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Abstract: We define a functional on fuzzy m {called P ion) based on
Chioguet's integral operator, and we study its convergence p jes. The

expectation is used to extend fuzzy measures to fuzzy subsets. Also Sugeno 's bound for the
difference between his integral and the mathematical expectation is generalized.
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1. introduction

Since the publication of Zadeh’s [12] pioneering work, several new contribu-
tions have appeared on the problem of evaluating fuzzy sets, particulasly
regarding the extension of defined measures from crisp subsets of the referential
to fuzzy subsets.

While Zadeh presented a natural generalization of the concept of probability to
fuzzy events by integration of the membership function, it was Sugeno [9] who
defined the first functional (a fuzzy integral) for the extension of fuzzy measures.
Although probability was considered to reflect a particular case of fuzzy measure,
Sugeno’s definition differs from Zadeh’s being based, as numerous authors have
shown in previous analyses and characterizations (Batle and Trillas [1], Ralescu
and Adams [7], Kandel [4]), on a max-min or ‘fixed point’ approach.

Various functionals have been proposed to deal with particular types of fuzzy
measures (Kruse [5], Nguyen [6], Smets [8], Weber [11]). Some of these authors
have suggested the usefulness of Choquet’s imtegral operator {3], defined
originally for capacities, in the extension of measures t¢ fuzzy sets. In the present
study we describe the application of this approach to amy fuzzy measure by
defining the monotone expectation as a functional applicable to non-negative
functions, particularly to membership functions of fuzzy subsets. We furthermore
characterize the key role of monotone expectation as the natural generalization of
the Lebesgue integral to the fuzzy context. After analyzing the basic properties of
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monotone expectation in Section 2, Section 3 presents proofs of the theorems of
monotone and bounded comvergence, equivalent to Levi’s and Lebesgue’s
theorems respectively, in the context of classic integration. Finally, Section 4
deals with the problem, as mentioned above, of extending fuzzy measuges to
fuzzy subsets. The extension given by monotone expectation is shown to provide
fuzzy measures; furthermore, Sugeno’s bound (proved by the author for the
particular case of probability) is found to be valid in the much more general ficld
of fuzzy measures, in which it is shown to represent the difference between
monotone expectation and the fuzzy integral. Our results seem to indicate that
the fornal similarities analyzed by Sugeno between his integral and Lebesgue’s
should be more appropriately established between Sugeno’s integral and mono-
tone expectation.

2. Definition and basic properties

In order to define the functional monotone expectation we need a fuzzy
measure defired on an apprcpriate class of crisp subsets of a universe. We adopt
Sugenc’s definition of fuzzy measure [9], that is a bounded, monotone and
continuous for monotone sequences set function.

We cousider the space (X, B), where X is an arbitrary universe and B is a
g-algebra op X (although for definition it suffices to consider a monotone class,
sufficiently rich properties are only obtainable with o-algebras).

Definition 2.1. A fuzzy measure g on (X, B) is a valuation g: B~ [0, 1] satisfying
@) @ =0, g(X)=1
(ii) If A, B e B, and A c B, then g(A) <g(B).
(iii) If {4,} is a monotone sequence of elements in %8, then

lim g(A,)=g(lim 4,).

Fuzzy measures are known to be generalizations of probability measures,
where additivity is replaced by the weaker condition of monotonicity.

For this reason, it seems suitable to have a functional that extends the classical
idea of mathematical expectation on probability measures to fuzzy measures. It is
possible to establish such a generalization in terms of the integral defined by
Choguet [3] for capacities. We will call this integral monotone expectation
because this name better reflects its basic properties.

Definition 2.2, Given a 2on-negative %B-measurable fuaction k:X—Rg and a
fuzzy moasure g on (X, 98), the monotone expectation (m.e.) of & with respect to
g is the Lebesgue integral
-y 4+
Em=[ sreX|hw)=ehda=[ gH)de
(1] (]

where H, are the k level sets, and g(H,) is called measure function of 4.
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Before studying the properties of m.e., it is necessary to verify the existence of
this functional.

If the universe X is finite, m.e. always exists for each non-negative function b,
as the measure fuaction of h is a simple function. In the general case, the
existence of mi.e. is not assured.

