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Abstract Within probabilistic classification problems, learning the Markov bound-
ary of the class variable consists in the optimal approach for feature subset selection. In
this paper we propose two algorithms that learn the Markov boundary of a selected var-
iable. These algorithms are based on the score+search paradigm for learning Bayesian
networks. Both algorithms use standard scoring functions but they perform the search
in constrained spaces of class-focused directed acyclic graphs, going through the space
by means of operators adapted for the problem. The algorithms have been validated
experimentally by using a wide spectrum of databases, and their results show a per-
formance competitive with the state-of-the-art.

Keywords Feature subset selection ·Markov boundary · Bayesian networks ·
Local learning · Score+search

1 Introduction

Automatic classification is a fundamental task in data mining and machine learning,
that requires learning a classifier from a given training data. Basically, this task can be
regarded as a problem of setting a function, the classifier, that maps an assignment of
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values for variables in the domain (the features) to a class label. Examples of domains
where automatic classification has been applied include medicine (Inza et al. 2001),
industry (Mamitsuka 2003), business (Li et al. 2010) and financial sector (Song et al.
2010).

In the last decades, progressively, it has been facing more complex classification
domain problems, that arise from fields as molecular biology (Guyon et al. 2002),
astronomy (Zheng and Zhang 2008) or text categorization (Yang and Pedersen 1997),
among others. The current explored domains may contain hundreds, thousands or
even tens of thousands of variables or features, sometimes with the restriction that the
number of available samples may be severely limited. That is, domains with a high
number of features and relatively few samples for training. With such data, processes
that carry out some kind of dimensionality reduction become critical for the classifi-
cation task. That is basically what is known as the feature subset selection (FSS) task.
Besides the evident benefits to render problems approachable, the FSS task facilitates
the interpretation of a classification model, provides reduction in the cost of acquisi-
tion or storage requirements, and may bring improvements in classification accuracy.
Of course these benefits are also applicable to cases where the number of samples is
high. The issue of the paper is focused on selecting subsets of features that are useful
to build a good predictor. This contrasts with the problem of ranking independently
all the potentially relevant variables.

We can find a variety of algorithms that perform FSS in the classification literature
(Blum and Langley 1997; John and Kohavi 1994; Kohavi and John 1997; Langley
and Sage 1994), where they are basically grouped into filter and wrapper approaches,
although some authors (Guyon and Elisseeff 2003) distinguish a third group, the
embedded methods. Wrappers use the learning machine of interest as a black box to
score subsets of variables according to their predictive power. Filters select subsets of
variables as a preprocessing step, independently of the chosen predictor. Embedded
methods perform variable selection within the training process and are usually spe-
cific to given learning machines. We are interested in the embedded methods following
(Guyon and Elisseeff 2003) or in the more general filter approach, following (Kohavi
and John 1997). The goal of our algorithms will be to find a minimal set of features
that renders the target (class) variable conditionally independent from the rest of the
features in the domain. We want to directly find a good subset of features, not a ranking
of good individual features. In the literature about Bayesian networks, such a set is
known as a Markov boundary (MB) for the target variable (Pearl 1988).

For probabilistic models, the problem of learning the Markov boundary for a distin-
guished variable C (the class) is the optimal approach to the FSS problem (eliminating
irrelevant as well as redundant features). A naive approach to obtain the Markov bound-
ary of C could be to learn a complete Bayesian network from data for the domain and
then to extract the MB for the class variable from the topology of the graph (the MB of
any variable is composed by the set of its parents, children and parents of the children
in the graph). But this approach is not operational for high dimensional databases:
learning a global Bayesian network would be a waste of computing effort on discov-
ering superfluous connectivity between irrelevant features. A better option could be
to learn a local Bayesian network focused on the target variable and then to compose
the MB for it.
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There are two broad classes of Bayesian network structure learning algorithms:
methods based on conditional independence tests (also called constraint-based) and
score+search-based methods. The constraint-based techniques (Spirtes et al. 1993;
de Campos and Huete 2000) try to infer the structure of the generating Bayesian net-
work through statistical tests of conditional independence on the training data. On the
other hand, the score+search methods seek a structure that best fits the given training
data according to a selected metric or scoring function (Buntine 1991; Cooper and
Herskovits 1992; Heckerman et al. 1995).

