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Abstract." The problem of learning rules for a fuzzy inference model directly from empirical observations, without resorting to 
assessments from experts is considered. We develop a method that builds uncertain rules from a set of examples. These rules 
match the following pattern: If X is A then Y is B is [a,/3], where A and B are fuzzy sets representing fuzzy restrictions on the 
variables X and Y; a and/3 are real numbers expressing lower and upper degrees of certainty in the truth of the rule. The method 
is based on the minimization of a distance measure between the real output associated to a given input and the output predicted 
by the inference model using a parameterized version of the same rule to be learnt. Our approach is computationally efficient in 
running time as well as in storage requirements. Moreover, it can be used in both training (batch-processing) and adaptation 
(iterative-processing) modes of learning. 

Keywords: Inductive learning; approximate reasoning; fuzzy inference model; upper and lower probabilities. 

1. Introduction 

Fuzzy rule-based systems have proved to be useful tools to perform reasoning tasks. The usual way of 
building the rules for these systems is by eliciting opinions from the experts. However, methods for 
automatic learning of the rules directly from raw data represent an interesting alternative. In this paper 
one of these methods is proposed (different models of automatic learning are considered in the 
literature, for example, see [2, 7, 8 and 9]). 

The specific problem we are going to study could be stated as follows: Consider two sets of labels 
{Ai, i = 1 . . . . .  n} and {B# j = 1, . . . ,  m}; these labels represent soft restrictions on two variables X and 
Y, and they are fuzzy sets defined on two domains U and V. Consider also a set of examples E, whose 
elements are pairs (x, y), x and y being instances of the two variables X and Y respectively (these 
examples could be crisp values, sets of values or more generally, normalized fuzzy sets). 

We want to obtain a set of rules 

If X is Ai then Y is Bj is [aij, 13~j] 

describing the relationships between the Ai's and B/s  displayed by E; the weights a~j, /3~j are real 
numbers that represent degrees of certainty in the truth of the rule. More precisely, we seek to learn 
the weights aij, fl~j from E (we are not trying to infer the labels in the rule but only the weights). These 
rules can be used later through an inference model described in [4]. 

The basic idea will be to use the inference model itself to learn the weights, by means of the following 
process: first, to compare for each example the real output with that predicted by the rule for the 
corresponding input, and second, to estimate the weights that minimize these differences. 

The paper is arranged in 5 sections. The kind of rules we will consider, together with the inference 
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model that uses them, and the underlying uncertainty propagation model that constitutes the basis for 
the inference process, are described in Section 2. In Section 3 we develop the learning method: we start 
with the simple case in which we have only one example, and next we consider two different extensions 
to the general case, that we call average and aggregation approaches. Section 4 is devoted to studying 
the performance of our method in the crisp case, where no fuzziness is present. The crisp case is also 
useful to show what kind of conditioning underlies the formulas obtained for the certainty degrees in 
the rules. Finally, Section 5 ends the paper with some comments on the performance and flexibility of 
our approach, also pointing out some open questions. 

2. T h e  rules  and  the  i n f e r e n c e  m o d e l  

As we said previously, the rules we are trying to infer fit the following pattern: 

If X is A then Y is B is [a,/3], 

where X and Y are variables taking their values on reference sets U and V respectively, A and B are 
fuzzy sets on U and V, and the weights a and /3 are real numbers satisfying the inequalities 
0~< a ~</3--< 1. 

The meaning of this rule is based on the following ideas: 
- The rule defines a relation between the sets UA = {A, -~A} and VB = {B, -TB} (instead of a relation 

between U and V, that is, the level of granularity is similar to that of the elements involved), and this 
relation is interpreted as a conditioning. 

- The weights a, /3 represent the (conditional) lower and upper degrees of certainty for Y being B 
given that X is A (for the sake of simplicity, in the following we will refer to a generic proposition 'Z (a 
variable) is C (a fuzzy set)' by writing only 'C'). 

So, the above rule is translated into the following pairs of conditional lower and upper probability 
measures (1(. [A), u(. ]A)) and (l(-] -.A), u(. [-TA)) defined on liB: 

l(B [A) = a, l(TB [A) : 1 -/3, 

u(B ]A) =/3,  u(~S ]A) = 1 - a, 

I(B [~Z) = 0, t(-~B [ T A )  = 0, 

u(B ]-~A)= 1, u(~B J-~m) = 1. 

