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Abstract: In this paper we develop a method to study fuzzy measures associating certain sets of 
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1. ]ntroducdon 

A.dditivity does not seem suitable as a demandable property of set functions in 
many real situations, due to the lack of additivity in many facets of human 
reasoning. It is sometimes more appropriate to consider non-additive but 
monotone valuations to express human subjectivity. For example, consider an 
illness y such that if two symptoms xt and x2 appear simultaneously, then a doctor 
diagnoses such illness with total certainty, but the appearance of only one 
symptom ;~ scarcely a sign of y. The belief of a doctor about when a patient has 
or has not y (taking into account the symptoms xl and x2) may be represented by 
means of a fuzzy measure better than by an additive measure. (y can be 'migraine 
I, eadache', xl ='general discomfort' and x2='pain in the temples, eyes and 
~orehead'). 

Since Sugeno's definition of fuzzy measure [9], numerous works on the matter 
have been done. As the field of general fuzzy measures is extremely wide, their 
study has been frequently tackled by means of particular classes of them. 

Neve~heless, a systematization of the general class of f u r y  measures is 
necessary. The expressio~t of fuzzy measures in terms of probabilities has been 
one of the richest mechanisms to analyse some particular classes; for instance, it 
explains the development of Dempster-Shafer's Theory of evidence [4, 8]. 

The concept of a fuzzy integral appears simultaneously with the fuzzy measure 
concept. It is either a too] able to condense the information provided by a 
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function in a single value, in terms of a underlying fuzzy measure, or a method to 
extend fuzzy measures defined on crisp subsets of a referential to fuzzy subsets. 

The purpose of this paper is to develop a general methodology to study fuzzy 
measures associating certain sets of probabilities to them. This development is 
based on the consideration of one property of a fuzzy integral, called monotone 
expectation. 

In Section 2, definitions of fuzzy measure, monotone expectation and its more 
important properties are presented. We also make a brief study of the monotone 
expectation, which justifies our definition of associated probabilities. Section 3 is 
devoted to the study of such associated probabilities, and, in Section 4, some 
results about the monotone expectation in relation to associated probabilities are 
obtained. 

2. Bm|c definitions. Probabilities associated to a ~ meamre 

We start with the definition of fuzzy measure (Sugeno [9]), adapted to the case 
of a finite referential, which is the only one considered in this work. 

Defin|den 2.1. Let X = {x~, x 2 ,  • • • ,  x , , }  be a finite set and g a set function 

g: [0, 1] 

where ~(X) is the power set of X. We will say g is a fuzzy measure on X if it 
satisfies: 

(i) g(~)-0;  g ( X ) -  1. 
(ii) VA, B =_ X, if A g B then g ( A )  ~ g ( B ) .  

A fuzzy measure is a normalized and monotone set function. It can be 
considered as an extension of the probability concept, where additivity is replaced 
by the weaker condition of monotonicity. 

Duality is an important concept to study fuzzy measures: 

Deflation 2.2. Let g be a fuzzy measure on X. The fuzzy measure g* is defined 
by 

g*(A) -- - g (A)  vA =_ x ,  

where A is the com¢lement of A; g* is called the dual fuzzy measure of g. 

As g is obviously the dual fuzzy measure of g* too, we will call them dual fuzzy 
measures, and denote them by (g, g*). 

The concept of duality is very important, since it permits one to obtain 
alternative representations of a piece of information. So, we will consider a fuzzy 
measure an~ its dual measure to contain the same information, but codified in a 
different way. 

A specially interesting class of fuzzy measures are the capacities of order two 
(Choquet [3]), because it covers a great number of fuzzy measures, and at the 
same time, capacities o f  order two possess enough mathematical properties. 
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Therefore, this class of fuzzy measures combines generality and operativity. As 
such fuzzy measures will be considered later, we present their definition now: 

Definition 2.3. Let (g, g*) be a pair of dual fuzzy measures. 
g is a lower capacity of order two if and only if 

VA, B~_X, g(AUB)+g(ANB)~g(A)+g(B). 
g* is an upper capacity of order two if and only if 

VA, B =_ X, g*(A U B) + g*(A n B) g*(A) + g*(B). 

