treatment of possibility theory [15,32].

Possibility measures can be obtained as a limit case for the monotonicity condition. That is, we can define
a possibility measure, denoted by II, by means of

1. [I(®)=0 and II(Dy)=1.

2. VA,BC Dy II(AU B)=max{II(4), II(B)}.

When the set Dy is finite, every possibility measure II can be defined through the values on the singletons
of Dy as follows:

VAC Dy, II(4)=max{n(x)|x €A},
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where n(x)=II({x}), and = is a function from Dy into [0, 1] called possibility distribution. This function is
obviously normalized, i.e., there is xy in Dy such that n(x¢) = 1.

When our knowledge is fuzzy and imprecise, a possibility measure is a natural tool to formalize the
uncertainty. If we have a variable X taking values in Dy, m(x) can be interpreted as the degree for x € Dy
to be the possible value that the variable takes. Therefore, I1(4) is the possibility that the variable X takes
any element in 4 as its value.

Associated to a possibility measure, there is a Necessity measure, its dual measure, defined by

NA)=1-1(4)

where N(A) expresses the belief in the event A being necessarily certain, and says that an event is more
certain the smaller the possibility is for its opposite event.

In order to study the concept of possibilistic independence, let us review the concepts of marginal possibility
measures and conditional possibility measures.

Let X and Y be two variables taking their values in the finite sets Dy = {x,x;,...,%,} and Dy = {y1, y2,...,
¥m}, respectively. Suppose that we have a joint possibility distribution over the cartesian product Dx x Dy.
The concept of marginal possibility measure can be obtained as a particular case of the concept of marginal
fuzzy measure, and leads to the following standard definition:

Definition 1. Given a bidimensional possibility measure IT:%(Dyx x Dy)—[0,1], the marginal possibility
measure on X, Iy, (analogously on Y) is to be defined by means of

Myx(4)=1II{(4 x Dy), VYACDy.

It is easy to see that the marginal measures are possibility measures too. Thus, the marginal possibility
distribution on X (analogously on Y) can be defined as follows:

Vx €Dy, nx(x)=Hx({x})=I({x}xDy)= ;ne% n(x, y). (1

However, the idea of conditional fuzzy measure is not clear enough [8)], and there are several defini-
tions for this concept. Therefore, we can also find different alternatives to define conditional possibility.
For instance, when we consider possibility measures in a way closer to fuzzy sets, we can use Hisdal
conditioning [20,13], and if we consider possibility measures as particular cases of plausibility measures
(consonant plausibility measures), we can use a particularization of Dempster conditioning [12,26] for these
measures.

In this paper, we focus on Hisdal conditioning. A similar study of the concept of independence using
Dempster conditioning for possibility measures, is to be found in the second part of this paper [6].

Hisdal defined the conditional possibility measure, denoted by II (4 |B), as the solution to the equation
I1{4,B) =min{II(4 | B), II(B)}. This definition is based on Bayes’s rule for probabilities, where the minimum
operator replaces the product operator. The conditional measure can be obtained as the least specific solution
of this equation:

Definition 2. Given a bidimensional possibility measure IT : Z(Dyx x Dy)— [0, 1], the conditional possibility
measure on X, IT;(.|B), given the event B C Dy, is to be defined by means of

II(4,B) if I(4,B)<IIy(B),

VACDy, II(4]|B)= { 1 if T1(4, B) = IIy(B).
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Analogously, we can obtain the possibility distribution on X, conditioned to the event [Y = y], denoted by
(.| ), as

Vx€Dy, mx|y)= { 717:(x, ») :if ;:g: ;j;zz};((f/))’ ®

Obviously, the marginal and conditional possibility operators can be easily extended from the two-
dimensional to the n-dimensional case. From now on, to simplify the notation of a marginal possibility
distribution, we will drop the subindex, thus writing n(x) and n(y) instead of nx(x) and my(y), respectively.

3. Conditional independence: definitions and properties

In this section, we present an intuitive approach to the concept of conditional independence, and then, by
considering independence relationships in an abstract way, we select a set of properties that seems reasonable
to demand of any relationship attempting to capture the intuitive idea of independence. We shall denote by
I(X | Z|Y) the assertion ‘X is independent of Y, given Z’°, where X, Y,Z represent disjoint variables or subsets
of variables. Given a knowledge state Z, a natural approach to the concept of conditional independence is
to compare the previous knowledge about the variable X with the knowledge that we obtain after finding
out a new piece of information about the variable Y. That is to say, given Z, compare the a priori and
a posteriori information. Different comparison criteria may be considered, and therefore different definitions
of independence can be obtained.

Perhaps, the most obvious way to define conditional independence, /(X |Z|Y), is the following:

Definition 3 (Not modifying the information). Given any value of the variable Z, knowing the value that
the variable Y takes does not modify our information about the values that variable X can take.

Considering that possibility theory permits us to represent uncertain and imprecise knowledge, it might
be too strict to demand that our knowlegde does not change in any way after conditioning. Moreover, the
problem gets worse if we note that the knowledge (i.e., the possibility values) must be drawn from a data
set or from human judgments.

An alternative approach, where the concept of independence is relaxed, might be to assert the independence
when we do not gain additional information after conditioning, although we may lose information, i.e., after
conditioning we obtain information which is less precise than the original (the rationale is that independent
events should not contribute additional information, an idea already suggested in [4, 5]):

Definition 4 (Not gaining information). Given any value of the variable Z, if we know the value that the
variable Y takes, we do not gain additional information about the values of X.

Another approach to define independence, where the comparison operator is abstracted, is to consider that,
before and after conditioning, we obtain a similar information:

Definition 5 (Obtaining similar information). Given any value of the variable Z, if we know the value that
the variable Y takes, we obtain information about X similar to that prior to learning the value of Y.

It must be noted that the three definitions above are not equivalent. However, some relationships can be
established among each other: the fulfilment of Definition 3 implies that Definitions 4 and 5 must also be
verified, but the converse is not necessarily true. Anyway, the proposed definitions are rather abstract and, in
order to obtain a procedural way of testing independence, in the next section we shall formalize the given
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comparison criteria, so that different particularizations for the concepts of not modifying, not gaining and
obtaining similar information will be considered.

The definitions above represent, semantically, the concept of independence in different ways. Associated
with this concept there is a set of properties that identifies the essence of the qualitative notion of independence
(which should be common to most of the different formalisms of knowledge representation). These properties
have been identified after studying of the concept of conditional independence in probability theory [11], the
study of embedded multivalued dependence in database theory [17] and that of dependence graphs [24]. This
set of properties, that we call axioms, may also be considered as a set of rules to infer new independence
relationships from an initial set, and provides an appropiate way for comparing different formalizations of
independence. These axioms are the following:

Al. Trivial Independence: 1(X|Z|®).

A2. Symmetry: I(X|Z|Y) = (Y |Z|X).

A3. Decomposition: I(X|Z|YUW) = I(X|Z|Y).

A4, Weak Union: I(X|Z|YUW) = I(X|ZUY|W).

AS. Contraction: I(X|Z|Y)and I(X |ZUY|W) = I(X|Z|YUW).
A6, Intersection: I(X |ZUWI|Y)and (X |ZUY|W) = I(X|Z|YUW).

The intuitive interpretation of these axioms is as follows: Trivial Independence says that our knowledge
does not change if we do not obtain any new piece of information. Symmetry asserts that in any state of
knowledge Z, if Y tells us nothing new about X, then X tells us nothing new about Y. Decomposition
establishes that if two combined pieces of information ¥ and W are considered irrelevant to X, then each
separate piece of information is also irrelevant. Weak union asserts that learning the irrelevant information
Y cannot help the irrelevant information W become relevant to X. Contraction states that if two pieces of
information, X and W, are irrelevant to each other after knowing irrelevant information Y, then they were also
irrelevant before knowing Y. Together, Weak union and Contraction mean that irrelevant information should
not modify the nature of being relevant or irrelevant of other propositions in the system. Finally, Intersection
asserts that if two combined items of information, Y and W, are relevant to X, then at least one of them
is also relevant to X, when the other other is added to our previous state of knowledge, Z. A Dependency
model is called semi-graphoid if it verifies the axioms A1-AS, and graphoid if it satisfies the axioms A1-A6.
It is well known that the relationship of probabilistic conditional independence satisfies the properties A1-AS5,
and it also verifies A6 for probability distributions which are strictly positive.

4. Possibilistic conditional independence

In order to formalize the previous intuitive definitions of independence within the framework of possibility
theory, we shall consider that X, ¥ and Z are disjoint subsets in a finite set of n variables, and that 7 is an
n-dimensional joint possibility distribution on these variables. Any generic value that these variables can take
on will be denoted by x, y,z, and particular instances for these variables will be denoted by subscripted or
Greek letters.

