
Fuzzy Sets and Systems 33 (1989) 201-212 201 
No~h-Hol|and 

CONVERGENCE PROPERTIES OF THE MONOTONE 
EXPECTATION AND ITS APPL|CA'E[ON TO T H E  
EXTENSION OF FUZZY MEASURES 

Manuel J. BOLAHOS CARMONA 
Facul~d de MedMna, Uniuers~d de Granada, 18071 G r ~ ,  Spmn 

Luis M. de CAMPOS |BAI~EZ, Antonio GONZALEZ MU]~OZ 
Depar~#nento de Ciencia~ de la Computaci6n • Ingeligenc~ A ~ c ~ ,  Colegio Uniuersita~o de 
JeAn, U n i ~ r ~ d  de Granada, 23071.laen, Spain 

Received.~u|y 1987 
Revised January 1988 

Abstract: We define a functional on fuzzy measures ( ~ e d  monotone expe~afion) based on 
Choquet's in~e~'al operator, and we s~udy its convergence p n ~ s .  The mono~ono 
expectation is used to extend fe~v rneesures to fuzzy subsets. AL~o Sugen~ bound for tlu: 
d~fference b~tween his intcgral and the ranthemnti¢~l expectation is gener~& 
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Since the publication of Zadeh's [12] pioneering work, several new contribu- 
tions have appeared on the problem of evaluating fuzzy sets, pmlicularly 
regarding the extension of defined measures from crisp subsets of the referential 
to fuzzy subsets. 

Whi|e Zadeh presented a natural genere~zation of the concept of probability to 
fuzzy events by integration of the membership function, it was Sugeno [9] who 
defined the first functional (a fuzzy integral) for the extension of fuzzy measures. 
Although probability was considered to reflect a pm~icular case of fuzzy me.~ure, 
Sugeno's definition differs from Zadeh's being based, as numerous authg~ have 
shown in previous analyses and characterizations (Batle and TriRas [1], ~alescu 
and Adams [7], Kandel [4]), on a max-rain or 'fixed point' approach. 

Various functionals have been proposed to deal with particular types of fuzzy 
measures (Kmse [5], Nguyen [6], Smuts [8], Weber [11]). Some of these au~ors 
have suggested the usefulness of Choquet's integral operator [3], defined 
originally for capacities, in the eatension of measures to fuzzy sets. In  the pref~nt 
study we describe the application of this approach to any fuzzy measure, by 
defining the monotone expectation as a functional applicable to non-negative 
functions, particularly to membership functions of fuzzy subsets. We furthermore 
characterize the key role of monotone expectation as the natural generalization of 
the Lebesgue integral to the fuzzy context. After analyzing the basic properties of 
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monotone e~pectatioa i~ Section 2, Section 3 presents proofs of the theorems of 
monotone and bounded convergence, equiv~ent to Levi's and Lebesgue's 
theorems respectively, in the context of classic integration. Finafly, Section 4 
deals with the problem, as mentioned above, of extending fuzzy measures to 
fuzzy subsets. The extension ~ven by monotone expectation is shown to pro~de 
fuzz, measures; furthermore, Sugeno's bound (proved by the author for the 
p ~ c u l a r  c~¢ of probabi~y) is found to be valid in the much more general fi~ld 
of fuzzy measures, in which it is shown to represent the difference between 
monotone e~ectation and the fuzzy integral. Our results seem to indicate that 
the formal similarities analyzed by Sugeno between his integral and Lebesgue's 
should be more appropriately established between Sugeno's integra~ and mono- 
tone expectation. 

2. D ~  and b a ~  p ~ p ~  

In order to define ~he functional monotone expectation we need a fuzzy 
measure defined on an app~op:~ate class of crisp subsets of a universe. We adopt 
Sugeno's definition of fuzzy measure [9], that is a bounded, monotone and 
continuous for monotone sequences set function. 

We coi.~sider the space (X, @), ~,~ere X is an arbitrary universe and ~ is a 
~-~gebra ov X (although for definition it suffices to consider a ~onotone class, 
su~ciently rich properties are only obtmnable ~ t h  o-algebras). 