In the current state-of-the-art, we can find a large number of constraint-based algo-
rithms for discovering Markov boundaries (Aliferis et al. 2003; Fu and Desmarais
2007, 2008a,b; Margaritis and Thrun 2000; Pellet and Elisseeff 2008; Peña et al. 2005,
2007; Ramsey 2006; Rodrigues de Morais and Aussem 2008a,b; Tsamardinos et al.
2003a,b; Yaramakala and Margaritis 2005; Yishi et al. 2009), as well as some algo-
rithms for feature selection roughly based on the score+search approach (Koller and
Sahami 1996; Sierra and Larrañaga 1998; Singh and Provan 1996). We propose two
new filter algorithms, called DMB and RPDMB, that use standard scoring functions
but search in special spaces of graphs. They also use some strategies for modify-
ing/pruning the search inspired by the constraint-based methods. The goal for both
algorithms is to get an accurate MB in order to improve classification rates for any
potential classifier built on these data, although the network obtained can also be used
directly as a classifier. In this sense they can also be considered as embedded methods.
We demonstrate empirically that our algorithms outperform several state-of-the-art
algorithms according to different measures (precision, recall and F), measured over
a wide spectrum of different domains and a variety of database sizes.

The remainder of this paper is organized as follows: in Sect. 2 we review some
preliminaries and describe some Bayesian network formalisms that allow us to con-
nect the notion of Markov boundary to Bayesian networks. In Sect. 3 we review past
works related to Markov boundary discovery. Section 4 presents, in an incremental
way, the steps followed in order to develop the proposed algorithms for discovering
Markov boundaries, including the specific searching spaces and the way to travel
through. In Sect. 5 we give empirical results comparing these algorithms with earlier
works. We end with the conclusions and some thoughts on possible future research
directions.

2 Preliminaries

The next definitions are central to the development of the paper and consist in con-
cepts widely known in the Bayesian network community, which can be extended in
(Koller and Friedman 2009; Neapolitan 2003; Pearl 1988; Spirtes et al. 1993). Let U
denote a set of unidimensional discrete random variables {X1, X2, . . . , Xn}. We shall
use capital letters for variable names, and lower-case letters to denote specific values
taken by those variables. Sets of variables are denoted by boldface capital letters and
assignments of values to the variables in these sets are denoted by boldface lower-case
letters.
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2.1 Conditional independence

Given a probability distribution p, two sets of variables X and Y are conditionally
independent given a set of variables Z, when

p(x|y, z) = P(x|z), ∀x, y, z such that p(y, z) > 0,

and it is denoted as X ⊥p Y|Z.

2.2 Bayesian network

A Bayesian network (BN) for U is an annotated directed acyclic graph (DAG) that
represents a joint probability distribution over U. Formally, it is a pair (G, θ), where
G = (U, EG) is a DAG (whose nodes correspond to the variables in U and the set of
arcs, EG , represents direct dependence relationships between these variables) and θ is
the set of parameters that specify the probability distributions: for each variable Xi we
have a family of conditional distributions p(Xi |paG(Xi )), one for each instantiation,
paG(Xi ), from the parent set of Xi in the graph, PaG(Xi ) = {X j ∈ U|X j→ Xi ∈
EG}. One of the benefits most relevant of a BN model is that it represents the joint
distribution p(U) in a abbreviated manner, through the factorization

p(x1, . . . , xn) =
∏

Xi∈U

p(xi |pa(Xi )) ,

saving additional parameters and computations in many reasoning tasks. When the
arcs in a BN are interpreted as direct causal relations, then these so-called causal net-
works can be used also to predict the effects of interventions or manipulations, which
generate structural changes in the joint distribution.