Obviously, # must be %B-measurable (H,c BVe=0) and g(H,) must be
Lebesgue measurable. The last condition presents no problem, since g(H,) is a
bounded and mon-increasing function. However it is not sufficient 0 assure
integrability (i.e., the existence of a finite integral).

When h is an upper bounded function, it is possible to assure the existence of
Eg(h):

As k>0 exists such that A(x)<kVxeX, then H,=8Va>k and g(H,)=
0Va > k. Therefore

o k
E,(h)= f g(H,) dar= L g(H,) de

and this last integral always exists because g(H,) is a monotone non-increasing
and bounded function.

Hence the existence of m.e. is guaranteed for %-measurable membership
functions of fuzzy subsets in X.

As is usual in measure theory, we will say & is a g-integrable function when
Eg(h) <,

Whait follows are the most important propeniies of m.e.:

Proposition 2.1 (r-monotonicity). et h,, hy: X ~> Ry be two g-integrable func-
tions with respect to the fuzzy measure space (X, R, g). If

k(x)<h,)(x) VxeX,
then

Ey(hy,) < Eg(h).

Proof. Since i,(x) <h,(x) Vx € X, it is clear that H,, ¢ H,, Yo =0, and then
g(Hhe) <g(th) V=0
Monotonicity of the Lebesgue integral suifices to prove the result. O
Proposition 2.2 (g-monotonicity). Let g, 8, be fuzzy measures defined on
(X, B), and let h: X — Ry a g;-integrable function, i =1, 2. If
&i{A)<giA) VAeR
then
Eg (k)= Eg(h).

Prooi. As gy(H,)=<g,(H,)Va=0, again monotonicity of the Lebesgue integral
is sufficient to prove our claim. O
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Proposition 2.3. For every constant function (h(x) =c=0Vx ¢ X),
Efh)=c
Jor euck fuzzy measure g on (X, B).
Proof. If a=<c then g(H,) = g(X) = 1. If a>c then g(H,) = g(#) = 0. Therefore

0

g(H,yda= J‘: de=c. ]

§ 2.4. For every g-integrable function h:X—Rg with respect to
(X, B, g), a + bk is a g-integrable function for each a, b e Ry, and

Eg(a + bh)=a + bEg(h).
Proof.

E/a+bh)= f " g({x | a + bh(x) > a)) der
0

= [ attx o+ 5h) = apy dart [ g({r 145y=22%)) ae

The first addend is equal to

l) da—=a.

If we change the variable in the second addend to y = (& — @)/b then

rN‘B &—a r+o .

L e({x 1my= 257 da=b " attx | )= 1) dy = bE .
Therefore E(a +bh)=a +bE, (k). O

Propoesition 2.5. If & is the characteristic function o, a crisp set A € B, then
Ec(h)=g(A),

jor every fuzzy measure g on (X, 8).

Proof.

400

E®=[ sy de= sa)de=ga). O

Fropesitioa 2.6. The monotone expectation is an extension to fuzzy measures of
the mashematical expectation for probabilities.

Proof. Let P be a probability measure on (X, B) and let A: X—>Rg be a
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P-integrable function. Then

j’ hdP= fu P({x | h(x)=a}) dar= f‘ P(H)de=Ep(k). O
A _

The above propositions show how m.e. maintains some of the most important
properties of mathematical expectation. However, m.e. in general is not a linear
functional, as it is only additive when the fuzzy measure comsidered is a
probability:

Proposition 2.7. Ey(f; + ko) = Eg(hs) + Eg(hy) for all g-integrable funciions
hy, Biz: X—>RG if and only if the fuzzy measure g is a probability measure.

Proof. The sufficient condition is obvious from Proposition 2.6. To prove the
necessary condition, we consider the characteristic functions I, and I of crisp sets
A,Be®, suchthat ANR=§.

Using the present hypothesis and Proposition 2.5, there holds

8(A U B) = Ey(Ioup) = Eg(la + Ip) = Eg(ls) + Ex(Ip) = g(A) + g(B).
which is a necessary and sufficient condition for g to be a probability. O

PrO([)f; of above propositions in the finite case can be found in Bolafios
et al. {2].