Defa]t]on 2~.1. A fuzzy me~ure  g on (X, ~ )  is a valuation g:  ~ - ~  [0, ~:] safisf~ng 
(i) g(~) =0,  g(x)  = 1. 

(fi) I f  A, ~ ¢ @, and A ~_ B, t~!en #(A) ~< g(B). 
(fii) If {A~} is a monotone sequence of elements in ~ ,  tben 

Fuzzy measures are known to be generalizations of probability measures, 
where addifivity is replaced by the weaker conditio~l of monoto~dcity. 

For this reason, it seems suitable to have a functional t~at extends the classical 
idea of mathematical expectation on probab~ty measures to fuzzy me~ures. It is 
possible to estab~sh such a generaUzation in terms of the i n t e ~  defined by 
Cbo~uet [3] for capacities. We w~  call this integral monotone expectation 
because this name better reflects its basic properties. 

D ¢ ~  ~.~. Given a ~on-negative ~-measurable function h : X - o ~  and a 
fuzzy P.,easure g on (X, ~) ,  the monotone expectation (m.e.) of h with respect to 
g is the Lebesgu¢ integral 

~ ( h )  = g((~ e x ] h(x) ~> e ) )  d e  ffi g(H.)  d~  

where H~ are ~ ¢  h level sets, and g(H~) is c ~ e d  measure function of h. 



Convergence properties of monotone ¢~vpe¢~ 

Before studying the properties of m.e., it is necessary to ver~y the e ~ t e ~  of 
this functional. 

If the universe X is finite, m.e. always exists for each non-negative func~n  h, 
as Ate measure function of h is a simple function. In the general case, the 
existence of m.e. is no~ assured. 

Obviously, h mint be ~-measurable ( H ~ ¢ ~ V ~ 0 )  and g(H~) must be 
Lebesgue measurable. The last condition presents no problem, ~ i ~  g(H~) is a 
bounded and non-incr©asing function. However it is not s u ~ e ~  ~o ~ u r e  
integrabiRty (i.e., the existence of a finite integral). 

When h is an upper bounded function, it is ~ssible to assure the e~s t en~  of 
~;~(h): 

As k > 0  exists such that h ( x ) ~ k V x e X ,  then H ~ f ~ V ~ > k  and g(H~)= 
0 V~ > k. Therefore 

E,(h) = fo÷®g(H,) dot f J~ g(H~) dot, 

and this last integr~ always exists because g(H~) is a monotone non-increasing 
and bounded function. 

Hence the existence of m.e. is guar~teed for ~-me~urable m © m b e ~ p  
functions of f~zy subsets in X. 

As is usual in measure theory, we will say h is a g-integrable function when 

What follows are the most impo~ant properties of m.e.: 

P ~ ~ n  2.1 (h-monotonici~y). Let h~, h2:X-~R~ be two g-integrable tune. 
~ons with respect to the fuzzy measure space (X, @, g). I f  

h~(x) ~ h,(x) vx  ~ x ,  

then 

Proof. Since h~(x) <~ h~(x) Vx ¢ X, i~ is clear that Ha~ ~_ H~  V~ ~ O, and then 

Monotoni~ity of the Lebesgue integral s ~ c e s  to prove t~,e result. [] 

P ~ e ~  2.2 (g-monotonic~ty). Let g~,g2 be fuzzy measures d e ~ d  on 
(X, ~), and let h :X--~R~ a gcintegrable func~on, i= 1, 2. I f  

fhen 

~. As ga(H~) <- g2(H~) V~ ~ O, again monotonic~ty of the Lebesgue integral 
is sufficient to prove our claim. [] 



2 ~ .  For every constant func~an (h(x) = c ;~ 0 Vx E X) ,  

E ~ ( h ) - c  

for  e a ~  fuzzy  measure g on (X, ~) .  