2.3 Markov boundary

A Markov blanket of a variable Xi ∈ U, MB(Xi ), is any subset of U\{Xi } such that
Xi ⊥p U\{Xi }\M B(Xi )|M B(Xi ), that is, any subset of variables such that Xi is
conditionally independent of all the remaining variables given MB(Xi ). A minimal
Markov blanket (none of its proper subsets satisfies the condition) of Xi is called a
Markov boundary (MB) of Xi . The MB has the property of acting as a shield protecting
the target variable from the effect of the rest of the variables in the domain. The class
variable C in a classification problem would be described in the best possible way by
means of the features in MB(C). Therefore, learning the Markov boundary for the class
variable consists in the optimal approach to feature selection. In fact, feature selection
and causal structure learning are related through this concept, which coincides with
the set of strongly relevant features, as defined in Kohavi and John (1997). As stated
in Pellet and Elisseeff (2008), feature selection and causal network construction can
both be stated to some extent as MB identification tasks. Several algorithms for feature
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selection are based on finding the MB by using methods inspired from (constraint-
based) causal structure learning, as we have already commented. But there are also
algorithms that do the converse, i.e. they use a feature selection algorithm to build the
structure of a causal network (Margaritis and Thrun 2000; Pellet and Elisseeff 2008).

2.4 Faithfulness

Any probability distribution p that can be represented by a BN with structure G
satisfies certain independencies between variables, which may be deduced from the
Markov condition,1 and which can be identified from G via the d-separation crite-
rion (or graphical conditional independence), denoted by X ⊥G Y|Z (Pearl 1988):
X ⊥G Y|Z ⇒ X ⊥p Y|Z. A probability distribution p is said to be faithful with
respect to G iff the d-separations in G identify all and only the conditional indepen-
dencies in p, that is, X ⊥G Y|Z⇔ X ⊥p Y|Z. If p is faithful to a DAG G, then the
Markov boundary of any node Xi is unique. Moreover, this set is composed of the
parents, the children and the parents of the children (also known as spouses) of Xi .

2.5 The metrics

The problem of learning a Bayesian network in the score+search paradigm can be
formally expressed as follows: given a training data set D of instances of U, find a
DAG G∗ such that

G∗ = arg max
G∈G

f (G : D)

where f (G : D) is the scoring function, or metric, measuring the degree of fitness of
any candidate DAG G to the data D, and G is the family of all the DAGs defined on U.

A desirable property for a scoring function is the decomposability, that enables to
compute the global score of a DAG by aggregating local assessments. Formally, a scor-
ing function f is decomposable if the value assigned to a structure can be expressed
as a combination (sum in the logarithmic space) of local values for each node and its
parents in the DAG G:

f (G : D) =
∑

Xi∈U

f (Xi ; PaG(Xi ) : DXi ,PaG (Xi ))

where DXi ,PaG (Xi ) are the statistics of the variables Xi and PaG(Xi ) in D. In this
way, only the statistics corresponding to the variables whose parent sets have been
modified by the search process need to be recomputed.

Several scoring functions have been defined in the specialized literature, based
on different principles, and giving rise to many algorithms for learning Bayesian
networks, such as K2 (Cooper and Herskovits 1992), BDeu (Buntine 1991), BDe

1 The Markov condition states that any node in a Bayesian network is conditionally independent of its
nondescendants, given its parents.

123



S. Acid et al.

(Heckerman et al. 1995), BIC/MDL (Lam and Bacchus 1994; Schwarz 1978), AIC
(Akaike 1974) and MIT (de Campos 2006).

When we are trying to learn a BN model with classification purposes, it has been
argued that these metrics measure the fitness between the joint distribution associated
to the network and the data, but they do not measure the fitness between the conditional
distribution of the class given the attributes and the data. As a good joint model may
not be a good model for classification (Heckerman and Meek 1997b), then the use
of these metrics could result in poor classifiers (Friedman et al. 1997). An option is
to use the classifier obtained from the current network being explored to estimate its
degree of accuracy, and use this value as a metric. This method is computationally
expensive unless the selected model is very simple (due to overfitting problems that
require using estimation schemes, such as cross-validation, that evaluate the accuracy
on various data subsets). Moreover it leads us to the wrapper approach in which we
are not interested here. Another option would be to develop a specialized metric that
could account how well a network describes the probability distribution of the class
variable given the attributes, such as conditional likelihood. Unfortunately, attempts in
this direction have resulted computationally intractable (Friedman et al. 1997), except
in some simplified network models (Roos et al. 2005).