Following the previous definitions of independence, the most natural way to define the possibilistic indepen-
dence, I(X | Z | Y), is to compare the a priori and a posteriori information: in any given knowledge state where
we know the value of variable Z, say Z =z, the a priori information about X is given by the conditional pos-
sibility distribution 7,(x |z). After knowing the value of variable ¥, Y = y, the a posteriori distribution about
X is represented by my(x | yz). Therefore, different definitions of possibilistic independence can be obtained by
considering different comparison operators & between conditional possibilities, i.e., my(x |z) ® 7(x | yz). The
same idea has been developed in the probabilistic framework, where independence is tested using the equality
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operator as the comparison criterion, i.e., P(x| yz) =P(x|z). A similar idea was used by Shenoy [27] in the
more general framework of Valuation-Based Systems, by Studeny [30] for different formalisms to represent
the uncertainty, and by Fonck [19] for possibility measures.

The intuitive definitions of independence considered in the previous section may be formalized by consid-
ering different comparison operators, ©, representing the notions of not modifying, not gaining, and obtaining
similar information after conditioning. In the following subsections, we shall study these operators, and there-
after, for each one of them, we shall study the set of axioms that the corresponding definition of independence
verifies.

4.1. The equality operator

The first idea is to assert the independence when we do not modify the information after conditioning.
In this case, as the comparison operator we can use an equality relationship among conditional distributions:

Definition 6. (H1) Not modifying the information.
IX|Z|Y) & mx|yz2)=mlx|z), Yx, .z 3)
Using this definition, we obtain the following properties:
Proposition 1. The independence relationship H1 satisfies the axioms Al, A3-AS6.

Proof. The proofs for the axioms Al and AS are immediate. Axiom A4 will follow directly from A3. So,
we only prove the axioms A3 and A6.

Decomposition: I(X|Z|YUW) = I(X|Z|Y).

By definition, /(X |Z|Y UW) is equivalent to my(x | yzw) =mn(x | z), Vxyzw. We want to prove the equal-
ity mn(x | yz)=mn(x|z), Vxyz. Consider x, y,z fixed; we know that n(xyz)=max,ep, n(xyzw). Let x € Dy
be the value where the maximum is reached, i.e., n(xyz)=mn(xyzx). As I(X|Z|YUW) holds, we have
mn(x | yzi) = my(x | z). Now, we shall consider the different values that m,(x | yz) can take on:

(a) Suppose that my(x | yzx) = n(xyzk), i.e., n(xyzr) <n(yzx)<1.

Then (x| z) = n(xyzx) <1, and therefore, we find that my(x | z) = n(xz) <n(z), and so n(xyz) = m(xyzk) =
(xz) <7(z).

To obtain the desired result, it is suffice to check that n{xyz) <n(yz) is true, because in this case we have
(x| yz) =n(xyz) =n(xz) = ny(x | z). But we know that n(yzw)<n(yz), Yw, and since n(xyzr) <n(yzk),
we find that n(xyz) = n(xyzx) <n(yzr) < n(yz).

(b) Suppose that m,(x | yzx) =1, ie., n(xyzx) = n(yzx).

Therefore, we deduce nn(x |z) = 1. As mu(x | yzw)=my(x |z) =1, Vw, then we have n(xyzw) =n(yzw) VYw,
and we also obtain n(xyz)=n(yz). So, m(x|yz)=1=m(x|z).

Intersection: I(X|YUZ|W)and IX|ZUW|Y) = I(X|Z|YUW).

Considering the left hand side of the implication, we know that my(x | yzw) = my(x | yz) = my(x | zw) Vxyzw.
We have to prove that zn(x | yzw) = mp(x | z) Vxyzw.

Given x,z, let us consider any two values yo€Dy and wp€Dy. From the hypothesis we know that
(x| yozwo) = Tn(x | yoz) = mn(x | zwp), and 7n(x | yzwo) = mn(x | yz) = nn(x | zwy) Vy. Therefore, we obtain
mn(x | yozwo) = mn(x | yz) Vy. Let us study the two different cases that may appear:
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(a) mu(x| yozwo)=1. In this case we have nn(x|yz)=1 Vy, hence n(xyz)=n(yz) Vy, and n(xz)=n(z).
So, we have my(x|z)=1=my(x | yozwo).

(b) (x| yozwo) < 1. Then we have 1> m(xyozwp) = mn(x | yozwo) = mn(x | yz) =n(xyz) Vy, and n(xyz) <
n(yz) ¥y. So, on one hand we deduce n(xz)<n(z), and therefore mn(x|z)=m(xz); on the other hand,
from m(xypzwo) = n(xyz) Yy we obtain n(xyozwy)=n(xz). So, we conclude my(x |z) = m(xz) = n(xyozwy) =
mn(x | yozwo).

Therefore, in any case we have my{x | yozwe) =mn(x|z). O

The only axiom excluded from the previous proposition is Symmetry. The following counterexample proves
that this axiom does not hold in general. It shows that /(X |@|Y)# I(Y |#|X), where X and Y are variables
taking their values in the sets Dy = {x1,x2,x3} and Dy = {y1, 2, y3}, respectively:

xy |mxy)
X1y 1.0
X112 0.6
X1)3 0.7
X2 V1 0.5
X2 Vo 0.5
X2V3 0.5
X3)Y1 04
x3)y2 (0.4
X3)3 0.4

We can see that my(x; | y)=7(x1) =1, my(x2| ¥)=mn(x2)=0.5 and n(x3 | y) =7(x3)=04, ie., a(x|y)=
7(x), Vxy. So, we have I(X |0|Y); however my(y2 |x2)=1%0.6=rn(y;), and therefore (Y |#|X).

As H1 is not symmetric, it might be interesting to build a symmetrical version of Hl by defining a new
relationship 7° as follows:

X |Z|Y) & I(X|Z|Y) and I(Y | Z|X). 4)

In fact this is one of the definitions of independence proposed by Fonck [19], who proved that /* verifies all
the axioms Al-A6. However, we are going to show that this definition of independence is rather restrictive, so,
unfortunately, we gain an additional property, symmetry, but at the expense of losing important representation
capabilities. The following proposition proves an interesting characterization of the definition of independence
H1, which is useful for our purposes:

Proposition 2. The definition Hl1 is equivalent to

IX|Z|Y) & n(xyz)=n(xz) An(yz) and (n(xz)=n(z) or n(xz)<n(yz)), VX, y,z. (5)

Proof. Necessary condition: we know that my(x | yz) = ns(x|z).

If my(x|z)=n(xz) then n(xz)<n(z)<! and mn(x|yz)=m(x|z)=n(xz)<1. So, we have mn(x|yz)=
n(xyz) <m(yz) and a(xyz) = n(xz) <n(yz). Therefore in this case n(xyz)=n(xz) A n(yz) and n(xz) <n(yz).

If my(x | z) = 1 then n(xz) = n(z) and (x| yz) =m(x |2) = L. So, m(xyz) = n(yz) <n(z) = n(xz), and there-
fore in this case n(xyz)=m(xz) A n(yz) and n(xz)=n(z).

Sufficient condition: we know that n(xyz)=n(xz) A n(yz) and n(xz)=n(z) or n(xz) <n(yz).

If ny(x|z)=n(xz) then n(xz)<n(z). Therefore, it has to be n(xz)<n(yz). So, n(xyz)=n(xz)<n(yz),
and then my(x | yz) = n(xyz) = n(xz) = mn(x | 2).
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If m(x|z)=1 then n(xz)=mn(z). So, n(xyz)=n(xz)An(yz)=mn(z)An(yz)= n(yz), and therefore
(x| yz)=1=m(x|z). O

Fonck [19] proved the following characterization of the independence relationship defined in Eq. (4), i.e.,
the symmetrized version of H1, which can also be easily deduced from Proposition 2:

Proposition 3. The independence relationship defined in Eq. (4) is equivalent to

FX|Z|Y) & na(xyz)=n(xz) An(yz) and n(z)=n(xz)V n(yz) Vx,y,z. 6)
Using the previous result, we can easily prove the following proposition:
Proposition 4. If IS(X |Z|Y) then n(x)=1 VYx€Dy or n(y)=1 Vy€eDy.

Proof. From Proposition 3, we know that n(z) =n(xz)V n(yz) Vxyz. Then, 1 = max, n(z) = max (n(xz)V
n(yz)) = (max; n(xz)) V (max, n(yz)) =n(x) vV n(y) Vxy.