~ .  If e <~ c then g(H~) - g(X)  = 1. f f  ~ > c then g(Ha) = g(O) = O. Therefore 

r g(H.)  dat = .  d e  = c. n 
~o 

Proposition 2.4. For every g-integrable funcffon h:X-->R~ with respect to 
(X, ~ ,  g), a + bh is a g-integrable funcaon for  each a, b ¢ R~, and 

~ ( a  + ~h)--a  + b~(h) .  

~ o  

f0 "!'~ Es(a + bh) = 8({x [ a ÷ bh<x) ~> ~}) ~e  

ffi 8 ( { x l a + b h ( x ) ~ e } ) a e +  g !h(x)~> de.  

The, first addend is equal to 

£~ d~--= a. 

If we change the variable; in the second addend to y = (or - a)/b then 

Therefore Es(a + bh) = a + bEs(h ). D 

~ ~  2.5. I f  h is the characterislic function ~f a crisp se~ A ¢ ~ ,  then 

~ ( h )  =g(A),  

for  every fuzzy  measure g on (X, @). 

to" E,(h)- g ( H . )  a ~  = ~(A) a~ = g(A). O 

~ n  2.6. The monotone expectation is an extension to fuzzy  measures o f  
mathematical ezpectation for  probabilities 

~roof. Let P be a probability m~easure on (X, ~ )  and let h : X - ~ R ~  be a 
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P-integrable function. Then 

h d e  = PC{x I h(x)  ~ of}) dof = e C x . )  da = ~ C h ) .  D 

The above propositions show how m.e. maintaius some of the most i~portant 
properties of mathematical expectation. However, m.e. in gener~ is not a linear 
fum~ional, as it is only additive when the fuzzy measure considered is a 
probability: 

Z.7. Es(hl + h~) = E,(h,) + EB(hz) for all g . i~ rab l e  functionz 
hi, h z :X '~  R~ if  and only if  the fuzzy me~ure g is a probability m~sure. 

~ .  The sufficient condition is obvious from Proposition 2.6. To prove the 
necessary condition, we consider the characteristic functions IA and la of crisp sets 
A, B ¢ ~ ,  such that A f~ B -- ~. 

Using the present hypothesis and Proposition 2.5, there holds 

g(A o B)  = er, ff,~,.,6) = e~(zA + zs) = ~,,(i,O + E,(z~,) = e (~ )  + ~(e) .  

which is a necessary and sufficient condition for g to be a probability. [] 

Proofs of above propositions in the finite case can be found in Bolafios 
e tal .  [2]. 

As we have seen, the properties of m.e. make it more similar to mathematical 
expectation than other functionals, such as the well-known Sugeno integral. Th~ 
latter does not possess acceptable properties of lineafity, so, when these 
properties are of interest, it seems better to use m.e. than Sugeno's integral 

Sugeno's integral and monotone expectation valuate functions starting from 
f~zy  measures in different way. The first corr~spon~ to a max-rain approach, 
whereas the second extends classical ide~s of integration to a non-additive 
context. 

3. C~vesgeN~e p m p e ~  of ~ e  m u o t o ~  expeda~on 

Convergence properties are basic to the study of f 'u~,  measures and integrals. 
In this section we describe some impo~:tant results of this kind for m.e. F~st, the 
validity of Levi's monotone convergence theorems is proved. These theorems 
allow us t~ use m.e. to extend fuzzy measures to fuazy subsets of X. On the other 
hand, we obtain results similar to Lebesgue's dominated convergence theorem, 
which fixes conditions for convergence in the absence of monotoai~.~ty. 

Previously we shall prove a lemma that allows us to use both strong and weak 
of-cuts in the d~finition of m.e.: 

Lemma 3.1. Let h :X--~ R~ be a g-integrable function with respect to the fuzzy 
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m e ~ e  space (X, B, g). There holds 

Es(h ) = ~'®g(H~) dot= ~'®g(H~) dot, 

where H .  -- {x E X ] h(x) ~, of}, and H~ = {x E X [ h(x) > of}. 