These measures represent the following pieces of information: 
- If A is true, then the degree of certainty on B being also true lies between o~ and/3, and therefore 

the degree of certainty on B being false lies between 1 - / 3  and 1 - a. 
- I f  A is false, (TA is true) then we cannot infer anything about  the truth of B: the degrees of 

certainty on B being true and B being false both lie between 0 and 1. 

Remark: Note that the rule 'if X is A then Y is B is [a,/3]' is equivalent to the rule 'if X is A then Y is 
--~B is [1 - /3 ,  1 - a]'. So, the rule gives information about  B and 7B, when A is true. 

This kind of rule can be used as the basic component  of a fuzzy inference model working in the 
following way: A given input A* is compared with the antecedent of the rule, A, and its negation -~A, 
thus obtaining two degrees of matching, re(A*, A) and m(A*, ~A), which may be interpreted as the 
values of an upper probability measure ux(') on UA, ux(A)=m(A*, A), Ux(~A)= m(A*, ~A) (the 
lower probability would be obtained by duality). Next, using a propagation model, from ux(.) and the 
conditional measures representing the rule, we get an upper measure ur ( ' )  on liB. We can stop here, or 
go further on, to combine the membership functions /xB and /~B of B and 7B with uv, obtaining as 
output a single fuzzy set B* instead of an uncertainty measure on liB. 

Now we are going to briefly give some details about the inference and the propagation models which 
will be needed later on (see [4] and [5] for additional details). 
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The matching between A* and each value in UA is calculated as a compatibility degree between two 
fuzzy sets using the Lukasiewicz t-norm (although any other t-norm could be used too). Therefore the 
upper measure on Ua induced by an input A* is (see [4]): 

ux(A) = m(a*,  A) = sup {max(/zA.(r) + tZA(r) - -  1, 0)}, 
r 

Ux(~a) = m(A*, -~A) = sup {max(fLA.(r) - tzA(r), 0)} (1) 
r 

where t~A and /~A* denote the membership functions of A and A* respectively. 
It can easily be proved that the condition 

m(A *, A) + re(A*, -,A) 1> 1 (2) 

holds if we only impose the input A* to be a normalized fuzzy set (that is, 3r e U such that ~A*(r) = 1). 
We will always suppose that the inputs verify this property in the rest of the paper. So, from (2) we can 
interpret the matching degrees as the values of an upper probability measure. More precisely, Ux 
defined in (1) is a plausibility measure (see [10]); the corresponding belief measure is obtained by 
duality: lx(A ) = 1 - Ux(TA ), lx(-aA ) -- 1 - ux(A ); the basic probability assignment (b.p.a) associated to 
this belief-plausibility pair is mx(A) = 1 - re(A*, -TA), mx(-TA) = 1 - m(A*, A), m x ( U a )  =- m(A*, A) + 
m(A*, -TA) - 1. 

The propagation of this upper measure, using the conditional upper measures obtained from the rule, 
will produce another upper measure Uv on VB. The propagation model is very simple for this case: to 
obtain uv(C), being C = B or C = ~B, we only need to compute the Choquet integral (see [6]) of the 
function f (A)  = u(C I A), f(-~A) : u(C I -,A) with respect to the measure Ux. The result is the following 
plausibility measure (see [4] and [5]): 

uv(B) =/3(1 - m(A*, 7A)) + m(A*, ~A), uv(-qB) = 1 - a(1 - m(A*, ~A)). (3) 

The corresponding belief measure is 

lv(B) = a(1 - re(a*, 7A)), Iv(TB) = (1 -/3)(1 - m(A*, 7A)), 

and the associated b.p.a, is 

my(B) = a(1 - m(A*, 7A)), my(-TB) = (1 -/3)(1 - m(A*, 7A)), 

mv(Vv) = m(A *, -~A ) + (/3 - a)(1 - re(A*, -aA ) ). 

Observe that only the matching degree between A* and -~A is needed. 

3. Learning the rules 

In this section, we will develop a methodology for learning, from a set of examples, the rules 
necessary to perform the previous inference process. 