As we have seen, the properties of m.e. make it more similar to mathematical
expectation than other functionals, such as the well-known Sugeno integral. This
latter does not possess acceptable properties of linearity, so, when these
properties are of interest, it seems better to use m.e. than Sugeno’s integral.

Sugeno’s integral and monotone expectation valuate functions starting from
fuzzy measures in different way. The first corresponds to a max—min approach,
whereas the second extends classical idecs of integration to a non-additive
context.

3. Cenvergence properties of the monotone expectation

Convergence properties are basic to the study of fuzzy measures and integrals.
In this section we describe some important results of this kind for m.e. First, the
validity of Levi’s monotone convergence theorems is proved. These theorems
allow us to use m.¢. to extend fuzzy measures to fuzzy subsets of X. On the other
hand, we obtain results similar to Lebesgue’s dominated convergence theorem,
which fixes conditions for convergence in the absence of monotonicity.

Previously we shall prove a lemma that allows us to use both strong and weak
a-cuts in the definition of m.e.:

Lemma 3.1. Let h:X—Rg be a g-integrable function with respect to the fuzzy
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measure space (X, B, g). Theve holds

Ew= [ steyde=[ gtz e,
where H, = {x e X | h(x) = &}, and H; = {x e X | h(x) > &}.
Proof. If we denote f(a) = g(H,) and f'(@) = g(H}), then
Lﬂ F@)da< fo " f(a) de
Moreover, f{a +e)<f'(&) Ve>0, Va>0, and hence
wa(a +e)de< [mf’(a') de Ve>0.
If we substitute the variable y for & + ¢ in the first integral, then
L ) dys.’:u Fle)da Ve>0.
Therefore
4o 4o
[ royars[ s ae,

and we obtain the equality between the two integrals. O

Propesition 3.1. Let h,:X—>Ry be a monotone non-decreasing sequence of
functions which converges to h:X—Rg. If h, are g-inicgrable functions with
respect to (X, B, g) and, either h is g-integrabie too or lim,,_.., E,{fi,) <o exists,
then b is g-integrable and

lim Ey(h,) = Ey(h).

Procf. We denote (H;),={xcX|h,(x)>a} and H;={x e X | h(x)> a}. It is
clear that {(H).} is 2 non-decreasing sequence which convezges to =1 (H3),.
We prove that this limit is equal to H:

Let x € Up=; (H7),; then ng exists such that x € (i1),,, hence h,(x)> a. As
{k.} is a non-decreasing sequence,

lim h,(x) = k(x) = by fx),
and then xcH;. If there exists xe€H, such that x ¢l -, (H7),, then
x ¢ (HZ), Vn e N, implying h,(x) < @ Vn €N and hence lim,_.. &,(x) =h(x)< e,

so that x ¢ H_, in contradiction to our hypothesis. Therefore

lim (H3), = ':Jl (HD)w=Hz, Va>0.

f-s0D
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From the continuity of fuzzy measures, it follows that

lim g((H2)) = 8(Hz) Va>0,

and thus convergence of the measure functions sequence is proved.
Applying the monotone convergence theorr « for Lebesgue’s integral and the
above lemma, there holds

tin By =tim [ (@ da= [ g de=Em. O

Analogous results are obtained for non-increasing sequences:

Proposition 3.2, Let h,:X—Rg be a monotone non-increasing sequence of
functions which converges to i:X—>Rg. If h, are g-integrable functions witi
respect to (X, B, g), then h is g-integrable too, and

fim E,(h,) = E(h).

Proof. We denote (H.),={xeX|k(x)=a} and H,={xeX|h(x)=a).
Obviously {(H,),} is a non-decreasing sequence which converges to { 5=y (H,),-
We prove this limit coincides with H,:

Vrxe( V=1 (H.)ny x€(H,), VYneN, and h(x)=a YneN. Therefore
lim,.. 2,(x)=h(x)= o and x € H,,.

if x¢(Mami(H.)n then TnoeN such that x ¢ (#,),,. Then 3n, such that
h,{x) < & which implies ~(x) <h,(x) < « and thus x ¢ F,.

Therefore

O\ H),=He Va>0.