Now, if we suppose that Jxo€Dy such that n(xp)# 1, then 1=mn(xo)Vn(y) Vy, and therefore n(y)
=1Vy. O

The previous proposition proves that the symmetrical version of H1 is a quite restrictive concept of inde-
pendence, because it implies that, in order for two variables to be conditionally independent, the available
information about at least one of these variables must be null.

4.2. The inclusion operator

In this subsection we study the independence of X from Y in the sense of not gaining information about
X after conditioning to Y. This definition establishes that we do not gain information, but permits us to
lose some information after conditioning. The loss of information has to be interpreted in the following
sense: after conditioning, we obtain information which is similar to (or coherent with) the information we
had before conditioning, but less precise. This situation cannot happen in the probabilistic case, because
probability measures are always maximally precise. However, possibility measures can express different degrees
of precision.

Let X be a variable taking its values in Dy, and A4, B subsets of Dy. If 4 C B, then to state that the value
of X is in 4 is more informative than asserting that the value of X is in B. An analogous reasoning can be
applied when we consider possibility distributions (which, in a sense, can be seen as generalized sets, i.e.,
fuzzy sets): if the possibility distribution 7 is always less than or equal to the possibility distribution 7/, i.e.,
n(x)<n'(x), Vx&€Dy, then n’ is less precise than m, or equivalently, 7 gives more information about the
value of the variable X than 7’ does. This concept of a possibility distribution being more or less informative
than another one is well expressed by the following definition of inclusion [15].

Definition 7. Let 7 and 7’ be two possibility distributions defined in the same reference set Dy. Then n’ is
said to be included in 7 (or #’ is less informative than =) if and only if n(x)<7'(x), VxEDy.

Using this inclusion relationship between possibility distributions, the definition of independence in the
sense of not gaining information may be formally expressed in the following way:

Definition 8. (H2) Not gaining information.
IX|Z|Y) & apl(x|2)<m(x]yz), Vx, v,z O]
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The following proposition provides an interesting and revealing characterization of this type of independence,
which does not use conditioning.

Proposition 5. The definition H2 is equivalent to

IX|Z|Y) & n(xyz)=n(xz)An(yz), Vx,y,z. (8)

Proof. Necessary condition: ny(x| yz) 2z mn(x|z) = n(xyz) =n(xz) A n(yz).
1. Suppose that n,(x | yz)=n(xyz). Then, we find that n(xyz)<n(yz). We shall consider the two different
alternatives for my(x|z).

(a) mu(x|z)=n(xz), i.e., n(xz) <xn(z): then we have n(xyz)=n(xz), and as n(xz)=n(xyz) is always true
for possibilities, the only alternative is that n(xz)=n(xyz)<n(yz), and therefore n(xyz)=n(xz)A
n(yz).

(b) mn(x|z)=1: in this case we have mn(x | yz) = nn(x |2z) =1, which contradicts the fact that n,(x | yz) =
n(xyz)<n(yz)<1. So, this second alternative cannot occur.

2. Suppose that np(x | yz)=1, so that n(xyz)=n(yz). As n(xyz)<n(xz), then n(xyz)=n(yz)<n(xz), and
therefore n(xyz)=n(xz) A n(yz).

Sufficient condition: n(xyz)=n{xz) An(yz)= m(x|yz)Zm(x|z).

1. Suppose that n(xyz)=n(yz)<n(xz). Then m,(x | yz)=1, and therefore ny(x| yz)=my(x|z).
2. Suppose that n(xyz)=n(xz)<n(yz)<n(z). Then m(x|yz)=nlxyz)=n(xz) and my(x|z)=n(xz),

which implies m,(x | yz) =my(x|z). O

If we consider the particular case of marginal independence, i.e., when the conditioning subset of variables
is empty, Z =0, from Eq. (8) we obtain

I(X\0|Y) & nlxy)=n(x)An(y).

This is the concept of non-interactivity proposed by Zadeh [32] for possibility measures or fuzzy sets. So,
our concept of independence H2 is that we could call conditional non-interactivity.

There is another interesting property that relates the possibilistic independence H2 to probabilistic in-
dependence: when we consider probability theory, the relationship I(X|Z|Y) is verified if and only if
P(x|yz)=P(x|z). This expression is equivalent to P(xy|z)=P(x|z)P(y|z). A similar expression can be
established considering possibility distributions instead of probability distributions, where the product operator
is replaced by the minimum.

Proposition 6. The definition H2 is equivalent to
IX|Z|Y) & mxy|z2)=nmx|z)Am(y|2z) Vx, pz 9)

Proof. In order to prove the proposition we use the characterization of H2 given in Proposition 5.

Necessary condition: n(xyz)=n(xz) An(yz)= na(xy|z)=m(x|2) Amn(y|2).
Two possible cases may be considered:

1. Suppose that n(xyz)<n(z): as m(xyz)=mn(xz)An(yz), then at least one of m(xz),n(yz) is less than
n(z) and equal to m(xyz). Suppose that this relation holds for n(xz), i.e., n(xyz)=mn(xz)<=n(z), and
n{xz)<n(yz). In that case, m(xy|z) =my(x|z). Moreover, nn(y |z)2n(yz) = n(xz) = mn(x|z). Therefore
m(xy | 2)=mp(x|2) Ay |2).

2. Suppose that n(xyz)=n(z): in that case, n(xyz)=n(xz)=n(yz)=n(z). So, mxy|z)=mu(x|2z)=
m(y|z)=1 and then mp(xy|z)=m(x|z) An(y]|z).

Sufficient condition: n(xy|z)=mx|z)An(y|z) = n(xyz)=n(xz) An(yz).
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Once again, we consider two different cases:

1. Suppose that n(xyz) <n(z): Then, ay(xy|z)=n(xyz). Consider that ny(x|z) is equal to the minimum be-
tween m,(x | z) and m(y | 2), i.e., mn(xy |z)=mn(x | z) (the case in which m(xy|z) =nn(y|z) is analogous).
Then, we have m,(x|z)=m(xy|z) =n(xyz)<n(z)<1, so that m(x|z)=n(xz) and therefore n(xyz)=
n(xz). Moreover, n(yz) =z n(xyz)=n(xz), hence n(xyz)=n(xz) An(yz).

2. Suppose that m(xyz)=mn(z): then we have n(xyz)=n(xz)=n(yz)=mn(z), and so zw(xyz)=mn(xz)A
n(yz). O

Now, let us study the axioms that the definition of independence H2 satisfies:
Proposition 7. The independence relationship H2 satisfies the axioms Al-AS.
Proof. The proof is very simple, using Proposition 5, so we omit it. [

We shall show that the Intersection axiom (A6) does not hold in general by using a counterexample. Let
X,Y,Z, W be bivaluated variables with the following joint possibility distribution:

X yzw n(x;yzw) Xy yzw (X, yzw)
xiyiziwy | 1.0 xayiziwy | 0.9
X1 Y1Z21w2 0.8 X2 V1Z1w2 0.8
X1Y122Wq 1.0 X2 V122w 1.0
x1Y1zowp | 1.0 xayizowy | 1.0
X1 Y221 W1 0.9 X2 YV2Ziwq 0.9
X1)Y2Z1W2 1.0 X2 V2Z1wy 1.0
x1y2zowy | 1.0 Xy y2zowp | 1.0
x1y2zowy | 1.0 xayazowy | 1.0

It may be seen that n(xyzw)=mn(xyz)An(yzw) and =n(xyzw)=mn(xzw)An(yzw), Vxyzw, ie.
I(X|ZUY|W) and I{(X |ZUW | Y). However, n(x;y1ziw1) = 0.9 # 1 = {n(x221) A n(y1z1w1)}, and therefore
I(X|Z|YUW) does not hold.

4.3. Default conditioning

In the previous subsection we studied a concept of independence that allows a loss of precision after applying
conditioning, Then, the following question naturally arises: If, after conditioning, we lose information, would
it be more convenient to keep the initial information? This idea may be debatable, but it represents in some
sense a default rule: If in a very specific context we do not have much information, then we can use the
information available in a less specific context. In this subsection we discuss and formalize this idea by
introducing a new conditioning operator, that we call default conditioning. The following example gives us
an idea about the semantics of the default conditioning.

Example 1. Let us suppose that X represents the sentence ‘Number of eggs an individual eats for breakfast’.
The possible values are, for simplicity’s sake, zero (0), one (1) and two or more (24). Variable ¥ means
‘Town where people are from’, with values London (L) and Other (O). Variable Z means ‘Nationality of
people’, with values British (B) and Non-British (N¥B). We have information about the breakfast habits for
people in general, for British people and for Non-British people, in the form of possibility distributions n(x),
n(x | B) and n(x | NB), given below. However, we have no information about breakfast habits for people living
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in London (ie., n(x|L)=1 Vx).