The most used classes of fuzzy measures, as belief and plausibility measures 
(Shafer [8]), necessity and possibility ones (Zadeh [11 D, ~-measures (Sugeno 
[9]) and prob~bilities, are capacities of order two. 

Example 2.1. Consider the three typical symptoms xl,  x2, x3 of an illness y, and 
the following information: 80% of the patients having y present symptoms xl and 
x2, and 20% have symptoms x~ ,lnd x3. 

This information can be represented by the pair of dual capacities of order two 
(g, g*), shown in Table 1. 

Table 1 

A ~(A) g.(a) 

{x,} 0 1 
{x2} 0 0.8 
{x3} 0 0.2 
{x~,x2} 0.8 1 
{xn, x3} 0.2 1 
{x2, x3} 0 1 
{x~,x2, x3} 1 1 

The values g(A) and g*(A) represent respectively the minimum and maximum 
degrees of belief (in the light of the given information) about the fact that a 
patient with the set of symptoms A has the illness y. 

A fuzzy integral is a functional that, a fuzzy measure having been fixed, assigns 
a real value to each function, which represents the average of the function in 
terms of the given measure. Several types of fuzzy integrals, as the ones defined 
by Sugeno [9], Kruse [6], Weber [10] , . . .  can be found in the current literature. 
The following fuzzy integral (based on the Choquet operator [3]) is the monotone 
expectation, which was defined by Bola~os et al. [1]: 

Definiden 2.4. Let g be a fuzzy measure on X and h ' X ~  •ff a non-negative 
function. The monotone expectation of h with respect to g is 

fO °° e , (h)  = g(H ) cia, 

where tto, = {x e X ! h(x)  >I ~}. 
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The monotone expectation always exists and it is finite for each g and h. It is 
obvious that Es(.) is a generalization of the mathematical expectation: that is 
what it becomes when the used fuzzy measure is a probability, that is, 

E (h) = fx h dF, 

if P is a probability measure. 
Some of the most important properties of the monotone e~pectation are: 
(1) If h(x) <<. h ' (x)  Vx ¢ X, then Es(h ) <<. Es(h' ). 
(2) If g(A) <<. g ' (A)  VA =_ X, then Es(h ) <~ Es,(h ). 
(3) Es(IA) ffi g(A), if Ia is the characteristic function of A _c X. 
(4) If c, b ¢ R~', then Es(c + bh) ffi c + bEs(h ). 
(5) The monotone expectation is an additive functional only when the fuzzy 

measure g is a probability. 
Proofs of these properties can be found in Bolafios et al. [1]. (For a more 

detailed study about the monotone expectation, see de Campos [2].) 

Remark. We require a non-negative h(x) because the equality 

h dP ffi P([h ~ x]) (Ix, P is a probability, 

is only true for non-negative functions. Nevertheless it is possible to define E s for 
any function, but if we wish that E s preserve some properties of the mathematical 
expectation (e.g. monotonicity), we must define E s (see Lamata [7]) as 

f , (h)  = 

where h +(x)= max(h(x), O) and h - ( x ) =  max(-h(x) ,  0). 

Since the monotone expectation is a generalization of the mathematical 
expectation, it can be questioned whether the former possesses some weaker 
property in relation to additivity than the latter. The following proposition gives 
an expression of the monotone expectation that permits us to analyse that 
questi~l~. 

Preposition 2.1. I f  the values of  a non-negative function h are ordered as 

h(xl) <<- h(x2) ~ < ' "  ~< h(x.) ,  

then the monotone expectation of  h with respect to a fuzzy  measure g can be written 
as 

n - - |  

Es(h ) ffi ~ h(x,)(g(A,) - g(A,+~)) + h(x,,)g(A,,), (1) 
i--1 

where A~ = {x~, x~+l, . . . , x,}, i = 1 , . . . ,  n. 
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Proof. The sets H~ are 

f ° H .  = { x .  x , ÷ ~ .  . . . , x . }  = . 4 ,  

L{x~,x2,. ., x.} =A~ ~ X  

Therefore 

if a > h ( x . ) ,  

if h(x,_l) < ot ~ h(x,), i = 2 , . . . ,  n,  

if  ac ~ h(xl). 