J[hroef. If we denote f(of) = g(H~) an~ f '(of) = g(H~), then 

~"f'(of) dof ~ J:'f(of) dof. 
Moreover, f(of + e) -~<f'(of) Ve > 0, Vof > 0, and hence 

 ÷'1(of ÷ dof-< dof r e > 0  

If we substitute the variable y for of + ¢ in the first integral, then 

~'®f(y)dy~ f:®f'(of)dof Ve>O. 

Therefore 

fo'®f(y)dy<-~, l.:®f'(of)dof, 
a~d we obtain the equality between the two integrals. I:] 

3.1. Let h n : X - ~ R ~  be a monotone non-decreeing sequence o f  
functions which converges to h:X--~R~. Lf hn are g-imcgrable func~ons with 
respect to (X, ~ ,  g) and, either h is g-integrab~e wo or ihn~.~ Es(hn ) < ~ exists, 
then h is g-integrable and 

u~ ~,<h,)= E,(h). 

~ f .  We denote (H~),~ = {x ~ X ] h.(x) > of} and H ;  = {x ¢ X ] h ( x )  > ~¢). It is 
clear that {(H~)~} is ~ non-decreasing sequence which convci'ges to [.J~=l (H~)~. 
We prove that this IL~it is equal to H~: 

Let x t= [ . ~ 1  (H~)n; then no e×ists st~ch that x E (~t'~)no, hence h~,~(x) > of. As 
{h~} is a non-decreaslng sequence, 

h~(x) = h(x) >~ h, lx) .  

and then x ~ H ; .  If there e~sts x ¢ H ;  such that x ¢ [.J~=~ (H:)~,  then 
x f (H~)n Vn ¢ N, iraplying hn(x) ~< of Vn ¢ N an~l hence lira,,_.® h~(x) = h(x) <~ of, 
so that x ¢ H;, in contradiction to our hypothesis. Therefore 



From the continuity ~f fuzzy measures, it follows that 

Hm 8((HTJn)--  8(H~,) w e  > 0, 

and thus convergence of the measure functions sequence is proved. 
Applying the monotone convergence t h ~ r r  , [or !.~.~be~e's i~tegral and the 

above lemma, there holds 

~ " * ~  - ~ ' ~  JO  

Analogous results are obtained for non-increasing sequences: 

l ~ e [ ~ i f ~  3.2. Let h~:X--~R~ be a monotone non.incre~ing sequence o f  
functions which o muerges to h :X-~  R~. I f  h,, are g-integrable func~ons with 
respect to (X, ~ ,  g), then h is g-integrable too, and 

lira E,(h,.) = F,,(h ). 

~ f .  We denote (H~)~ -- {x E X ] h.(x) ~> ~} and H~ = Ca E X i h(x) ~ e} .  
Obviously {(H~)~} is a non-decreasing sequence which converges to (~ffil (H~)n. 
We prove this limit ~incides with H~: 

Vx E [ " ~  (H~)~, x G (H~)n Vn ~ N, and h,,(x) >~ ~ Vn e N. Therefore 
l ira._.,  h.(x) = h(x)  ~> e and x E H~. 

If x ~ ~ ' ~  (H~)~, then ~no ~ N such that x ~ (Hffi)~ o. Then 3no such that 
hno(X ) < ~ which implies h(x) <~ h~o(x ) < ~ and thus .~ ~ h~. 

Therefore 

~'1 ( H ~ ) ~ f H ~  v e > o .  

Again, by virtue of the conve, rgence properties of Lebesgue's integral and the 
continuity of fuzzy measures, it can be conc|uded that 

f: to' lira E~(h.) ffi |ira g((H.).) de = g(H.) de ffi ~,(h). [] 

Several previous lemmas are required ~.o extend the convergence theorem of 
Lebesgue: 

L e ~  3.2. Let h, k:X---~R~ bc ~ o  func~o~, satisfying: 
(a) h(x)<--k(x) Vx e X .  
(b) h is a ~-me~urable function. 
(c) k is g-integrable with respect to (X, ~ ,  g). 
Then h is also g-integrable with respect to (X, ~ ,  g). 
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~ ' .  If we ~¢note the ~ - ~ s  of h and k as H~ and K~ respectively, t~en g(H~) 
is a L~b~gue n~eas~rable function because h is ~-raeasurable, and g(g~) ~s 
Lehcs~e  integr~b|e s~nc¢ k ~s a g-integrab~e function. 