Let us suppose that we want to estimate the weights a and/3 of the rule 

if X is A then Y is B is [a,/3]. (4) 

3.1. A simple case 

Let us also suppose that we know only one example (xl, Yl), which is a particular instantiation of the 
variables X and Y. If we apply the rule to the input xl then we get on VB an upper measure u p, as in 
(3): 

uP(B) =/3(1 - m(xl, -,A)) + re(x1, -~A), uPv(-~B) = 1 - a(1 - m(x,,  -TA)) 

which depends on the labels A and B, the input xl and the weights a and/3. This measure is considered 
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as the output predicted by the rule, given the input xl. But we also have a real output Yl; starting from 
Yl we can build another upper upper measure on lib (in a similar way as we obtained Ux on UA from Xl 
through a matching process) which is 

urv(B) = m ( y l ,  B) ,  urr("nB) = m ( y l ,  ~B) .  

So, we have on V8 a 'real' and a 'predicted' measure, u~. and uPr respectively. The idea is to select the 
weights a and/3 making u~. and uP as close as possible. We can do that by minimizing some distance 
measure between u~. and uP; in [3] a general procedure to define distances between fuzzy measures was 
proposed. Here  we will use an Euclidean-based distance d (see [3]) which produces the following 
function fl when it is applied to u~. and up: f l (a,  [3 ) = d(ury, uP), where 

d(u~r, u~.) = sqrt(([3 (1 - m(xl ,  -~A)) + m(x l ,  7 A )  - m(y l ,  B)) 2 

+ (1 - a ( 1  - re(x1, -hA)) - m(yx ,  T B ) )  2) (5)  

and the symbol sqrt(-) stands for the square root function. 
Therefore, to estimate the weights a and [3 for rule (4), on the basis of only one example, we must 

solve the following non-linear optimization problem (as the square root is an increasing function for 
positive numbers, the symbol sqrt could be dropped without affecting the resultant optimum): 

Find a l ,  [31 such that f~(al, [31) = Minf l (a ,  [3) (6) 

s.t. 0 ~ < a  --</3 ~<1 

where f~ is defined as in (5). We obtain the solution in the following proposition. 

Proposition 1. The solution to the above problem (6) is: 
Case 1: i f  m(xx ,  T A )  = 1 

then the values o f  a and [3 are arbitrary in 0 <- a <~ [3 <<- 1. We choose a 1 = O, [31 = 1 by using the 
minimum specificity principle. 

Case 2: i f  re(x1, ~A)  ~ 1 and 1 + m(x l ,  7.4) <m(y~,  B)  + m(y l ,  -TB) 

1 - re(y1, --nB) re(y1, B )  - m(x1,  -1A) 
then Oll -- 1 - m(x l ,  7 A ) '  /31 = 1 -- m(x l ,  ~A )  

Case 3: i f  m(x l ,  -~A ) ~ 1 and 1 + m(y~, 7 B  ) < m(x l ,  -~A ) + m(y l ,  B) 
then a l = [31 = 1. 

Case 4: i f  m(x l ,  7,4) ~ 1 and 1 + re(y1, B)  < re(x1, 7 A )  + m(y l ,  -TB) 
then a l  =[31 =0.  

Case 5: i f m ( x l , - T A )  ~ 1, 1 +re(x1, 7 A ) ~ m ( y l ,  B)  + m(yl , -7B),  
1 + m(y l ,  -TB) >i m(x l ,  ~A)  + m(y~, B), and 1 + m(y l ,  B)  >t m(x l ,  7.4) + m(y l ,  -TB) 

1 - m ( x l ,  ~ a )  + m ( y l ,  B )  - m(y l ,  7 B )  
then a l -~ [31 -~ 

2(1 - m(x~, 7.4)) 

Proof. For this problem the Kuhn-Tucker  optimality conditions (see [1]) are the following: 
There exist real numbers Ul, uz and u3 such that: 

-2 (1  - m(xx, 7.4))(1 - a (1 - m(xl ,  -TA)) - m(y l ,  -TB)) + ul - u2 = O, 

2(1 - m(xl ,  -hA))(/3 (1 - m(x l ,  --hA)) + m(x l ,  -hA) - m(y l ,  B) )  - ul + u3 = O, 

Ul(O~ -- /3)  = 0, 

U20t = O, 

u3(/3 - 1) = 0, 

Ul~ U2~ / / 3 / > 0 .  