E.(h) = ~o g(H.)  aa- + ,--~2~ J.c~,-, g(H.) de  

£- + g(H.) da 
(x.) 

n 

ffi h(x,)g(X) + ~ (h(x,) - h(x,_,))g(A,). 
tffi2 

If we develop and regroup this expression, we have 
n - 1  

Es(h ) = ~ h(x,)(g(A,)-g(A,+,)) + h(x.)g(A.). 
iffi l  

El 

Expression (1) permits us to consider the following matter: two functions with 
the same ordering in their values have equal sets A~ (whose form depends only on 
this order). ,%, the monotone expectation of their sum is the sum of both 
monotone expectations, because the function sum ranks its values in the same 
way. Thus, the monotone expectation is an additive functional for functions 
ordered equally. 

We can also notice that Eg(h) is an average of the h function values weighed by 

p ,=g(A, ) -g (A ,+, ) ,  i = 1 , . . .  , n - l ,  p.  =g(A. ) .  

As 
n 

p, = g(A,) = g(X) = I and 
i - - I  

Pi~0 ,  i f f i l , . . . , n ,  

the values p~ can be interpreted as the values of a probability function. Then 
Es(h) is equivalent to the mathematical expectation of h with respect to that 
probability distribution. 

The values p~ depend on the fuzzy measure g and the sets A~, which depend on 
h only in the order determined by its values. So, we can say: 

Propos|fion 2.2. The monotone expectation of a non-negative function h with 
respect to a fuzzy measure g coincides with the mathematical expectation of h with 
respect to a probability that depends only on g and the ordering of the values of  h. 

Moreover, the maximum number of probability distributions we need to 
integrate any function, coincides with the number of possible orderings or 
permutations in a set with n elements, that is, n!. 
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Thus, it makes sense to associate the n! probabilities to each fuzzy measure, 
provided that they are deduced from this fuzzy measure through the different 
possible orderings. 

For example, the associated probability for the ordering (x,, x , _ l , . . . ,  x2, x~) 
is 

p<,,.,,_~ ..... ,_ . , (x , )  = 1 - g ( { x , , . . . ,  ~,,}),  

p~,~.o_~ ..... , . .~(x~) = g({x,_,  x ~ , . . . ,  x , } ) -  g ( { x ~ , . . . ,  x , , } ) ,  . . . ,  

p ~ . . _ ,  ..... ~ .~(x ._~)  = g ( { x . _ , ,  x. }) - g ( { x .  }), 

p~,,.,,_, ..... , . . , ( x , )  = g ( { x , , } ) .  

In general, the possible orderings of the elements of X are given by the 
permutations of a set with n elements, which form the group S,. 

Definition 2.5. The probability functions Po defined by 

po(Xo¢,~) = g({xo<,~} ), . . . ,  

po(Xo<o) = g ( { X o < , ~ , . . . ,  Xo<o} ) - g(  { X o < , , . . . ,  x o c , - , }  ), . . . ,  

po(Xo~.~) = 1 - g ( { X o ~ , , . . . ,  Xo< ._~) ) ,  

for each o=(o (1 ) ,  0 ( 2 ) , . . . ,  o(n))eSn, are called the associated probabilities 
of the fuzzy measure g. 

So, we have a single ordered set of n! probability measures for each fuzzy 
measure. 

3. Properties of the probab~|ties associated to a fuzzy measure 

In general, knowledge of the associated probabilities to a fuzzy measure g does 
not permit one to rebuild the measure g without also knowing what permutation 
generates each one of them. This happens because different fuzzy measures can 
generate the same set of associated probabilities, as is seen in the following 
example: 

Exmnp|e 3.1. Consider the fuzzy measures g and g' on X = {xl, xz} defined in 
Table 2. 