Again, by virtue of the convergence properties of Lebesgue’s integral and the
continuity of fuzzy measures, it can be concluded that

fim Z,(h) = im [ (@) da= [ (i) de=E®. O

Several previous lemmas are required to extend the convergence theorem of
Lebesgue:

Lemma 3.2. Let b, k: X— Ry be two functions satisfying:
@) hx)<k(x)VxeX.
(b) h is a B-measurable function.
(c) k is g-integrable with respect tc (X, B, g).
Then h is also g-integrable with respect to (X, B, g).
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Proof. If we denote the a-cuts of & and k as H, and K, respectively, then g(H,)
is a Lebesgue measurable function because k is %B-measurable, and g(X,) is
Lebesgue integrable since k is a g-integrable function.

AsO=<g(H,)=r(K,)Va >0, g(H,) is also Lebesgue integrable and Lence % is
g-integrable. T

Leauas 3.3. Let h,: X— Ry be a sequence of g-integrable functions with respect
to (X, B, g) such that h,(x)=<k(x)Vx e X, YneN, where k is g-integrablz ivo.
Then

E(im sup h,) = iim sup E,(,).
] =5CD

Proof. We define functions p, by
Palx)=suphix) VxelX.
i
{p.} is a non-increasing sequence of functions which converges to lim sup,_,. &,,.

Since p.(x)sk{x)Vxe X, YneN, the functions p, are g-integrable by Lemma
3.2. Applying Proposition 3.2 to the sequence {p,}, we obtain

bim E(p,)= Eg(litm sup h,,) .
As b (x)<p.(x)Vx e X, VrneN, then E (,) < E,(p,) Yn €N, and therefore

tim sup E,(k,) <lim sup Ey(p,) = lim E,(p,) = E,,(lim sup h,,). o
-0 500 n—sm [y

Lemma 3.4. Let h,: X— Ry be a sequerice of g-integrable functions with respect
to (X, B, g). There holds

Eg(liﬂ E)fh) <lim inf E,(h,)

Procf. We define functions g, by

q,.(x)—mfh(x) VxekX.
{g.} is a non-decreasing sequence of functions which converges to lim inf,..., A,.
As g, (x)<h,(x)VxeX, VnelN, again by Lemma 3.2, g, are g-integrable
functions, and E (g,) < E (%..} Vn € N. Therefore

lin: Ey(g.)<limint E,(h,),
B=5% FRe=h GO
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and, by Proposition 3.1,

E(timinth,) = lim E,(q)) <liminf E,i). O

b
Now we can prove the following resuit:
Proposition 3.3. Let k,: X—>Rg be a sequence of B-measurable functions which

converges to h:X—>Rg. If there exists a function k, g-integrable with respect to
(X, B, g), such that

h,x)sk(x) VxeX,¥nel,
then h, h,, are g-integrable functions ¥iz €N, and

fim Ey(h) = E,(h)

Proef. Using Lemmas 3.3 and 3.4, we have
E,(tim it b, <1im i E,(h,) < lim sup ,(5.) < E(limsuph, ) .
a—® 4 n—->o ) fronrsy
As lim,... b, = B, it follows that lim irf, .. h, = lim sup,_... 1, = k. Thus

Ey(0)=Ey(lim b,) = tim E,i). O

Corollary. Let (x, B, g) be any fuzzy measure space, and let {A,} be a sequence
of elements of B which converges to A. Then

im g(4,)=8(4).

Proof. It suffices to appiy the above proposition to the characteristic functions I,
and . O

This result assures us that continuity of any fuzzy measure for every sequence
of imeasurable subsets caa indeed be inferred from its monotonicity and
continuity for monotone sequences.

4. Fxtension of fuzzy measures to fuzzy subsets

For fuzzy subsets of a universe X we can establish a gefinition of fuzzy measure
just as was done in Definitioa 2.1 for crisp subsets of X. The concepts of fuzzy
monotone class, fuzzy o-algebra and similar properties to (i), (ii) and (i) of this
definition can be defined by direct extension of the corresponding crisp concepis
to membership functions.
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Given a fuzzy measure g on the crisp measurable space (X, %), we attempt to
use the monotonc expeciation to extend g to a fuzzy measure g on the fuzzy
measurable space (X, 8.).