X 0 1 2+ x 0 1 24+ x 0 1 2+
nx)| 1 1 08 mx|B)| 0.7 1 1 nx|NB)| 1 1 05

If we are told that Peter is a British man, then we update our general information, passing from zn(x) to #n(x | B).
If, after discovering that Peter is from London, we should update again our belief about Peter’s capacity for
eating eggs (from n(x|B) to n(x|B,L)); but in this case the updating produces the trivial conclusion: we do
not know anything. So, we have obtained less precise information after conditioning to L. However, we could
use the following reasoning: ‘Knowing that Londoners are British, if we have no information about their
particular customs, it might be reasonable to think that their habits are those that are usual for the British.
Then, we can assign, by default, the possibility distribution given for the British’. It is not certain that the
habits of people from London are the same as those of the British in general, but in the absence of specific
information, we use the information available for British people.

Finally, consider that we focus the study on British people with a high level of cholesterol (C). In that
case, as eggs are harmful in terms of cholesterol, the following possibility distribution could be associated

1 24
06 04

x 0
n(x|B,C) | 1

In that case, as after conditioning, we obtain more precise information (more exactly, information which is
not less precise), the previous reasoning cannot be done, and we should use n(x | B,C) instead of n(x | B).

By generalizing this reasoning, we can state that, if after conditioning we obtain a less informative possibility
distribution, we preserve the previous (a priori) more precise information. Otherwise, we use the a posteriori
possibility distribution. Formally, this idea implies a change in the notion of conditioning, which may be
called Hisdal default conditioning, denoted by my, (.].):

w(x) if (x| y) = n(x) Vx,
(x| y)= oo , p (10)
an(x|y) if Ix' such that np(x’ | y) <n(x’).
Using the default conditioning 7y (.|.), 2 new independence relationship can be defined as follows:
Definition 9. (H3) Default conditioning.
IX|Z|Y) & ap(x|yz)=mn(x|2), VYx,y,z an

Proposition 8. The independence relationship H3 satisfies the axioms Al and A3-AS. If the possibility
distribution is strictly positive then axiom A6 also holds.

Proof. The proof for axioms Al and A5 is immediate. Axiom A4 can be obtained directly from A3. So, we
shall only prove axioms A3 and A6.

Decomposition: I(X|Z|YUW) = I(X|Z|Y).
We know that ny, (x| yzw) =my (x|2) Vxyzw.

Given any z, first let us suppose that my (.|z)=np(.|2). In this case § €Dy has to exist such that
nn(8 | 2) < n(8). Then, Vyw, ay (8| yzw) =ny (8| 2) =nr(8 | 2) < n(d), hence my, (x| yzw) = mu(x | yzw) Vxyw.
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Therefore we obtain mh(x | yzw)=mn(x|z) VYxyw. Now, using a reasoning similar to the one employed in
Proposition 1 (Decomposition axiom), we can conclude that zp(x | yz) = ny(x | z) Vxy. Moreover, m(8 | yz) =
nn(8 |2) <m(d), and therefore ny (.| yz)=7mn{.|2) Vy.

Now, let us suppose that my (.|z)=mn(.). This means that 7my(x|z)=n(x) Vx. Then, mpn (x|yzw)=
np (x| 2) =7(x) Vxyw and then my(x| yzw)=n(x) Vxyw. In this case, the same reasoning used in the proof
of Proposition 5 allow us to assert that n(xyzw)=n(x) A n(yzw) Vxyw. Then we obtain n(xyz)=n(x)A
n(vz) Yxy, and therefore np(x | yz) = n(x) Vxy, and ny (| yz) =n(.)=mn (. ]|2) V.

So, in any case ny (.| yz)=mp (. |2), hence I(X | Z|Y).

Intersection: I(X|ZUY|W)& IX|ZUW|Y) = I(X|Z|YUW).

We know that ny (x| yzw) =1y, (x| yz) =7 (x | zw) Vxyzw.

Given any z, first, let us suppose that for some yp and wy it is 7y, (.| yozwp) = mn(. | yozwg). This means
that 36 € Dy such that mx(J | yozwp) <7(d). Then it can be easily deduced that my(x | yzw)=mn(x|yz)=
h(x | zw)=mp, (x| yzw) =mn (x| yz) = 7p (x| zw) Vxyw. Then, a reasoning similar to the one used in the
proof of Proposition 1 (Intersection axiom) permits us to assert that my(x | yzw) = np(x | z) Vxyw. Moreover,
we have my(0|2)=7nn(d | yozwo) <m(8), hence my (. |z) =nn(.]2), and then my (x| z) = np(x | z) = an(x | yzw)
=m, (x| yzw) Vxyw.

Second, let us suppose that Vyw my_(.| yzw) #7mn(.| yzw), i.e., Vyw (.| yzw) =n(.). Then we find that
(x| yzw)=n(x) Vxyw. Once again using a reasoning similar to the one employed in Proposition 3, this
condition is equivalent to n(xyzw)=rn(x) A n(yzw) Vxyw, and therefore we obtain n(xz)=n(x)An(z) Vx,
which in turn is equivalent to my(x|z) = n(x) Vx. So, nyp (x|2) =n(x) =mh (x| yzw) Vxyw.

Therefore, in any case we obtain my (.| yzw) =7y (.|z), and thus /(X |Z|YUW). O

Finally, in order to show that definition H3 does not verify symmetry, we use the following counterexample,
where the variable X takes its values in the set {xi,x;,x3}, and ¥ and Z are bivaluated variables. Suppose
that the joint possibility distribution for these three variables is the following:

xyyz | mxyz) | xyz | mayz) | xyz | w(xsyz)
xiyizy |1 xay1zy | 0.7 x3yz1 | 0.3
X1 y1z2 | 0.6 xanzp | 0.6 x3y1z2 | 0.3
X1 V224 0.7 X2Y221 0.7 X322y 0.3
X1)222 0.4 X2 V22 04 X324 0.3

We can see that my (x| yz)=my (x|z) (=n(x)), for all xyz, hence we obtain I(X|Z|Y). However,
nth.(¥2|22) =04 and 7y (y; |x322) = |. Therefore —U(Y [Z | X).

The relationships between the three definitions of independence considered so far are as follows: as we
might expect, the strictest definition is H1 (i.e., not modifying the information): if an independence relationship
has been obtained with this definition, this independence relationship also holds using the other definitions.
Moreover, the independence relationship based on the default conditioning (H3) is more restrictive than
conditional non-interactivity (H2). The next proposition proves these results.

Proposition 9. The different definitions of independence using Hisdal conditioning, H1, H2 and H3, satisfy:

Hl = H3 = H2.
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Proof. H1=>H3: In this case the proof is immediate.

H3=H2: If 7y (x| yz) =mn(x| yz) = an(x|z) = 7p (x| 2), it is obvious that my(x | yz)=mp(x | 2).

On the other hand, if 7y (x| yz) =n(x)=my (x|z), then we have Vx, n(xyz)=n(x)An(yz) and n(xz)=
n(x) An(z). Then, n(xyz)=mn(xz)An(yz), and therefore np(x|yz)=nn(x|z). O

The following counterexamples show that the reciprocal relationships do not hold. Using the previous joint
possibility distribution we find that H3 7 H1, that is /(X | Z | Y) holds using H3; however zn(x; | y221)=1#
0.7=mp(x2|21). So, I(X|Z|Y) does not hold when using HI.

Using the next distribution (X, Y, Z are bivaluated variables), we obtain H2 A H3.

xyz n(xyz)
X1)Y121 0.2
X1)Y1Z2 0.6
X1)221 1.0
x1yz | 0.8
X212 0.2
X212 0.6
X2)221 0.5
X222 0.7

We can see that n(xyz)=n(xz)An(yz) for all xyz, ie, I(X|Z|Y) using H2, but, on the other hand, we
find that 7y _(x2 | y121)=0.7# 0.5 =y, (x2 | 21), and therefore /(X |Z|Y) using H3.

4.4. Similarity operators

Now, we shall consider the concept of independence using similarity relationships between conditional
possibility distributions. The general idea is to assert the independence if the distributions obtained before and
after conditioning are similar in some sense. More formally:

Definition 10. (H4) Obtaining similar information.
IX|Z|Y) & 7wl |yz)~m(.]2) Vy,z (12)

where ~ is a similarity relationship defined on the set of possibility distributions for the variable X.