Table 2 

A g(A) g'(A) 

(xl} 0 0.5 
{xz} 0.5 1 
{xl, x~} 1 1 
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The associated p~obabilities to g are: 
(a) For the permutation o = (1, 2), Po.2)(xl)= 0, Po.2)(x2)= 1. 
(b) For 0 = (2, 1), Pt2.1)(xl) = 0.5, p<2.1)(x2) = 0.5. 
The associated probabilities to g' are: 
(a)  For a =  (1, 2),  p ~ . 2 ) ( x ~ ) = 0 . 5 ,  p ~ . ~ ( x , ) = 0 . 5 .  
(b)  For o = (2, 1), v~,.~(x,)  = o, v~2.~(x2) = 1. 
Therefore g and g' have the same associated probabilities, although they are 

generated by different permutations. This happens because g' is the dual fuzzy 
measure of g (g' = g*), as we will see in Proposition 3.2. 

The fuzzy measure g can illustrate the example given in the introduction about 
the migraine: general discomfort (considered by oneself) is ~othing representative 
for this illness; pain in the temples, eyes and forehead is moderately repre- 
sentative, but the two symptoms together are decisive to diagnose migraine. 

As in Example 2.1, g(A) and g*(A) represent respectively the minimum anO 
maximum degrees of belief of a doctor for diagnosing migraine, when the patient 
has the set of symptoms A. 

The associated probabilities are the extreme points of the set of probabilities 
lying between g and g*. 

The monotone expectation has the following usefulness in this case: symptoms 
can be partially verified (e.g. the pain may be 'intense', 'moderate ' , . . . ) .  If we 
assign a number in the unity interval representing the degree in which each 
symptom is verified, the monotone expectation with respect to g or g* of the 
function constructed in this way, again represents belief about the illness for a 
patient having that fuzzy set of symptoms. 

The order fulfils a decisive role in order to determine the fuzzy measure 
starting from its associated probabilities: 

Proposition 3.1. The set of associated probabilities to a fuzzy measure determines 
the latter if the permutations corresponding to each probability are known. 

Proof. It sut~ces to prove that if two fuzzy measures g and g' have the same set 
of associated probabilities, and the latter correspond to the same permutations, 
then both measures coincide, that is, Po = P~, Vo ¢ Sn ~ g = g'. 

Consider any set A ~_ X. There is always a permutation that puts elements of A 
in the first places, that is, if 

A = (x,,, x , ~ , . . . ,  x , , ) ,  

there exists Oo ¢ S,, such that 

ao(1) - i~, . . . ,  ao(k)  - i~. 
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Under these conditions, 

g ( A ) = g ( { x , , ,  . . . , x ,~} )  

= g ( { x , , , . . .  , x , , } )  - g ( { x , , ,  . . . , x,~_,)) 

+ g ( { x , , , . . . ,  x,~_,}) . . . . .  g ( { x , , , x , ~ } )  

+ g({x,, ,  x,~}) - g({x,,}) + ~ ( { x , , ) )  
k 

=Pao(x,,) + " "  + P,,o(X,,) -- X Poo(X,,) = Poo(A) • 
/ - I  

W e  obtain g'(A ) = P'o(A ) similarly. 
Therefore, from Poo(A) = P'o(A), g(A) ffi g'(A) is deduced. !:3 

This proposition permits us to interpret any fuzzy measure in terms of its 
associated probabilities (which can be equal among each other). In this way, as 
we have seen, the ordering is basic, and we cannot omit it, although later we will 
prove we can do it with the wide class of capacities of order two. 

The most remarkable case where different fuzzy measures provide the same n! 
probabilities, but ordered in a different way, is the case of dual fuzzy measures. 
Before exposing it in the following proposition, we need a definition: 

Defufl~on 3.1. We will say that two permutations o, o* ¢ S,, are dual if 

o*( i )  = ~7(n - i + 1), i = 1 , . . . ,  n. 

Pmpo~]flon 3.2. A necessary and sufficient condition for two fuzzy measures g and 
g* to be dual is to have the same n[ associated probabilities corresponding to dual 
permutations, that is, Po = P*. if  o and o* are dual. 