We argue that some of the standard metrics for learning general Bayesian networks
can also be useful in order to learn Markov boundaries, if they are used in conjunction
with appropriate constrained search spaces.

So, we discuss briefly the metrics that we shall use in our experiments, namely,
BIC/MDL, BDeu and MIT, all of them being decomposable and issued from different
approaches. BIC/MDL and MIT are based on information theory, while BDeu is a
Bayesian metric. Each one presents different tendency or bias to select simpler o more
complex structures:

– The BIC/MDL metric (Lam and Bacchus 1994) measures how well a structure
encodes compactly a training set. The best model is the one that minimizes the
sum of the description lengths of the model and the data given the model. Simple
models require shorter description lengths whereas the description length of the
data given the model increases. Complex models have the contrary effect. The
minimum description length (MDL) principle establishes an appropriate trade-off
between complexity and precision.

– The BDeu metric, originally proposed in Buntine (1991), is a particular case of
the Bayesian Dirichlet metric (Heckerman et al. 1995), where the prior network
assigns a uniform probability to each configuration of a node and its parents in the
network. The metric has the input parameter, η, representing the equivalent sample
size.

– Finally, we shall use the MIT metric (de Campos 2006) by its affinity with the
statistical tests of independence, as it quantifies independences based on a χ2 dis-
tribution. The function uses the mutual information in order to measure the degree
of interaction between each variable and its parents in the network, but including
a penalizing term. This term takes into account the network complexity as well as
its reliability based on the data. The MIT metric needs an input parameter, α, that
represents the confidence level associated with the underlying statistical test.
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3 Previous work

We have established that we want to perform FSS for potential classification improve-
ment and that this problem leads to the problem of learning MBs for the target variable
from data. So, we shall review what has been done in the literature in this sense.

Koller and Sahami (1996) first established the relevance of the MB concept to the
learning of a classifier. They proposed a greedy algorithm for backward feature selec-
tion by using a measure of cross-entropy, which eliminates one by one features starting
with the full feature set. Singh and Provan (1996) proposed another method for forward
feature selection. They begin with an empty set of features and add features one by
one, using several information-theoretic measures (e.g. conditional information gain).
Sierra and Larrañaga (1998) proposed a wrapper approach for feature selection within
a score+search-based algorithm for learning Bayesian networks: the search is carried
out by means of genetic algorithms, in a space of DAGs where all the attributes must
belong to the MB of the class variable, and each candidate network is evaluated using
its accuracy as the classifier. The idea of learning the MB to build a classification
model is also the basis of the work of Heckerman and Meek (1997a).

However, the dominant approach in the literature is to use constraint-based meth-
ods for discovering Markov boundaries, where we can find many algorithms (Aliferis
et al. 2003; Fu and Desmarais 2007, 2008a,b; Margaritis and Thrun 2000; Pellet
and Elisseeff 2008; Peña et al. 2005, 2007; Ramsey 2006; Rodrigues de Morais and
Aussem 2008a,b; Tsamardinos et al. 2003a,b; Yaramakala and Margaritis 2005; Yishi
et al. 2009). Among them we emphasize the top referenced IAMB (Tsamardinos et al.
2003a), KIAMB and PCMB (Peña et al. 2007), that have demonstrated to be accurate
on high dimensional databases. These algorithms have three main characteristics in
common.

First, running χ2 independence tests with the G2 statistic in order to decide whether
the conditional independence of C and X given Z is supported by the data D, accord-
ing to what they decide to rule out feature X from MB(C). Second, in order to select
the features for the set MB(C), they use the negative p-value of the tests to measure
the strength of the dependence between C and X, dep(C, X |Z), with respect to D.
Third, they all use a two-phase approach that includes a growing and a shrinking phase.
Starting from an empty set, they grow the set of features MB(C) with the attributes
that have shown to be very dependent with the target variable C and have been found
inseparable from C by the independence tests. This phase may include some false
positives. The growing phase is complemented by a shrinking phase that identifies the
false positives and removes them from MB(C). Let us introduce briefly each one of the
selected algorithms, which will be used in a comparative study within the experimental
part of the paper.