The Kuhn-Tucker  conditions are, in our case, necessary and sufficient because the function fl is 
convex and the inequality constraints are linear functions. 
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So, to prove the result it suffices to check that the Kuhn-Tucker  conditions are verified for the values 
of al and/31 above, using the following Lagrangian multipliers ui for each case: 
Case 1: fa is a constant function, it does not depend on a and/3. So, any values for a and/3 are possible. 

Therefore ,  we select the least specific values ~ = 0 and/3 = 1. 
Case 2: ul = u2 = u3 = 0. 
Case 3: ul = 2(1 - m(x1, -TA))(m(xl, 7.4) - re(y1, ~B)),  

U 2 ~ 0~ 

u3 = 2(1 - m(x l, 7 A  ) )(m(x l , 7 A  ) + re(y1, B) - m( yD -TB ) - 1). 
Case 4: ul = 2(1 - m(xl ,  -TA))(m(xl, 7A )  - m(yl ,  B)), 

u2 = 2(1 - m(xl ,  -TZ))(m(xl, -TA) + m(y l ,  -TB) - m ( y b  B) - 1), 
U3=0. 

Case 5: ut = (1 - m(xl ,  -TA))(1 + m(xl ,  7.4) - m(y~, B) - rn(y~, -riB)), 
112 ~-- U 3 = O, [ ]  

The following simple examples illustrate the performance of the method: Suppose that we have an 
example (xl, Yl) such that: 

(1) m(xl, 7,4) = 1, that is, xl is completely compatible with the negation of the antecedent of the 
rule. In this case, a = 0 and /3 = 1, that is, we learn nothing: we cannot infer anything about a rule 
A ~ B from an example that supports 7A at maximum degree. 

(2) re(x1, 7.4) = 0 (and then rn(xl, A) = 1). For that case, a = 1 - m(yl, ~B),  /3 = m(yl, B), and the 
example (x~, yl) supports the rule exactly as much as Yl supports B. 

(3) rn(yl, B) = 1; in this case y~ is completely compatible with B. So, there is no evidence against the 
fact that 'A implies B'  and therefore /3  = 1. The degree of evidence supporting 'A implies B'  depends 
on the difference between m(xl, TA) and m(y~ ,TB) ,  and is a = m i n [ 1 , ( 1 - m ( y l , - ~ B ) ) / ( 1 -  
m(x~, 7A))];  the greater rn(y~, 7B )  is, the lesser a is; on the other hand, the greater m(x~, 7 A )  is, the 
greater a is. 

(4) m(yl ,  B) = rn(yl, -TB). In that case a = ½ - 3' and/3 = ½ + y, where 

3' = max[(2m(yl,  B) - m ( x b  7 A  ) - 1)/(2(1 - m(x1, 7 A  ) ), 0]. 

As the example provides the same evidence for B and ~B, the weights a and/3  are symmetrical with 
respect to ~. 

(5) m(yl ,  -~B) -- 0 (and then m(y~, B) = 1). We get a =/3 = 1 and the example strongly supports the 
rule. 

In general, the results are very intuitive when rn(x~, ~A)  is small. When m(xa, 7 A )  increases (but 
remains different to 1), the results become unjustifiably more and more conclusive in some cases. For 
example, if m(yl ,  B) = 1 and m(yl, 7 B )  = 0 then a =/3 = 1. This means that we are sure that A implies 
B; however it is difficult to be so sure when the compatibility of xl with 7A is high (e.g., 
m(Xl, -7A) = 0.9). Nevertheless, the values a =/3 = 1 still give the best adjustment between u~, and u~, 
for that case. The problem is that even the best adjustment is very poor: this example does not correctly 
support  the rule, A implies B, at any degree [a,/3] (the example could strongly support a rule 7A 
implies B). Although this problem weakens when we have more than one example, we will provide a 
method to eliminate it in Section 3.3; this method will consist in discounting (in the sense of Sharer [10]) 
the conditional measure resultant from the optimization process by a factor depending on the degree of 
adjustment between u~, and u p. 