Proof. Necessary condition: Consider two dual permutations o and o*: 

po*.(xo.<,>) = g ' ( { X o . , ~ , . . . ,  xo.<,>)) - g*({xo.<~>,. . . ,  Xo.¢,_ ~,)) 

= I - g ( ( X o . < . ~ , . . . ,  xo .< ,+~)) -  1 + g ( (xo .< .~ , . . . ,  X o . < o ) )  

= - g ( { x o o ~ , . . . ,  Xo<,-o}) + g ( ( X o o > , . . . ,  x , _ ~ +  ~>} ) 

=po(Xo¢._, .~) =po(Xo.¢o), Vi = 1 , . . . ,  n. 

Therefore P*~. = Po Vo ¢ Sn. 
S u ~ c ~ e r :  condiaon: It suffices to prove that g* (A)=  1 - g ( A ) V A  =_X. For 

convenience, and without it being a restriction, let 

,4 ~'= (.q, x 2 , . . . ,  x~) and ,~ = (x~+ l , . . . ,  x,,). 

Consider the dual permutations o = (1, 2 , . . . ,  n) and o * =  (n, n -  1 , . . . ,  1). 
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Then 
g(A) =g({x , , . . .  , x , } )  

i 

=g({x,}) + ~ (g({x,, . . . ,  xA)-g( lx~, . . . ,  xj_,})) 
iffi2 

i 

= E po(Xj) ffi Co(A), 
j = l  

g * ( A ) f f i g * ( { x , + ~ ,  . . . ,x.}) 
ffi 1 - ( g * ( { x l , . . . ,  x,,}) - g * ( { x , + l , . . . ,  x, ,})) 

i 

= 1 -  ~ (g*({xj,... , x , ) ) - g * ( { x j + ~ , . . . ,  x~))) 
j---1 

i 

= 1 -  ~ p*o.(xj) = 1 - P*o.(A). 
]=1  

Because of the hypothesis, Po(A)= P**(A), and hence g*(~])--- 1 -g (A) .  O 

If we accept that a fuzzy measure and its dual measure contain the same 
information, but codified in a different way, the above mentioned result could be 
interpreted by saying that the n! associated probabilities contain the information 
and that the different orderings are different codifications of this information. 

A fuzzy measure is said to be autodual if it coincides with its dual measure, that 
is, if g*(A)ffi g(A) VA =_X. Starting from the last proposition, autoduality of a 
fuzzy measure is characterized in terms of its associated probabilities: 

CovolUhu3, 3.1. A fuzzy measure is autodual if and only if the probabilities 
associated to each permutation and to its dual permutation coincide. 

Another interesting case is when the fuzzy measure is a probability; it is the 
case when all associated probabilities are equal: 

P~pos|fion 3.3. A fuzzy measure g is a probability measure if and only if its n! 
associated probabilities coincide. 

Iheol.  The necessary condition is obvious because of the additivity of probability 
measures and of the definition of  associated probabilities to a fuzzy measure. 

To prove the sufficient condition, we denote P as the only associated 
probability. 3iven any subset A =_ X, we can deduce g(A)= Poo(A) for some 
permutation ao e $,,; as for any permutation P(A) = Po(A) VA =_ X, it is obvious 
that g(A)ffi P(A), and g is a probability. I-'1 

The case of capacities of order two is the most interesting one: 

P~pos|fion 3.4. Let (g, g*) be a pair of dual fuzzy measures. Then g is a lower 
capacity of order two (g* is an upper capacity of order two respectively) if and 
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g ( A ) = m i ,  Po(A) VA =_.X 
oeSm 

( g * ( A )  = m a x  P o ( a )  V A  =_ X ,  
°eSm 

respectively). 

Proof. We will only prove the case of lower capacities of order two. The proof 
for the upper capacities of order two is analogous. 

Sufficient condition: 

g(A) = rain Po(A) = rain ~] po(X,) <~ ~ po(X,), Vo e $.. 
oeSm oe,.%, x~eA x~eA 

Let us suppose that 

A n B = ( x , , , . . . ,  x,.}, A n e = { x h , . . . ,  xj.}, 
.413 h = {xk , , . . . ,  x,,,}. 