On one hand, the algorithm IAMB uses a heuristics in the growing phase that con-
sists in selecting those attributes that are more dependent from the target attribute
C , given the current MB(C) set, for including them into the Markov boundary. The
shrinking phase is carried out when the growing phase has finished, and removes from
MB(C) those attributes which are independent from C given the rest of MB(C). On
the other hand, the algorithm PCMB breaks the problem of finding MB(C) into two
subproblems: first identifying the inseparable set of features, PC(C), composed by
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the parents and the children of C and, second, identifying the rest of the components
of MB(C), i.e. the parents of the children of C . The algorithm PCMB is more data
efficient than IAMB because it takes into account the graph topology, and then it per-
forms tests conditioned on smaller sets. Finally, the algorithm KIAMB is a stochastic
variant of IAMB with the aim of being more data efficient and less prone to errors. It
includes an input parameter k ∈ [0, 1] which specifies a trade-off between greediness
and randomness in the search (k = 1 means maximum greediness, whereas k = 0
represents maximum randomness) in such a way that the node added to the current
MB(C) is not always the most dependent node. The authors recommended k = 0.8
from their experiments.

Under the assumptions that the independence tests are correct and that the database
is an independent and identically distributed sample from a probability distribution
faithful to a DAG, all these algorithms recover the correct Markov boundary of the
variable C . In practice, the algorithms perform a test only in case it is reliable and skip
it otherwise. A test is considered reliable when the number of instances in D is at least
five times the number of degrees of freedom in the test (Spirtes et al. 1993), which
is exponential in the size of the conditioning set. The statistical power of the tests
depends on the amount of data: when the sample size is small (but large enough to run
the test, i.e. more than five samples per parameter), the test may fail and then a wrong
relationship of independence between pairs of dependent variables is assumed. When
the test cannot be carried out, the algorithms are assuming a dependence relationship
that may also be wrong. The assumption of faithfulness may also be problematic, as it
is not clear at all that it can be generally applied. In particular, it forbids the existence
of hidden common causes, which does not seem reasonable in many domains (as we
are then assuming that all the relevant variables have been taken into account).

4 Search spaces for local learning of Markov boundaries

Once a Bayesian network has been learned from data by any (unrestricted) learning
algorithm, either the local subnetwork induced by the MB for the class variable C can
be used directly for classification purposes, or MB(C) can be extracted trivially from
the network structure in order to build a classifier by another method. As learning
a complete BN may be unnecessarily expensive in complex domains, a reasonable
alternative consists in learning only the local structure surrounding the target variable
C , thus reducing the computing effort.

We are interested here on the score+search paradigm for learning BNs, and more
specifically on the search component (for the score component we will use standard
metrics, as those commented in Sect. 2). We argue that by defining appropriately the
restricted search space, a local structure learning algorithm can be a viable solution to
the problem of learning Markov boundaries.

4.1 The space of C-DAGs

In order to design the restricted search space for looking for MBs, an important fact
that has to be taken into consideration is that many different DAGs will generate the
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same posterior probabilities for the class variable, and therefore they are indistinguish-
able from a classification point of view. In Acid et al. (2005) the minimum subgraph
of any DAG G that performs exactly as G as a classifier for the variable C was iden-
tified. Therefore, to avoid exploring redundant configurations, the search space could
be restricted to this kind of DAGs, which are called class-focused DAGs, or C-DAGs
(Acid et al. 2005). Formally,

Definition 1 A DAG G = (V, EG), where V = U ∪ {C}, is a class-focused DAG
with respect to the distinguished variable C iff it satisfies the following condition:

∀Xi , X j ∈V, if Xi→ X j ∈EG then either X j =C or Xi =C or C→ X j ∈EG . (1)

Therefore, C-DAGs contain only arcs linking C with other variables (in either direc-
tion) and arcs between variables different from C only in the case that C is the other
parent of some of them. A C-DAG may be considered as a canonical representation
of a class of DAGs (Acid et al. 2005), all of which share the same Markov boundary
for C and are equivalent for classification (in fact they not only have the same MB for
C but also the same arcs connecting the variables within MB(C) ∪ {C}).