Our first purpose is to study, in an abstract way, the properties we have to require from the relationship
~, in order to guarantee that the associated independence relationship verifies some of the axioms. First, it is
evident that transitivity of ~ guarantees Contraction (AS). If, in addition, ~ is symmetric, then it can easily
be deduced that Decomposition (A3) is verified if and only if Weak Union (A4) is also verified. Moreover,
in order to satisfy the basic coherence property of Trivial Independence (Al), it is obvious that =~ should
be reflexive. Therefore, it seems that the equivalence relations are good candidates for defining independence
through a similarity relationship ~ (observe that the equality operator can be considered as a very specific
case of similarity operator, and therefore H1 is a particular case of the independence criterion H4). So, we
must look for the additional properties that guarantee the fulfilment of Decomposition (A3) and Intersection
(A6).

The first property that we require is that the equivalence relationship must be compatible with the maximum
operator, in the following sense: if a possibility distribution is similar to each one of a family of possibility
distributions, then it is also similar to their maximum.
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Definition 11 (Maximum property). Given any family of possibility distributions {n.(x)}, let n’ be the pos-
sibility distribution obtained as ='(x) = max, 7,(x), and let = be any other possibility distribution. Then, we
say that a similarity relationship ~ verifies the maximum property if and only if

ne~m Vs = n'~m

This basic property alone does not guarantee the fulfilment of Decomposition. Therefore, other properties
should be considered. The first one we propose establishes that the limit value (one) must be preserved,
that is:

Definition 12 (Limit property). We say that a similarity relationship between possibility distributions, =,
preserves the limit value if and only if Vz;,m;

m~n = Vx [mx)=1 & mix)=1].

The limit property asserts that two possibility distributions having different maximally possible values cannot
be similar. Using these two properties we can prove the following result:

Proposition 10. Given an equivalence relationship between possibility distributions, ~, a sufficient condition
Jor the fulfilment of Decomposition is that ~ verifies the maximum and limit properties. Moreover, these
properties also guarantee the fulfilment of intersection.

Proof.
Decomposition: I(X|Z|YUW) = I(X|Z]Y).

We know that my(. | yzw)~np(.|2) Vyzw. If we could prove that Vyz my(.| yz) = max,, np(.| yzw) then,
using the maximum property we would obtain 7,(.| yz) > ny(.|2) Vyz, and therefore I(X |Z | Y). So, all we
have to prove is that (x| yz) = max,, ny(x | yzw). Two different cases may be considered:

1. Suppose that max, mn(x|yzw)<1: in that case, we find that (x| yzw)=n(xyzw)<n(yzw)<1l ¥w.
Therefore we also obtain (by taking the maximum) max, nn(x | yzw) =n(xyz) <n(yz). So, (x| yz)=
n{xyz)= max,, ny(x| yzw).

2. Suppose that max, mp(x| yzw)=1: then there exists wy € Dy such that np(x|yzwp)=1. As =~ is an
equivalence relationship, then we know that 7y(. | yzwp) =~ na(. | yzw) VYw. Moreover =~ preserves the limit
value, so that Yw € Dy, (x| yzw) =1, ie., n{xyzw)=n(yzw), Yw. Therefore n(xyz)=mn(yz) and then
nn(x | yz) =1 = max,, my(x | yzw).

Intersection: I(X|YUZ|\W)& IX|ZUW|Y) = I(X|Z|YUW).

Using the symmetry and transitivity of ~ and the antecedent of the axiom we find that
(.| yzw) (.| yz) = mn( | zw), Vyzw.

Particularly, nn(.| yz) ~n(.|zw), Yyzw. We can demonstrate that np(.|z) = max, ny(.| yz) using a reason-
ing completely analogous to the one used to prove Decomposition. Therefore, by applying the maximum
property, we obtain that 7,(.|z) >~ np(.|zw), Vzw. Finally, as mn(. |zw)~7h(. | yzw) Vyzw, we can deduce
(.| z) > mp(. | yzw), Vyzw by transitivity. [

The next corollary can be obtained directly from Proposition 10:
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Corollary 1. The independence relationship H4, where ~ is any equivalence relationship verifying the limit
and maximum properties, satisfies axioms Al and A3-A6.

Given that any possibility distribution represents imprecise and uncertain knowledge, in some cases it might
be considered too strict to require that the similarity relationship must preserve some specific value, particularly
the limit value (for example, the two distributions 7; and =, defined as 7;(x;)=m,(x;) =1, m(x3)=0.3, and
a(xy) =1, m(x3)=0.99, m(x3)=0.3, would not be similar). An alternative condition, that together with
the maximum property, also guarantees that the independence defined using ~ has good properties, is the
following:

Definition 13 (Sandwich’s property). We say that a similarity relationship =~ satisfies the Sandwich’s property
if, for any three possibility distributions 7, wy, n; verifying m;(x) <n(x)<m2(x) Vx € Dy, then

M =My = M MM,
Using this property, we can prove the following result:

Proposition 11. Given an equivalence relationship between possibility distributions, ~, a sufficient condition
for the fulfilment of Decomposition is that ~ verifies the maximum and Sandwich’s properties. Moreover,
these properties also guarantee the fulfilment of intersection.

Proof. First, given y and z, we shall prove the following previous result:

3k € Dy such that Vx, mp(x| yzr)<7p(x| yz) < max mp(x | yzw). (13)
w

In order to prove the left-hand side of the inequality, let us suppose that the relation does not hold,
ie., Yw dx, such that my(x, | yzw)>mp(x, | yz). Then, we find that mn(x, | yz) <7np(xw | yzw)<1, and so
(x| y2) = n(xpyz)<n(yz). Moreover, if it were my(xy|yzw)=n(x,yzw) then we would find that
nn(xw | ¥yz) = m(xy yz) <mn(x, | yzw) = n(x, yzw), which is not possible. The other option is that an(x. | yzw)
=1, ie., n(x,yzw)=n(yzw), Yw. But in this case we obtain n(yzw)=n(x,yzw)<n(x,yz)<n(yz), Yw,
which is a contradiction too. So, Ix € Dy such that Vx, my(x|yzr)<n(yz).

On the other hand, with a similar reasoning to the one used in Proposition 10, (Decomposition axiom), the
right-hand side inequality, my(x | yz) < max,, ny(x | yzw) Vx, can easily be deduced.

Now, we will consider the different axioms:

Decomposition: I(X|Z|YUW) = I(X|Z]|Y).

We have I(X |Z|YUW), ie., np(.| yzw) > np(.| 2), Vyzw. Given y and z, and using the previous result,
we know that x € Dy exists such that Vx, (x| yzr) <myp(x | yz) < max,, ny(x | yzw). As o~ verifies the max-
imum property, we deduce max,, my(. | yzw) =~ 7y(. | z), and by using transitivity we obtain max,, T(. | yzw) ~~
nn(. | yzx). Now, using the Sandwich property and transitivity, we find that mu(.| yz) >~ max,, 7u(. | yzw) =~
nn(. | 2), and therefore I(X | Z|Y).

Intersection:. I(X|YUZ|W)& I(X|ZUW|Y) = I(X|Z|YUW).

From the hypothesis we deduce my(.|yzw)~my(.|yz)~ny(.|zw), Vyzw. Particularly, mn(x|yz)=
mn(x |zw), Vyzw. Using a reasoning analogous to the one employed previously (Eq. (13)) it can be seen
that, given any z, there exists k € Dy such that Vx, mn(x|zx)<mn(x|z)< max, ny(x |zw). From my(.|zK) ~
m,(.| yz),Vyz, and using the maximum property, we find that max,, ny(.|zw)~nn(.|zx) Vyz. Now, by



142 L M. de Campos, J.F. Huete| Fuzzy Sets and Systems 103 (1999) 127-152

applying the Sandwich’s property, we obtain m,(.|zx)~m(.|z) > max, (. |zw) Vz. Therefore, we have
(.| z) 2 mn(. | zk) ~mp(. | yz) Vyz and, taking into account that (.| yz) ~mu(.| yzw) Vyzw, we obtain
(. |2) ~ 7n(.| yzw),Vyzw by using transitivity. Thus, I(X |Z|Y U W) holds. O

The following result is a direct consequence of the previous proposition:

Corollary 2. The independence relationship H4, where =~ is any equivalence relationship verifying the
Sandwich’s and maximum properties, satisfies axioms Al and A3-A6.