3.2. The general case 

When we do not have only one example but a set E = {(Xk, Yk), k e K} of examples, we may adopt 
two different approaches: 

(1) Average approach: Apply the previous process to each of the examples, obtaining a set of 
weights {[ak, /3k], k e K}. These weights produce the minimum distance, fk(Otk, ~k) between the two 
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upper measures being considered. Then we could choose some kind of average of the intervals [ak,/3k], 
weighted by their corresponding degrees of fitness tk as the final result. 

The degree of fitness tk for the weights [ak,/3~] corresponding to the example (x~, Yk) is a quantity 
that measures how well the example fits the antecedent of the rule, and it tries to partially avoid the 
problem that we commented in the previous subsection. 

The value tk could be defined as the difference between the maximum and the minimum possible 
distances between u~, and u p, normalized to range from zero to one. As the minimum distance 
corresponds to the value j~(ak,/3k), then tk is 

f~(~,/3~) t k = l -  
max,,t~f~(a,/3)" 

So, the greater tk is, the better the degree of fitness between the real and predicted outputs is. The 
rationale for this definition is the following: if tk is small, there is little difference between the maximum 
and the minimum values of fk(a, /3) and therefore any possible values we give to the weights a and/3 do 
not improve the adjustment very much. In that case the example fits the rule poorly. On the contrary, if 
tk is great, a judicious selection of the weights a and /3 make the difference between u], and u~. 
considerably lesser than it could be if we selected different values for a and /3. Therefore, the 
adjustment will be greatly improved. 

Remark: Observe that it is very easy to calculate the value of tk, because the maximum value of 
fk(a,/3) can be obtained by evaluating the function ~(. , . )  only for the three points (a, 13) = (0, 0), (0, 1) 
and (1, 1) and then selecting the maximum. The reason is that fk is a convex function, and therefore the 
maximum must be achieved at an extreme point of the region 0 ~< a ~</3 ~< 1 (see [1]). 

Now we need some kind of average for the intervals [ak,/3k]. For example, using a classical average, 
the resultant weights for the rule (4) are 

[ a , / 3 ] = L ~  ' ~kt~ J" (7) 

(2) Aggregation approach: Use some aggregation function g, to summarize all the distances between 
the real and predicted output measures into a single value, F(a,/3) = g({fk(a,/3), k • K}). Then find the 
values of a and/3 that minimize F, subject to the restrictions 0 ~< a ~</3 ~< 1. 

For example, by using the sum of squares, ~k i f (a, /3) ,  as aggregation function, we get 

F(a, /3) = a /3  2 + a a  2 + 2b/3 - 2ca + d + e 

where 

a=~  
k 

b=~] 
k 

c = ~  
k 

d=~ 
k 

e=~ 
k 

and the optimization problem to be solved is 

Minimize F(a, /3) 

s.t. O<~a<~B<<-i 

( 1  - -  m(Xk,  ~A)) 2, 

(1 - m(x~, ~A  ) )(m(xk, ~A  ) - m(  yk, B ) ), 

(1 - m(xk, -hA))(1 - m(yk, ~B)),  

(m(xk, ~A  ) - m(yk, B)) 2, 

(1 - m(yk, TB))  2 

(8) 

(9) 
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Proposition 2. The solution to the above problem (9) can be computed as follows: 

i f  a = O  then a = 0 , / 3  = 1  

else if  b - c >~ O then a =/3  = 0  

else i f  c - b - 2a >lO then a = /3 = l 

else i f  c + b >10 then a = [3 = (c - b )/2a 

else a = c/a, /3 = - b / a  

where the numbers a, b and c are defined in (8), or in a more expanded form: 

i f  ~ (1 - m(xk,  -~A)) 2 = 0 then a = O, /3 = 1 
k 

else i f  ~ (1 - m(xk,  ~ a ) ) ( 1  + m(yk,  B))  <~ ~ (1 - m(xk,  ~A) ) (m(xk ,  ~ A )  + m(yk,  ~ B ) )  
k k 

253 

( lO)  

then a = /3 = O 

else i f  ~ (1 - m(xk,  -Ta))( l  + m(yk,  ~B) )  <~ ~ (1 - m(xk,  ~A) ) (m(xk ,  ~ a )  + m(yk,  B))  
k k 

then a = [3 = l 

else i f  ~ ,  (1 - m(xk,-7A))(1  + m(xk, -hA)) <<_ ~ (1 - m(xk,  ~A) ) (m(yk ,  B)  + m(yk,  ~ B ) )  
k k 