Proposition 4.1, Let (X, B, g) be a fuzzy measure space. The valuation g_.: B..—>
[0, 1] defined by

8(A)=Ey(ps) VYA_eB.
is a fuzzy measure which is an extension of g, where B__ is the fuzzy o-algebra of
fuzzy subsets A.. of X with g-integrable membership function p,.

Proef. Class A. is a fuzzy o-algebra because:
(a) If p, is g-integrable, 1 — p, is also g-integrable.
(b) fVneN, p,, are g-integrable functions, sup, i,, is g-integrable since it is
a ®-measurable bounded function.
We will irove g satisfies the conditions of a fuzzy measure:
(@) g~ =E(0x)=0; g-(¥)=E(1x) =1
(ii) A, B.e B and A. < B.., then p,(x) < pp(x) Vx € X, and therefore

8~(A-) = Eg(ua) =< Eg(us) = g-(B-).
(iii) If {A,-} is a monotone sequence of elements of %B_ which conve:ges to
A, then

im g, (x) = palx) VreX.
Applying Proposition 3.1 or 3.2, we have
lim g(A,~) = im Eg(na) = Ey(a) = 8-(A-).

Therefore g is a fuzzy measure. Finally, if A € 8, then
§-{A) = E(1.)=g(A),
and g.. is a extensica of g. i

In the same way as the crisp case, the fuzzy measure g moreover is continuous
for any sequence of fuzzy sets of B.:

Proposition 4.2. Let (X, B, g) be a fuzzy mersure space and (X, B..,g..) the

extended fuzzy measure space. If {4,.} is a sequence of elements of B_, which
convergss io A—, then

lim g(A,-) = g-(A-).

Proof. It suffices to apply Proposition 3.3 for membership functions. [0
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In order to extend fuzzy measures to fuzzy subsets, the normally used choice
until now is based on the use of Sugeno’s integral, assigning each fumzy subse: the

value:
VA.e®. s,(.f‘i~)=][m°s=assl(l‘g“{a/\g(Aa)}-

The monotone expectation offers another alternative to perform this extension.
As we have seen, it can be defined by

VA. €8 g.(A)=E (u0=[ 8(40)de:

Sugeno [9] proved that if we use a probability P as the msr2wee, the difference
in absolute valuc between P, (Sugeno’s extenslon) and P. (class:cai extension
(#adeh [12])) is smaller than or equal to 4. This bound can be generalized to any
fuzzy measure, where the role of mathematical expectation is played by
monotone expectation.

4.3, Let (X, R, g) ve c fuzzy measure spare, and g, and g.. extensions
of g by Sugeno’s integral and thc monotone expectaiion, respectively. There holds

VA.eR. [g-(A-)-g(A4-)l=g(A-)1-g.(A-)).

Proof. Let A_e R.. By letting G{a) =g(A,), ©=gLA-) and b=g_(A.), and
on the basis of results previously established by Sugeno ([9], Theorem 3.9), there
holds

G(c*)=c=G(c).

As G is a non-decreasing function, ¢ can be interpreted as the value of « at the
intersection of G{«) and bisectrix of the first quadrant, if G is continuous in ¢;
otherwise, ¢ is the only value verifying

G(a)=c Ve<c and G(a)sc Ya>c.
Consequently ¢ is the area of the rectangle [0, c] x [0, 1], whereas b is the nrea

below G{«), as illustrated in Figure 1.
Under these conditions, we have
1 1 re .
b—c=f G(rw)dar—c=f G(a)da - (c—J G(af)daf)
(1] 3 (]
1 1
sf G(w)dasf cda=c(l-c).
(3 c
Furthermorg,
b—c=[ G(e)de — (c-[G(a)da)a—c-l-fG(a)da
c (1]
= ~-c+rcda= —c+ct=—c{l—c).
0

Therefore |b—c¢|=c(l—-c). O
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Gla)

il

0 c
77 =3
Fig. 1.
The generalization of Sugeno’s bound can be obtained from the above
proposition:

Corolilary. There holds
VA.eB. |g-(A-)—g(A)l=<i

Proof. This logically follows, as the function x(1 — x) reaches its maximum value
atiforxe=1 O
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