Now, let us see some examples of different similarity relationships ~ that can be used to define indepen-
dence:

Isoordering: The idea is based on considering a possibility distribution as a formalism where uncertainty
is represented as a preference among events. Thus, we can reason about events which are uncommon, unique
or ill-known (for example because we have not enough statistical data), but it is possible to think that some
events are more possible than others, even though we cannot assign precise numerical values to the possibility
distribution. Therefore, the numerical values that we assign are not relevant but we are more interested in the
relative ordering among events.

So, if we consider that a possibility distribution, essentially, establishes an ordering among the values that
the variable that we are considering can take on, and the numbers (the possibility degrees) only have a
secondary importance, then we can say that two possibility distributions are similar if they establish the same
ordering. More formally, we can define the relation ~ by means of

n~7' & VYxx' €Dy [n(x)<n(x') e n'(x) <7’ (x)].
Resemblance: Another option is to speak about similarity between distributions when the possibility degrees
of each distribution, for each value, are alike. More concretely, we can discretize the [0, 1] interval and say
that two distributions are similar if their respective discrete versions coincide. Formally, let m be any positive

integer, and {0 }x=0,m be real numbers such that ap <oy < --- <o, With ag=0 and &, = 1. If we denote
Le={og—1,04), k=1,...,m — 1, and I, = [0lp—1, %] then we define the relationship ~ by means of

n~n’ & Vxe€Dy 3Jke{l,...,m} such that n(x),7'(x) € .
An equivalent version of this definition can be obtained in terms of the a-cuts of the possibility distributions:
n~n & C(n,u)=C(, ) Ve=1,...,m—1,
where C(n,o)={x €Dy |n(x)=a}.
ao-Equality: A third option is based on the following idea: consider a threshold u, and suppose that only
from values greater than ag is it considered interesting to differentiate between the possibility degrees of

two distributions; the values whose possibility degrees are below the threshold are not considered relevant,
In terms of the «-cuts, this relationship ~ can be expressed as follows:

n~n’ o C(n,a)=C(n',a) Va=aq,
which is equivalent to
n~n & C(r,u)=C(n,a) and n(x)=7'(x) Vxe& C(m a).

It can easily be proven that Isoordering, Resemblance and ag-Equality are equivalence relationships and
satisfy the Maximum property. Moreover, Isoordering and og-Equality verify the limit property, and



L. M. de Campos, J.F. Huete! Fuzzy Sets and Systems 103 (1999) 127-152 143

Resemblance and ag-Equality verify the Sandwich’s property. Therefore, from Corollaries 1 and 2, using any
of these three similarity operators we can guarantee that axioms Al, and A3-A6 hold. However, the axiom
of Symmetry does not hold. We prove this fact by means of the following counterexamples:

Resemblance %-Equality
xyz n(xyz) i} : T(gy )
Isoordering x1y1z1 | 1.00 1N 06
Xy (xy) xiyvi1z2 | 0.80 il)’2 0'7
Xy | 1.0 xiyz1 | 1.00 x‘y3 05
X1)2 0.9 X1V22Z2 0.80 x2y1 05
x2y1 | 0.6 x2y1z; | 0.70 x2y2 0'5
X2y2 0.8 X2 Y122 0.50 x2y3 04
X2 Y221 0.75 x3y1 04
X222 | 0.60 xjﬁ 04

Isoordering: Consider two bivaluated variables X, Y, and consider the corresponding possibility distribu-
tion given in the table above. In this case, we have that n(x;)>n(x;) and m,(x; | ¥)>7n(x2 | ¥) Vy, hence
I(X |0 Y). However, n(y1)>7n(y;) but mp(y1 |x2) =0.6 <mn(y2 |x2) =1, and therefore —U(Y || X).

Resemblance: In this case, consider three bivaluated variables X, Y,Z and the set of intervals I; =[0,0.5),
I, =[05,0.7), I;=[0.7,08), I, =[0.8,1]. We obtain I(X|Z|Y), because my(x|yz), mn(xi|z)€ly Vyz,
(x| y21), wn(x2|z1) €L Yy, mn(x2 | y22), mu(x2 |22} € L Vy. However, mn(y1 |z1) € Iy and my(yy [ x221) € 5,
hence — /(Y | Z | X).

ao-Equality: We will use ap = 0.4. Considering the corresponding possibility distribution, we obtain m,(x | y)
=n(x) Vxy and, on the other hand, we have my(y2|x2)=1#0.6=mn(y;). So, we get I[(X|0|Y) but
(Y || X).

We can also define independence using similarity relationships in a different way: instead of generalizing
an equality between conditional possibility distributions (7n(x| yz) =mn(x|z)), as we have done above, we
can use the concept of conditional non-interactivity, thus generalizing an equality between joint possibility
distributions (w(xyz)=mn(xz) A n(yz)). In that case, the definition of independence becomes:

Definition 14. (HS) Extended conditional non-interactivity.
IX|Z|Y) & nlxyz)~n(xz) An(yz). (14)

We have also studied the properties of ~ that guarantee the fulfilment of the axioms, for the definition of
independence above. In this case ~ should be an equivalence relationship compatible with the marginalization
and combination of possibility distributions (using the minimum as the combination operator), that is:

Proposition 12. The independence relationship HS, where ~ is any similarity relationship between possibility
distributions verifying:

e ~ s an equivalence relationship.

o If n(xy)~n'(xy) then max, n(xy)~ max, n'(xy).

o If my(xz)~mi(xz) and ny(yz) ~n5(yz) then my(xz) Ama(yz) = w)(xz) A7y (yz),

satisfies axioms A1-AS.

Proof. The proof is quite simple, and we shall omit it. O
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The next table summarizes the properties that each one of the previous definitions of independence satisfies.
Therein, the symbol ‘X’ means that the corresponding property holds.

| [Al A2 A3 A4 A5 A

HI (Eq. 3)) [X X X X X
H2(Eq. (7)) X X X X X
H3 (Eq. (11)) (X X X X X
H4 (Eq. (12)) |X X X X X
H5 (BEq. (14) X X X X X

Finally, observe that in order to use Hisdal conditioning, the only necessary operation is comparison. So, we
could easily consider possibility distributions taking their values in sets different from the [0, 1] interval: it is
suffice to use a set (&, <), where

& ={Lo,Ly,..., Ly}

with Lo <Ly <+ -- <L, that is to say, a totally ordered set (for example a set of linguistic labels) and then
define possibility measures by means of

H:2Dx)— &
verifying:
1. II(Dx)=L,,

2. I(AUB)= v {II(4),I1(B)}, YA,BC Dy,
where Vx is the maximum (supremum) operator associated with the ordering <. In these conditions, we can
define the different concepts of independence and conditioning in exactly the same way as before, obtaining
the same properties.

5. The marginal problem

When we have to manage uncertain knowledge, even using the expert knowledge, it is quite difficult
to assess all the possibility values for a large set of variables (because the number of values grows ex-
ponentially with the number of variables). In that case, an alternative approach is to obtain these values
for smaller subsets of variables, and use them to construct the joint measure in a reasonable way: this is
the marginal problem, which will be studied in this section. Particularly, suppose that X,Y,Z are three dis-
joint subsets of variables, and that 7; and 7, are two possibility measures over XZ and YZ respectively.
The problem is how to construct a joint possibility measure, m, over X¥Z. A natural restriction should
be that the marginalization of the joint measure over the initial subsets of variables preserves the original
measures.

In order to construct the joint measure, a reasonable assumption is to consider that the variables involved
satisfy some kind of independence condition, particularly a conditional independence relationship may be
assumed. The most usual hypothesis is to assume that X and Y are independent given Z. So, one requirement
for the joint distribution is that this independence relationship must be true, i.e., /(X |Z|Y) holds for the
distribution #. Therefore, the following requirements should be verified:

1. X and Y must be independent given Z, i.e. I(X |Z|Y) holds for the distribution 7.

2. The marginal measure on XZ must be preserved, i.e., n(xz) = max, n(xyz) = n(xz).

3. The marginal measure on YZ must be preserved, i.e., 7(yz) = max; n(xyz) = ma(yz).
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In order to satisfy these requirements, we must impose on the two original possibility measures, 7, and =,
a basic compatibility condition: ‘The marginal possibility measures over Z, m1(z) and m(z) give the same
information about the values that the variable Z can take on’. This compatibility relationship can be defined
as follows:

Definition 15. Let n; and n, be two possibility measures defined on XZ and YZ, respectively. We say that
7, and m, are compatible on Z, if and only if

VzeDy, m(z)=mn(z).

Therefore, our first step is to check for the compatibility between n; and m; on the variable Z. Then, in the
case of compatibility, we must fix a criterion that allows us to determine the joint distribution n(xyz). As we
have several definitions of independence, different approaches can be considered. First, we study the marginal
problem using the independence criterion H1 (‘not modifying the information’), denoted by Iyi(.].].). We
shall see that the fulfilment of all the previous requirements cannot be achieved, and we must relax these
requirements. Next, the independence criterion H2, denoted by f(.|.|.), will be considered.