Ek (1 - m(xk,  ~A)) (1  + m(xk,  -TA) + m(yk,  B)  - m(yk,  ~B) )  
then a = fi - 

2 Ek (1 - m(xk,  ran)) 2 

Zk (1 - m(xk,  -~A))(1 - m(yk,  ~ B ) )  
else a = 

~]k (1 - m(xk,  mA)) 2 

~k (1 - m(xk,  mA))(m(yk ,  B)  - m(xk,  ~ A ) )  

~]k (1 - m(xk,  -~A)) z 

Proof .  For  this p rob lem the K u h n - T u c k e r  optimali ty condit ions are once again necessary and 
sufficient. The  condit ions in this case are: 

There  exist real numbers  u~, u2 and u3 such that: 

2aa - 2 c -  ul + u: = O, 

2a/3 + 2b - u2 + u3 = O, 

UlOl =0 ,  

u2(~ - / 3 )  = 0, 

u3([3 - 1) = 0, 

/~1~ //2, U3~0 '  

Taking  into account  that  a / > 0 ,  c ~ 0  and a + b ~ 0 ,  it is easy 
condi t ions  are verified by the following values of  a , / 3  and ui: 

to check that  the K u h n - T u c k e r  

Case 1: if a = 0 then b -- c -- 0 and F is a constant  function. So we again select the least specific values 
a =-0, /3 = 1 .  
Case 2: i f b - c ~ > 0 t h e n  a = / 3 = 0 ,  u l = 2 ( b - c ) ,  u 2 = 2 b ,  u 3 = 0 .  



254 L.M. de Campos, S. Moral / Learning rules for a fuzzy inference model 

Case 3: if c - b - 2a/> 0 then a =/3 = 1, U 1 ~--- 0 ,  U 2 : 2(c - a), u3 = 2(c - b - 2a). 
Case 4: if b + c  1>0, c -  b t>0 and 2a + b -  c I>0 then a =/3 = (c -b ) /2a ,  Ul=O, Uz--C + b, u3 =0. 
Case 5: i fb  +c~<0 and a - c ~ > 0  then a =c/a, [3 = -b /a ,  ul = u 2 = u 3  =0. 

Now, it only remains to put these questions in order, from Case l to Case 5, to obtain the nested 
if-then-else procedure that gives the optimum. [] 

Observe that in both approaches the calculations are very easy to perform and they can be done 
efficiently: the running time will be linear in the size K of the set of examples, for each rule. So, for n 
and m labels in the antecedent and consequent sets respectively, the running time for studying all the 
possible rules is of the order O(nmK). Moreover, both approaches can support two modes of learning: 
training and adaptation. By training we mean the method of operation that creates models by 
batch-processing of large data bases; this is the mode we have described so far. Adaptation consists in 
modifying a model through experience. Our methods could perform an iterative learning giving rise to 
an adaptive process. Next, we are going to describe the adaptation mode for both the average and the 
aggregation approaches: 

(1) In the average approach, it suffices to record the quantity T - - ~ ,  tk, and the current weights a 
and/3. Once we get another example (Xo, Y0), we calculate its associated weights a0 and /30, and the 
fitness degree to. The updated weights a and/3 are then 

[ o ,ooo 1 
[a, /3]= T+to  ' T+to  J 

and T is updated to T + to. 
This may be interpreted as an average between the old weights of the rule and the weights 

corresponding to the new example. The number T/(T  + to) represents the strength of the old weights 
when compared with the new ones (whose strength is to/(T + to)). Normally T/(T  + to) will be much 
greater than to/(T + to), if the number of examples is large. So, the updating process matches our 
intuition that one additional example will not greatly modify the previously established conclusions. 

(2) In the aggregation approach, it is only necessary to record the parameters a, b and c of (8). After 
obtaining a new example (Xo, Yo), these parameters are updated as follows: 

a' = a + (1 - m(xo, ~A)) z, 

b' = b + (1 - m(xo, -TA))(m(xo, -~A) - m(yo, B)), 

c' = c + (1 - m(xo, -Tn))(1 - m(yo, 7B)). 