Consider a permutation T ¢ S,, such that 

• (1) = i , ,  . . . ,  ~(v)  = 6 ,  

• (v + 1) = h ,  . . . ,  ~(v + s) = j , ,  
T(r + s + 1) = k~, . . . ,  ~(r + s + t) = k,, 

that is, an ordering of elements of X such that the first places are taken up by 
elements of A N B, followed by the ,,i N B ones, later the A 13/} ones, and finally, 
elements of A U B. Then 

P,(A) = ~ p,(x) 
xeA 

= g ( ( x , , ) )  + g ( (x , , ,  x,~)) - g((x, , ))  

+ " "  + e,({x,  , . . . , x , . } )  - g ( ( x , , , . . . ,  x, ,_,))  

+ g ({x , , , . . . ,  x,., x h , . . . ,  xj,, x,,,}) - g ( ( x , , , . . . ,  x,,, x j , , . . . ,  x~,}) 

+ . . .  + g ( ( x , , , . . . ,  x,. ,  x h , . . . ,  x~., x k , , . . . ,  xk,}) 

- g ( { x , , , . . . ,  x,., x ~ , , . . . ,  xj,, x , , , , . . . ,  x,,,_,}) 
= g ( { x , , , . . . ,  x,, ) )  - g ( { x , , , . . . ,  x,,, x j , , . . . ,  xj, } )  

+ g ({x , , , . . . ,  x,., x j , , . . . ,  xj,, x , , , , . . . ,  x J )  

= g ( a  n n )  - g(B) + g(,,t  u e ) .  

Therefore 

e(A) ~ g ( a  n e )  - g (a )  + g(A o e) ,  

and g is a lower capacity of order two. 
Necessary condition: First, we will prove that if g is a lower capacity of order 

two, then 

g (A)~min  Po(A), VA =_ X. 
o¢$m 
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Let us suppose that A = {x~,, x i2 , . . . ,  x~,}. Then 
r r 

eo(A) = ,T_, po(X,,)= ~E (g(Bo,, u (x, , ) )-  8(Bo,,)), 
j - i  j= l  

where Boa, = {xoo), X u ( 2 ) ,  • • . ,  Xa(hg-1) }, and q(hi,) = ij. 
Without losing generality, we can suppose Chat 

o-l(i,) < o-1(i,_0 < . . .  < 0-1(il). 

If we define the sets A~, by 

A,, ffi {x~j, x~,+,, . . . ,  x~,}, j ffi 1 , . . . ,  r, 

then 
Bo,, u A,, = ao,, u {x,,}, 

Thus  

B,,~j t ' lA~j --- { x ~ j + , , . . . ,  xs,} = A~j+,, j - 1 , . . . ,  v - 1, 

Bo~. u A~, = Bo~, u {x,,}, Bo~, hA,,  = fJ. 

Therefore 

r r r r - 1  

~E g(B~, u 1~,,)) ~ E g(Bo,,) + ~ g(,%) - 7~ g( ,%,)  
i=1 j= l  1=1 j= l  

r r r r 

- N g(no,) + E g(A,,) - E g(A,) -- N 8(B~) ÷ g(A,.). 
1=1 j---1 j=2 j - 1  

So, 

r 

g(A,,) = g(A) <<. ~ (g(Bo,, u {x,,}) - g(B~,)) = Po(A). 
y - I  

g(A ) <~ min Po(A ), YA ~_ X. 
aeSa 

As a permutation Oo ¢ S,, always exists such that g(A)= Poo(A), it is obvious 
that 

g(A ) = rain Po(A ), VA g X. r3 
oeSn 

So, the main characteristic of a capacity of order two is that it only depends on 
the probabilities associated to such a measure, but does not depend on the 
permutations that generate them: we can regenerate the initial fuzzy measure by 
only knowing its associated probabilities, without necessity to know the cor- 
responding permutations. This characteristic makes the use of capacities of order 
two by means of associated probabilities specially easy. 