So, instead of searching in the whole space of DAGs, we restrict the search to the
space of C-DAGs. In spite of the space reduction, the space is still exponential, so that
we need to explore it using heuristic search. For efficiency reasons we chose a simple
local search [which is so frequently used by the score+search BN learning algorithms
(Chickering et al. 1995; Cooper and Herskovits 1992; Heckerman et al. 1995)], with
the operators adapted to this space. These operators are designed in such a way that
their application to a C-DAG always produces another C-DAG as the result (those
operators that change the structure and composition of the Markov boundary for the
variable C). We use following operators for adding or removing arcs to the current
model:

– A_ParentOfC(Xi ), addition of the arc Xi→C .
– A_ChildOfC(Xi ), addition of the arc C→ Xi .
– A_ParentOfChild(Xi , X j ), addition of the arc Xi→ X j , if X j is a child of C .
– D_ParentOfC(Xi ), deletion of the arc Xi→C .
– D_ChildOfC(Xi ), deletion of the arc C → Xi , together with all the other arcs

pointing to Xi .
– D_ParentOfChild(Xi , X j ), deletion of the arc Xi→ X j , if X j is a child of C .

4.2 The space of C-RPDAGs

A different kind of reduction of the search space of DAGs can be obtained by con-
sidering the concept of independent-equivalence of DAGs (Pearl and Verma 1990):
two DAGs are independent-equivalent iff they represent the same set of conditional
independence assertions. The graphical criterion that determines the equivalence of
two DAGs (Pearl and Verma 1990) is very simple:

Two DAGs are independent-equivalent if and only if they have the same skeleton
and the same v-structures.
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The skeleton of a DAG is the undirected graph that results from ignoring the direc-
tionality of every edge. A v-structure in a DAG G is an ordered triplet of nodes,
(Xi , Xz, X j ), such that (1) G contains the arcs Xi → Xz and Xz ← X j , and (2) the
nodes Xi and X j are not adjacent in G. If we do not force this second condition, we
speak of a h-h pattern (head-to-head pattern) instead of a v-structure.

The graphs used to represent independent-equivalence classes of DAGs are called
partially directed acyclic graphs (PDAGs). They may contain both directed (arcs) and
undirected (links) edges, but no directed cycles. Therefore, the nodes directly con-
nected to a given node Xi may be parents, children and also siblings of Xi (SibG(Xi ) =
{X j ∈ V|Xi —X j ∈ EG}). There are algorithms for learning (unrestricted) Bayesian
networks using scoring functions that carry out the search in spaces of PDAGs, more
reduced than the one of DAGs [as completed PDAGs (Chickering 2002) and restricted
PDAGs (RPDAGs) (Acid and de Campos 2003)].

Another type of representation of independent-equivalence classes of DAGs, par-
ticularly interesting to our purposes, is that of C-RPDAGs, which have been used for
building Bayesian classifiers (Acid et al. 2005). C-RPDAGs are defined from RPDAGs
in a similar way as C-DAGs are defined from DAGs. Essentially, C-RPDAGs are
RPDAGs focused on the target (class) variable, i.e. RPDAGs which are different from
a classification point of view. A useful characterization of the concept of C-RPDAG
is the following (Acid et al. 2005):

Proposition 1 A PDAG G = (V, EG), where V = U ∪ {C}, is a C-RPDAG iff it
satisfies the following conditions:

1 G does not contain any directed cycle.
2 If PaG(C) �= ∅ then |PaG(C)| ≥ 2 and SibG(C) = ∅.
3 ∀Xi ∈ U, if PaG(Xi ) �= ∅ then C ∈ PaG(Xi ) and either |PaG(Xi )| ≥ 2 or
|PaG(C)| ≥ 2.