Next, we repeat the simple process given in (10) that determines the optimal weights from a', b' and c'. 
Here, the updating process is also gradual: as the difference between a, b, c and a', b', c' will usually 

be small, a drastic change in the values of a and/3 is not expected. 

3.3. Discounting the rules 

As we commented at the end of Section 3.1, in some cases, even the optimal weights associated to a 
rule by an example (x, y) give rise to a very poor adjustment between the real and the predicted 
outputs. This situation arises when x matches very well with the negation of the antecedent A of the 
rule. For example, if for a given example (xl, Yl), the matching degrees m(xl, 7A), m ( y l ,  B )  and 
m(yl,  ~B) are 0.9, 1 and 0 respectively, then the weights associated to the rule are al =/31 = 1, that is, 
the rule is completely supported by the example. However, intuition says that such an example should 
not be very significant for the rule, because of the high degree of matching between xl and 7,4. This is 
reflected by the lower value of the fitness degree, tl = 0.104. Although the problem diminishes when we 
have more than one example, it does not disappear completely. 

For example, let us suppose that we have another example (x2, y2), such that m(x2, 7A)=0.1,  
re(y2, B) = 0.2 and re(y2, ~B) = 1; then the weights associated to the rule by this example are a2 = 0 
and /32=0.111, that is, this example provides strong support to the rule (A---~B is [0,0.111], or 
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equivalently, A ~ T B  is [0.889,1D, but now the fitness degree is t2 = 1. If we use both examples, 
according to (7), then in the average approach we get the values a = 0.095, /3 = 0.195, and we can see 
that the strange effect caused by (Xl, Yl) has been greatly diminished (the same thing happens in the 
aggregation approach, where we obtain the values cr =/3 = 0.122 when we use the two examples). 
Usually, the more examples we have, the more the problem is reduced. 

Now let us suppose that instead of (X2, Y2), the second example is (x~, y~), such that m(x~, 7A) = 0.8, 
m(y~, B) = 0.9 and m(y~, -TB) = 0.2. In that case, a~ =/3~ = 1 (t~ -- 0.246). By using (x~, Yl) and (x~, y~) 
together we again get a =/3 = 1. So, in this case, the problem persists. 

One way to avoid this problem is to increase the uncertainty of the rule when the examples do not 
support it (reflecting the idea that we cannot correctly learn a concept from examples that do not match 
this concept). To do that, we will use the idea of discounting (in the sense of Shafer [10]) the 
conditional measure resultant from the optimization process, by a factor depending on the degree of 
adjustment between the examples and the rule. 

Remember  that the conditional measures (l, u) resultant from the optimization process are 

t(B I A) = a, l(-~B l A) = 1 - /3 ,  

u(B [Z)  =/3, u(-~B I A) = 1 - a 

with a and/3 obtained from (7) or (10). 
If we discount these measures by a factor, say e, 0 ~< e <~ 1, we obtain as a result a new pair (l~, u~) 

given by 

I(B I A) = a(1 - e), I(-TB [A) = (1 - /3) (1  - e), 

u(B ]A) =/3(1 - e) + e, u(-TB [ a )  = (1 - a)(1 - e) + e. 

Now, we must decide how to select the factor e; it depends on the approach we are using for learning: 
(1) Average approach. We use as the factor the quantity 

Y,k tk 
e = l - - -  

K ' 

where K is the number  of examples. The greater e is the worse the adjustment is. Therefore,  taking into 
account (7) and the value of e, the discounted weights ~ and/3~ for the rule are 

, ~ -  . ( 1 1 )  

(2) Aggregation approach. Now we use as the factor the quantity 

= l - a = l  ~]k(1--m(Xk, TA)) 2 

K 

So, taking into account (10), 

K 

the procedure to obtain the discounted weights a~ and/3~ is: 

if a = 0 then a~ = O, /3~ = 1 

else if b - c/> 0 then c~ = 0, /3~ = 1 - -- 
K 

c a+b  
else ~ = -- /3 = 1 - - -  

K K 

c - b  c - b  -2a  
else if c + b ~> 0 then a~ - /3~ = 1 ÷ 

2K 2K 

a 
else i f c - b - 2 a 1 > 0 t h e n a ~  . . ,  /3c=1 (12) 
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For the previous example involving (xl, Yl) and (x~, y~), now using (11) in the average approach, we 
get [a, /3]= [0.175, 1]. Using (12) in the aggregation approach we obtain [a,/3] = [0.025, 1]. Both 
intervals represent a great uncertainty about the rule, reflecting much better than the previous ones the 
idea that the two examples being used are not very significant for the rule. 