The following example shows that, when considering Hisdal conditioning, there exist cases where it is not
possible to preserve the marginal measures and, at the same time, satisfy the criterion HI.

Example 2. Let X, ¥,Z be bivaluated variables, 7,7, the two possibility distributions shown below, defined
on XZ and YZ, respectively, and let 7 be any possibility distribution obtained from n; and n,.

xz m1(xz) yz T2(yz)
x1z; | 0.4 vz | 0.2
X1Z27 | @y Y122 b1

xz1 | 1 vz | 1

X2 | a4 222 | be

In order to satisfy the compatibility of m; and =, on Z, we must impose that max{a,a>} = max{b;,b;}.
Moreover, suppose that 7 satisfies the independence criterion Hi and preserves the marginals.

In that case, we find that m;(x; |z1) = m(x121) = 0.4. As 7 preserves the marginal over XZ, then n(xz,)=
max, n(x; yz;) =04 and 7n(z;)=1, which implies that n(x; |z;)=0.4. So, in order to satisfy the criterion
H1, it has to be n(x; | yz;) =04, Vy. This implies that Yy, 04 = n(x; | yz1)=n(x;yz1)<n(yz;). But 7 also
preserves the marginal over YZ, hence n(yz,)=mna(yz). Therefore, we obtain 0.4 <m(yz,) Vy, which is
obviously false, because ny(y1z,)=02. [

Therefore, when we use Hl as the independence criterion, we must relax the requirements about the
marginals. We can use the fact that H1 is a non-symmetrical independence relationship, i.e., (X |Z|Y)
# (Y| Z | X). Then, if we consider that ‘X is independent of Y, given Z’, then we attempt to preserve
only m; over XZ and, on the other hand, if we suppose that ‘Y is independent of X, given Z°, we attempt to
preserve only m; over YZ.

From now on, suppose that Iy (X | Z | Y) is considered (the case Iy (Y | Z | X) is completely analogous). The
most obvious way to preserve m; over XZ and the independence is to define 7 as n(xyz)=m(xz), Vx,y,z.
But in this case we do not use the information given by w,. We propose an alternative approach where
this distribution is considered whenever it is possible. The result is that the independence criterion H1 is
satisfied, the marginal distribution over XZ is preserved, and the marginal distribution over YZ is included
in 7y:
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Proposition 13. Ler =, and my be two possibility distributions, defined on XZ and YZ respectively,
and compatible on Z. Then, the joint possibility distribution w, defined by means of

72(yz) if m(xz)<m(yz)<m(z),
a(xyz) = ¢ o € m(X2), m(2)]  if m(yz)<m(Zz)<m(z),
m1(xz) if mxz)=m(z) or m(yz)=m(z),

where m1(¥z) = max, .y m1(x'z), satisfies:
L Im(X|Z]Y), ie, mu(x| yz)=m(x]|2), Vxyz.
2. w(xz)=m(xz), Vxz.
3. n(yz)=m(yz), Vyz

Proof. (2) n(xz)=m(xz), Vxz.

First, let us observe that if m;(¥z) <m(z) then 7;(xz) = x;(z). Therefore, from the definition of = it follows
immediately that n(xyz)<m(xz) Vxyz. On the other hand, for all z 3y, such that m(y;z) = n2(z) = m(2).
Therefore we have n(xy,z) =mn;(xz) and then n(xz) = max, n(xyz)=n(xy,z) = n;(xz) Vxz.

(3) n(yz)=m(yz), Vyz.

For all z, 3x, such that m(x,z) = max, n(xz)= n(z). Then, from the definition of = it follows that n(x,yz)>
n2(yz) Vyz. Therefore, n(yz)= max, n(xyz)=n{x,yz) = n:(yz) Vyz.

(DN I(X|Z]Y), e, mx|yz)=m(x|z), Vxyz.

Let us distinguish two possible cases, depending on the value that m,(x|z) takes:

e Suppose that m(x|z)=m(xz)<n(z): we shall show that Vy, n(xyz)=mn(xz) and n(xyz)<n(yz), ie.,

mo(x | yz) = n(xyz) = nxz) = m(x| 2) V.

As my(xz) =n(xz) <n(z) =m(z), then =(Xz)=m(z), and so n(xyz)=7(xz)=n(xz) Vy.

On the other hand, from n;(xz) <= (z) it follows that Jx, 3 x such that 7;(x,z) =m;(z). Let us study the

different possible values for n(x;yz):

() If n(x; yz) = m1(x,2) = m1(z), then =(xyz)=m(xz) <m(z) =7 (x,2) = n(x; yz) <7 yz), hence n(xyz)
<n(yz).
(il) If n(x,yz)=m(yz), then n(xyz)=m (xz)< maxyx, m(x'z)=m(%z) <m(yz)=n(x,yz) <n(yz),
hence n(xyz)<n(yz).
(iii) If n(x, yz) = o,;, then m(xyz) = m(x2) <M (Fz) <o, = a(x,yz) <n(yz), hence n(xyz)<n(yz).
Therefore, in any case we find that n(xyz)<n(yz).
o Suppose that my(x |z) =1, i.e., m(xz) =n(xz)=n(z) =n(z): in this case, we must prove that Vy, n(xyz)
=n(yz), i.e., (x| yz)=1=mn(x|z) ¥y. Let us study the different possible values for n(xyz):
(i) If n(xyz)=m1(xz), then n(xyz) =m (xz) =7n1(z) = n(z) =2 n(yz), and therefore n(xyz)=rm(yz).
(ii) If m(xyz) = my(yz), then it has to be n1(Xz) <m2(yz) <mi(z). So, we have m(x'z) <ma(yz) <mi(z)
Vx’' # x, and 7 (x’z) = m(z) Vx’' # x. Therefore, we deduce n(x'yz) =mn(x'z) <m(yz)=m(xyz) Vx'
#x, hence n(xyz)= maxy n(x'yz)=n(yz).
(iii) If n(xyz)=ay, then it has to be m(yz)<m(¥z) <o, <mi(z). Once again we obtain 7,(x'z) <oy,
<m(z) V¥ # x and m(xX'z) =m(z) VX' # x. So, n(x'yz) =m(x'z) <o, =7(xyz) Vx' # x, and
n(xyz) = maxy n(x'yz)=n(yz). O

Example 3. Let n; and 7, be the possibility distributions, defined on XZ and YZ respectively, displayed
in the tables below, where X, Y and Z are binary variables. Supposing that the conditional independence
relationship /(X | Z|Y) holds, we can construct, according to Proposition 13, the following joint possibility
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distribution 7wy

x z y | mu(xyz)
X1 Z21 W1 0.25
x z | mxz) y z | m(yz) x1 z1 y2 | 0.25
X1 2 0.25 Y1 21 0.5 X1 2 N 0
x1 2210 yi zo | 0.75 X122 010 O
X2 21 0.5 Y2 1 0 X 1 N 0.5
X2 22 1 V2 22 1 X2 Z1 W2 ]025,05]
X2 Z3 Y1 0.75
X2 Iy W2 1

Now, we shall consider the marginal problem using the criterion of independence H2 (‘not gaining infor-
mation’), Iyx(X | Z|Y). This relationship is equivalent to m(xyz)=n(xz) A n(yz) Vxyz. Therefore, a natural
approach for the construction of the joint distribution is to use a similar scheme.

Proposition 14. Let ny and m, be two possibility distributions defined on XZ and YZ, respectively, and
compatible on Z. Then, the joint possibility distribution n, defined by means of

n(xyz)=mxz) Amy(yz), Vxyz

satisfies:
1. Im(X | Z|Y), ie, mix| yz)Zmn(x|z), Vxyz.
2. n(xz)=m(xz), Vxz.
3. n(yz)=m(yz), Vyz

Proof. (2) n(xz)=max, n(xyz) =max,{m(x2) A m2(yz)}. Then n(xz) = m1(xz) A max, m(yz) = 1 (x2) A m2(2)
=m(xz) A m(z)=m(xz).

(3) The proof is similar to the previous one.