4. Prope~es of the monotone expectation in relation to the as~ciated 
probabU|ties 

The monotone expectation satisfies interesting properties in relation to the 
associated probabilities. One of them is the one we have used to justify our 



34 L.M. de Campos, M.J. Bolafios 

definition. We can express it in the following way: 
Given a fuzzy measure g, for each non-negative function h, there exists a 

permutation ahe  S,, and an associated probability Poh such that 

Es(h ) = Epo,(h) ffi fx h dPo h. 

Starting from this property the following result is evident and valid for every 
fuzzy measure: 

Peopos | f lou 4.1.  If Po, o ¢ S., are the associated probabilities to a fuzzy measure 
g, then for every h :X- - ,R~ ,  it holds 

rain EPo(h) <<. Es(h) <~ max EPo(h). 
oes~ aeS. 

Proof. As Vh :X--,  R~" 3ah • S,, such that Es(h ) ffi Eeo(h), it is evident that 

rain Eeo(h) <~ Ee(h) <<. max Eeo(h). 
oeS. oeS. 

r'l 

in general, that is all we can assure. Nevertheless, in the particular case of 
capacities of order two, one of the above bounds is necessarily reached by the 
monotone expectation value; moreover this fact is a characterization for this class 
of measures: 

ProposiUou 4.2. A necessary and su~cient condition for a pair of dual fuzzy 
measures (g, g*) to be lower and upper capacities of order two respectively is that, 
Vh " X ~ Ro ~, 

Es(h ) ffi min Eeo(h) and/or Es.(h ) ffi max EPo(h). 
oeS. oes. 

Proof. Necessary condition: If g and g* 
Proposition 3.4~ 

g(A) -- rain Po(A) and 

and it is obvious that 

VA =_X, VoeS.. 

So, by the monotonicity of monotone expectation, 

Es(h) <- EPo(h) <~ Es.(h) 

Therefore 

Ee(h) <~ rain Epo (h), 
aeS. 

g*(A) f maX Po(A) VA =_ X, 
o¢Sn 

Proposition 4.1 proves the opposite inequalities. 

are capacities of order two, by 

Vh " X--+ R~. 

Es.(h) >~ max EPo(h). 
oeSn 
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Sufficient condition: The hypothesis assures us that, for each A c_ X, 

g(A) = g(IA) f f i  rain Eeo (/,4) ffi rain Po(A), 
oeS. oeS. 

and we deduce that g is a lower capacity of order two from Proposition 3.4. 
The result is similarly proved for g*. [3 

The result we have proved permits us to establish another characterization, 
already known (see Huber [5]), of capacities of order two in a very simple way. 

Proposition 4.3. (a) g is a lower capacity of order two if and only if 

Es(h, + hz)~ Es(h,) + g(hz) ,  Vhl, hz:X--*R~. 

(b) g* is an upper capacity of order two if and only if 

Es.(h , + hz) <~ Es.(h,) + Es.(h~), Vh,, hz:X--,R~. 

Proof. (a) Necessary condition: If g is a lower capacity of order two, then from 
Proposition 4.2, 

Es(hl + h2) ffi rain Eeo(hl + h2) = min (Epo(ht) + Epo(h2)) 
aeS. oss, 

~min  EPo(hl) + rain Eeo(hZ) ffi Es(hl) + E~(he), Vh~, h z : X ~ R ~ .  
ae5,, ae.~ 

Su~cient condition: As Es(hl + hz)>- - Es(hl) + Es(hz) Vhl, h2:X--~R~, if we 
make h~ ffi Id and he = la, it holds 

It is easy to verify that 

+ = + = g(A U B) + g(A n B). 

This fact should not surprise us because functions lane and IAOB rank their 
values in the same way, and for this type of functions, the monotone expectation 
is an additive functional. 

Therefore g is a lower capacity of order two. 
(b) This is similarly proved. El 

$. Conclusions 

We have been able to represent all fuzzy measures as ordered sets of 
probabilities, basing ourselves on the behaviour of the monotone expectation 
functional. We have also studied some fuzzy measures and monotone expectation 
properties in the light of the associated probabilities. 

We think this representation of fuzzy measures by associated probabilities 
provides a new perspective on them. For further works, we propose to study 
concepts such as distance, inclusion relations and combination methods for fuzzy 
measures from the concept of associated probabilities. 
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