4. The crisp case and the underlying concept of conditioning 

In order to understand better the learning methods just explained, the study of some simple cases is 
revealing: 

Consider first the case of the antecedent and consequent sets A and B being crisp sets, and all the 
examples x, and Yk being crisp values. Denote by n(A n B) (n(A) respectively) the number of examples 
satisfying x, ~ A and Yk e B (x~ ~ A respectively). Then it is very easy to see that 

n(A N B) 
ol~/3---- 

n(A) 

in both the average and the aggregation approaches. This means that we always obtain a probabilistic 
rule, the weight a --/3 being the relative frequency of examples verifying A and B among those that 
verify A, that is, the conditional probability of B given A: 

a = [3 =p(B I A). 

If we now consider the case of the antecedent and consequent sets being crisp sets again, and the 
examples also being crisp sets (instead of crisp values), we get, again for both the average and 
aggregation approaches, the following formulas for a and/3: 

OL -- 
n(A n B) n(A) - n(A n ~B) 

n(A ) ' fl = n(A ) 

where n(A n B) is now the number of examples verifying x~ ~_A and Yk --- B (and similarly, n(A) is the 
number of examples satisfying that Xk ~_A and n(A n ~B) represents the number of examples in which 
xk -~ A and Yk ~- ~B is true). 

When the examples are crisp sets instead of crisp values we have a lack of precision about the truth 
of A and B. If for instance xk n A ~ Q and xk n -hA ~ •, then the example x~ can support both A and 
~A; we will only be sure when xk ~_A or x~ ~_~A (the same thing happens for y~ and B). This gives rise 
to a greater uncertainty: there are examples that confirm A, examples that confirm ~A, and examples 
that confirm neither A nor ~A. This situation is modeled by interpreting the quantity n(C) [K as the 
value of a belief measure, bel, expressing our (frequentistic) confidence on C being absolutely true. For 
example, if we have three examples satisfying that xk ~- A, two examples verifying that xk ~- ~A and the 
remaining five examples satisfy xk n A ~ • and xk n ~A ~ ~,  then we get a belief-plausibility pair 
whose b.p.a, is m(A) = 0.3, m(-~A) -- 0.2 and m ( U z )  = 0.5. 

After these comments it is clear that the values of a and/3 above can be rewritten as 

bel(A n B) bel(A) - bel(A O ~B) 
a = bel(B/A) - , /3 = PI((B/A) 

bel(A) bel(A) 

and we obtain the strong conditioning proposed for belief-plausibility measures by Shafer [11] and 
Suppes and Zanotti [12]. 

In the general case, when we have fuzzy sets instead of crips sets, the resultant optimum weights a 
and/3 for the rule (4) can be considered as a generalization of this kind of conditioning. 
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5. Concluding remarks 

We have developed a methodology for learning rules in a fuzzy environment which uses only 
empirical information. Although the rules considered here are simple, it is easy to extend the model to 
include rules with conjunctions and disjunctions in premises (see [4]). 

The methods described in this paper are efficient in both running time and storage requirements. 
Moreover, they can be used in training mode (at an initial stage) as well as in adaptation mode (after 
collecting new examples). 

Another interesting property of our methodology is its flexibility: several alternatives could be 
considered within the model, without affecting its basis; we briefly list some of them: 

- We chose a type of matching based on the Lukasiewicz t-norm, but different t-norms could be used 
instead (for example, the minimum or the product). It would be interesting to study how sensitive the 
method is with respect to the choice of the t-norm. 

- T h e  proposed propagation model is based on the integration of conditional upper measures 
(u(. I A), u(. I~A)) with respect to a marginal upper measure (Ux(')). The use of marginal lower 
measures would possibly entail a change in the underlying concept of conditioning. Moreover we chose 
the Choquet integral as integral operator, but there are other alternatives, as for instance the Sugeno 
integral. 

- The selected distance measure and either the aggregation function or the kind of average could be 
changed too. 

The exploration of these alternatives and their comparison with different approaches for learning will 
be the object of further work. 
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