As 0 ~g(H~)~ ::~(g~)V~ > O, g(H~) is a|so Lebesgue integ~abl~ and ~ence ~ is 
g-integrab|e. 

~.~. Let h n : X - - * ~  be a sequence of g-integrable functions with re.~pect 
to (X, ~,  g) such that h~(x)~ k(x) Vx ~ X, Vn ¢ N, where k is g-integrabl~ too. 
The~ 

lhn sup hn ~> l~m sup ~ ( h . ) .  

~ We define functions Pn by 

{p~} is a non4ncreasing sequence of functions which converges to lhn sup~..® h~. 
Since p~(x) ~ k(x) Vx e X, Vn e N, the functions p~ arc g4ntegrable by Lemnha 
3.2. App|ying Proposition 3.2 to the sequence {p~}, we obtain 

As hn(x) ~p~(x) Vx ¢ X, Vn ¢ N, then Eg(h~) ~< Eg(p,,) Vn ¢ N, and therefore 

~,n sup 

3.4~ Let hn:X-~R~ be a sequence of g-integrable functions with respect 
to (X, ~,  g). There iu~ld:~ 

Proof. We define functions qn by 

q,(x) = mf h~(x) Vx ¢ X. 

{qn} is a non-de,~easiag sequence of functions which converges to lhn infn.,® h~. 
As q~(x)~h~(x)Vxcg,  V n c N ,  again by Lemma 3.2, q~ are g-integrable 
functions, and Eg(q~) <~ Eg(l%) Vn ~ N. Therefore 
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and, by Proposition 3.1, 

How we can prove the following result: 

3.3. Let h , :X-~R~ be a sequence of ~°meozurabge functions which 
conuerges to h : X - - ~ .  If there exists a function k, g-hffegrable with respect to 
(X, ~, g), such that 

hn(x)~k(x) VXGX, VnE~, 

Shen h, hn are g-integrable func~ns V~ ¢ N, and 

um E, (h . )  = F.,(h). 
n ~  

Proof, Using Lemmas 3.3 and 3.4, we have 

As fim~..,® h~ = h, it follow that Ihn ~fn-,® h,, : lira sup~..~ hn : h. Thus 

Ee(h )= Ee( ~,~_,m®h,)~- lim [] 

C ~ .  Let (x, f$, g) be any fuzzy measure space, end let {A,} be a sequence 
of elements of f$ which conue~ges to A. Then 

um g(~,,): g(A}. 

Proof. It suffices to apply the above propo~ition to the characteristic functions/.4, 
and/~.  [] 

This result as ides  us that conth~nity of any fuzzy measure for every sequence 
of ~ne~ureble subsets c~a indeed be inferred from its monotonic~ty and 
continuity for monotone sequences. 

4. E~en~en of fury m ~  to f ~  ~ t e e ~  

For fuzzy subsets of a universe X we can establish a ~ef~fion of fuz~  measure 
just as was done in Definition 2.1 for cr=p subsets of X. The concepts of fuzzy 
monotone class, fuzzy o-algebra and similar properties to (i), (ii) and (iii) of th~s 
definition can be defi~ed by ~fireet extension ef  the corresponding crisp concepts 
to membership functions, 
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Given a fuzzy measure g on the crisp measurable space (X, ~) ,  we attempt to 
use the monotone expectatio~ to extend g to a fuzzy measure g_ on the 
measurable space (X, ~_).  

~.~. Let (X, ~,  g) be a fuzzy measure space. The valua~on g_: ~_-~ 

is a fuzzy measure which is an extension of g, where B_ is the fuzzy o-algebra of 
fuzzy subsets A_ of  X with g-integrable membership func~on l~.  