(1) The proof is immediate, considering that the joint distribution preserves the marginal and the way in
which the joint distribution was constructed. [

Example 4. Considering 7; and 7, as in the previous example, we can construct the following joint possibility
distribution, my,, using H2 as the independence criterion:

x z y |mmpxyz)
Xi Z1 N 0.25

x1 z1 »|0

x1 zz »|0
xi 22 y2|0
x2 zz y1105
X2 Z W 0

X2 Z2 N 0.75
X2 Z2 2 1

Moreover, it can easily be proven that the joint measure obtained from Proposition 14 (7y>) is always more
informative than the joint measure obtained from Proposition 13 (7my;), that is to say, np2 <7H.
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X1.X2,..X10
I(X1....X4 | X5 IX6,...X10)

yd

X1...X§ Xs....X10
I(X11X21X3,...XS) I(X5,...X7 1 X8 | X9,X10)
X1.X2 X2,...Xs X§,... X8 X8,X9.X10
I(X21X31X4,X5) I(X5 1 X6 | X7,X8)
X2,Xx3 X1.X4 X5 Xs5.X6 X6,X7X8
(X6 1 X71X8)
X6.X7 X7.X8

Fig. 1. Possibilistic Tree.

3.1. Application to the storage of large possibility distributions

An important question that we have to manage is the storage of the values of a joint distribution. A direct
approach is to use a table of values. In this case, the storage requirements grow exponentially, and quickly be-
come prohibitive when we have a great number of variables. In this section we present an approach which uses
conditional independence in order to obtain a better memory request. Using independence relationships among
variables we can factorize the joint possibility distribution in terms of its conditionally independent components.

Suppose that X, Y,Z are disjoint subsets of variables, and 7 is a joint possibility distribution over XY¥Z.
Let us assume that yo(X |Z|Y) holds, ie., n(xyz)=n(xz) A n(yz), Vxyz. Then, if we split the joint dis-
tribution into two components m(xz) and 7(yz), it is possible to recover the original measure using the
previous equation. This idea can easily be generalized to the n-dimensional case: suppose that we have n
variables, X1,X3,...,X,, and let X; be the variable (the same can be done for a set of variables) such that
I(Xy,...,Xi-1| X | Xit1,...,X,). In that case, we can split the initial distribution into two components, defined
on {Xi,...,X;—1,X;} and {X;, X;11,...,X,}. The same idea can be recursively applied to both subsets of vari-
ables, thus forming a tree structure where we only need to store the marginal possibility distributions on the
leaf nodes. In order to recover the joint distribution, we can combine the marginal distributions in a bottom-up
approach, using the minimum as the combination operator.

Example 5. Let X,...,X)o be bivaluated variables, and suppose that the independence relationships indicated
in the nodes of the tree displayed in Fig. 1 hold. Then, we only need to store the following marginal
distributions:

7T(X1,X2), n(xZ’-fo), TL'(X3,X4,X5), TE(XS,X6), n(XG,X7), TE(X7,xg), TC(XB,.Xg,xlo).

Thus, we have to store 36 values instead of the 2! = 1024 values needed to store the complete joint distribu-
tion. Moreover, for example using the left subtree, the distribution 7(x;,x2,X3,%4,%5) can be obtained, using
the conditional independence relationship H2, by means of

7(x1, X2, %3, X4, X5 ) = (X1, X2 ) A (X2, X3,X4,X5),
where

T(x2, X3, X4, X5) = T(X2, %3 ) A T(X3,X3, X5 ).
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Search { S, node, )
{

X" « set of variables in node,
if (node,, € Leaves ) then
return maxxs\s 7{X");
else
SL « SN L
Sp + SN R™,
ifS, =0
then << search only in the right branch >>
nr « Search(Sr U (S N K"), rightchild e )
return TR
else if Sp =
then << search only in the left branch >>
wy +Search(Sy U (S N K"), leftchildy g )
return g,
else << search in both branches >>
mp + Search { Sy U K™, leftchild e )
7R + Search ( Sgp U K", rightchild,qge, )
return maxgn»\s *L A TR

}

Fig. 2. Algorithm for finding the marginal distribution on the set of variables S.

Continuing in this way, the joint possibility distribution can be obtained using a sequence of joint steps. [

Proposition 15. Let T be a possibilistic tree, X\, X3, ..., X, variables (or sets of variables), and L;, j=1,...,m
the leaves in T. Then, using the criterion of independence H2, the joint possibility distribution on X1,X,...,X,
may be obtained by means of

m
TC(JCl,JCz,...,.)C,,)=71:Ll Arp, N---Amy, =/\ R,
j=1

where ny, represents the marginal possibility distribution stored in the leaf L;.

As we shall see, the independence properties in the tree can be used to obtain marginal possibility distri-
butions without having to consider all the variables in the tree. In the previous example, if we are interested
in obtaining the joint distribution for the subset of variables {X;, X5}, 7x,x,, we can avoid the construction of
the complete joint distribution represented by the tree, i.e., we can marginalize the distribution n(xy,x3,%4,xs)
previously calculated on X;X; and therefore, only some variables on the left subtree have been used.

Furthermore, these possibilistic structures can be viewed as a mechanism to perform possibilistic inference.
We could obtain the complete joint distribution on all the variables, and after that update the knowledge by
conditioning to the set of observed variables. This method is computationally unfeasible in practice. Then,
a natural approach is to use the independence relationships represented in the tree in order to consult only
relevant information. Therefore, more efficient inference algorithms can be obtained. This feature makes pos-
sibilistic reasoning similar to Bayesian Networks [24] techniques.

Let T be the set of variables that we are interested in, and let Obs be the set of observed variables.
When Obs is not empty, an inference mechanism consists of calculating the marginal possibility measure
on TUObs, and then calculate the conditional measure 77 ops. The next algorithm, Search (Fig. 2), shows
how to obtain a marginal possibility distribution over a generic subset of variables S. In that case, we use
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A x3,x8

X1.X2....X10
(X1,..X41 XS5 1X6,....X10)

’7 x&uxs.ﬂ

x3.x5
X1....X5 XS5....X10
I{X11X21X3....XS) I(X5....X7 1 X81X9.X10)
\§ o
. x3.x§
\ '.xg x © x5.x8
X1X2 X2...X5 XS....X8 X8,X9.X10
I(X21X31X4XS5) I{X51X61X7X8)
N k4 \
" x3.x$ x5.x6 - . x6.x8
X2.X3 X3,X4.X5 X5.X6 X6.X7.X8
I(X61X71X8)
™
x6.x7.‘4/ \ x7.x8
X6.X7 X7.X8

Fig. 3. Messages sent by each node to its parent to calculate my, x;.

the tree in order to split the subset S into two subsets, S;, Sg, satisfying the independence relationship
indicated in the nodes, i.e., /(S.|K|Sg). Then, we recursively search for the possibility values for Sy UK
and Sp UK and after we construct the marginal measure over S by means of the combination operator, i.c.,
Ts =maXg\s 75, uk A s, uk- During this process, we are using the property of Decomposition. Initially, the
algorithm must be called with Search(S,root), and will return the marginal possibility distribution over S.
We should note that in each level, the algorithm returns the possibility distribution over the variables that
we are interested in by means of the marginalization operation.
In the algorithm we use the following notation:

S: The set of variables that we are interested in.

X" The set of variables stored in node ».

K": The set of variables that splits the node up into two conditionally independent subsets of variables, given
K" ie, X*=L"UR"UK?", and I(L" | K" | R").

The following example illustrates how the algorithm works.

Example 6. Consider the previous possibilistic tree (Fig. 1). If we are interested in obtaining the marginal
distribution over the set of variables {X3,X3}, then Fig. 3 indicates the possibility distribution that each node
sends to its parent in the tree.

6. Concluding remarks

The concept of independence, as with other formalisms of uncertainty management, is also important in
possibility theory. In this paper several alternative definitions of possibilistic independence have been pro-
posed. Most of them are based on the concept of conditioning, and in this paper specially we use Hisdal
conditioning [20] (in the second part of this paper [6], a similar study considering Dempster conditioning is
carried out). The main differences between the different definitions come from the way in which we compare
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the a priori and a posteriori knowledge. We use the concepts of not modifying the information, not gaining ad-
ditional information, and obtaining similar information. We have also studied the properties of our definitions
of independence with respect to a well-known set of axioms [24], which try to capture the intuitive notion
of independence. The given definitions always verify Trivial Independence, Decomposition, Weak Union and
Contraction, whereas Symmetry and Intersection are more difficult to preserve, and only some definitions
verify them.

Moreover, we have also studied the marginal problem, i.e., how to construct a joint piece of information from
marginal measures, assuming a conditional independence criterion. As a result of this study we can conclude
that it is possible to factorize a possibility distribution, and then to recover the original joint distribution by
means of combination operations. Moreover, using independence relationships, we can construct any marginal
measure without having to consider the complete set of variables. This process may be viewed as a particular
case of possibilistic inference.
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