Proof. Class ~ _  is a fuzzy o-algebra because: 
(a) If ~A is g-integrable, 1 - ~A is also g-integrable. 
(b) If Vn e N, ~ .  are g-~ntegrable functions, sup~ ~ .  is g-~ntegrable s~n~ it ~s 

a ~-me~surable bounded function. 
We will [~rove g_ ~fisfies the conditions of a fuzzy measure: 

(ii) If A_,  B_ ¢ ~ _  and A~ ~ B.., then/~A(x) ~</~z(x) Vx ¢ X, and therefore 

(~)  If {A~_} is a monotone sequence of elements of ~ _  which co , re :gas  to 
A_,  then 

n - . ~ ¢ o  

Appb~,ng Proposition 3.1 or 3.2: we have 

Therefore g is a fuzzy measure. Finally, if A E ~ ,  then 

and g.. is a extensio~ of  g. G 

In the same way as the crisp case, the fuzzy measure g_ moreover is cont~uous 
for any sequence of fuzzy ~ t s  of ~_:  

&2. Let (X, ~ ,  g) be a fuzzy me:~,.ure space and (X, ~_,  g_) the 
extended fuzzy measure space. I f  {A,_) ~ a sequence of elements of  ~_, which 
convergeA' to A_, then 

I ~  g_(A._) = g_(A_). 

~ e e f .  It suffices to apply l~:oposRion 3.3 for membersb~? functions. L-1 
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]n order to extend fuzzy measures to fuzzy subsets, the nonnaUy used c ~ ¢ c  
until now is based on the n ~  of Sugeno's integral, assigning each f e~y  s~e~ .  ~ e  
value: 

P 

g,(.~_)=~og= sup {eAg(A,)). 
J ~s|o. H 

The monotone e.~p~ctation offers another alternative to perform this extension. 
As we have seen, it can be defined by 

VA.  d~. 

Sugeno [9] proved tha~ if we use a probability P as t~e me~W~, the di~erence 
• . . . .  ¢ ,  . 

in absolute va~u~ b~tween P~ (Sugeno's e x t e ~ o n )  and P_ (c~ass~cat e a t e n ~ n  
(Zadeh [12])) is smaller than or equal to ~. This bound can be generalized to any 
~zzy measure, where the role of mathe~tica| expectation is played by 
monotone expectation. 

~ ~  4.3. Let (X, 8, ~) 0¢ ~ fuzz), measure space, and g, and g~ extensions 
of g by 3ugeno's integral and ~c monotone expecta~on, respecgve[y. There holds 

vii_ E 8_ ~_(A_) - g,(,4_)l ~ g~(A-)O -g~(A-)). 

P ~ .  Let A_ E 8_. By letUng ~ (e )  =g(A , ) ,  ,: =g,(A_) arid b = g_(A_), and 
on the basis of results previously established by Sugeno ([9], ' l~eorem 3.9), there 
bokts 

o(c+)~c<~G(c). 

As G is a non-decreasing function, c ca~t be interpreted as the value of e at the 
interaction of G(e)  and bisectrix of the first quadrant, if G is cont~auous in c; 
otherwise, c is the only value verifying 

O(e)~,c V e < c  and G(e)~c Ve>c .  

Consequently c is t~e area of the rectangle [0, c |  x [0, 1], whereas b is the ~ e a  
below G(w), as illustrated in F i ~ e  1. 

Under these conditions, we have 

b - c =  G(e) d e - c =  G(e) d e -  c -  G(e) de 
¢ 

I' I' --~< G(e) d~ ~< c de = c(1 - c). 
c ¢ 

Furthermore, 

b - c - -  ~" G(~)d~-  ( c -  fCo G(~)de) >~-c + ~ G(e)de 

--c + ~o c d e  = - c  + c 2 = -c (1  - c). 

Therefore Ib - c4 ~ c(1 - c). [] 
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0 © 

Ng. 1. 

The g~neralizafion of Sugeno's bound ca~,~ be obtained from the above 
proposition: 

C ~ .  There holds 

P ~ ) f .  This |og~r~y follows, as the function x(1 - x )  reaches its maximum value 
at 14 for x~ = ½. [] 
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