4 ∀Xi ∈ U, if SibG(Xi ) �= ∅ then SibG(Xi ) = {C} and PaG(Xi ) = ∅.
Several examples of C-RPDAGs are displayed in Fig. 1. C-RPDAGs combine the
concepts of independent-equivalence and equivalence in classification to get a more
reduced search space. The Markov boundary of variable C is composed in this case
by the parents, children, siblings and spouses of C in the corresponding C-RPDAG.

As in the case of C-DAGs, we shall also use local search to move through the
C-RPDAG space, so that we need to specify the operators to move from one con-
figuration to another neighboring configuration. To start with, we shall use the same
operators proposed in Acid et al. (2005), which are defined in terms of C’s parents,
C’s children and the parents of C’s children:

X1

X3

X5

X8

X6

X2 X7

X1

X3

X5

X8

X6

X2 X7

X1

X3
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X2 X7

X1

X3
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X8

X6

X2 X7
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CC CC C

X4 X4 X4 X4 X4

Fig. 1 Some examples of C-RPDAGs
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– A_ParentOfC(Xi ), addition of the arc Xi→C .
– A_ChildOfC(Xi ), addition of the arc C→ Xi .
– A_SiblingOfC(Xi ), addition of the link Xi —C .
– A_HHOfC(Xi , X j ), creation of the h-h pattern Xi→C← X j by adding the arc

Xi→C and transforming the link X j —C into the arc X j→C .
– A_ParentOfChild(Xi , X j ), addition of the arc Xi→ X j , if X j is a child of C .
– A_HHOfChild(Xi , X j ), creation of the h-h pattern Xi→ X j←C by adding the

arc Xi→ X j and transforming the link C—X j into the arc C→ X j .
– D_ParentOfC(Xi ), deletion of the arc Xi→C .
– D_ChildOfC(Xi ), deletion of the arc C → Xi , together with all the other arcs

pointing to Xi .
– D_SiblingOfC(Xi ), deletion of the link Xi —C .
– D_HHOfC(Xi , X j ), destruction of the h-h pattern Xi→C← X j by deleting the

arc Xi→C and transforming the arc X j→C into the link X j —C .
– D_ParentOfChild(Xi , X j ), deletion of the arc Xi→ X j .
– D_HHOfChild(Xi , X j ), destruction of the h-h pattern Xi→ X j←C by deleting

the arc Xi→ X j and transforming the arc C→ X j into the link C—X j .

The algorithms searching in the spaces of C-DAGs and C-RPDAGs (called CDAG
and CRPDAG) start from an empty graph and carry out a local search using the corre-
sponding operators until the scoring function does not improve. Then the set MB(C)

can be extracted from the obtained graph.

4.3 Avoiding the overfitting: using a modified search space and new operators

In Sect. 5 we will carry out experiments showing that CDAG and CRPDAG get only
moderately good results. Actually, the resulting MBs are too large, the algorithms
introduce many false positives, so that they are not appropriate for finding accurate
MBs. This was somewhat unexpected, at least in the case of the CRPDAG algorithm,
because it performs excellently when used to build a classifier (Acid et al. 2005). The
conclusion is not that the score+search methods are inappropriate for learning MBs
but that a metric together with a simple search space is not enough for looking for
accurate MBs. In fact this tendency to choose overfitted models occurs using any of the
three tested scoring functions, which assign better scores to complex configurations.
This suggests that the cause lies in the search process itself. We still want to learn MBs
based on score+search, but we reconsider the search space. Let us show first why this
problem happens and next how we can solve it.

Let us assume that the BN displayed in Fig. 2 (a) is the correct global model and
thus the correct Markov boundary is MB(C) = {X1, X2, X5}. Let the configuration

Fig. 2 a The correct Bayesian
network, b an intermediate
configuration in the search
process

(a) (b)

X3 X7

C

X1 X2

X5

C

X1 X2

X5X3X7
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(c) (d) (e)

X3 X7 X7

C

X1 X2

X5

C

X1 X2

X5

C

X1 X2

X5 X3X3X7

Fig. 3 Configurations in the search process where the dependence relationships between X3 and C , and
between X3 and X5 are reflected in several ways

(b) in the same figure be an intermediate C-DAG reached by any of the previous algo-
rithms during the search process for learning MB(C). From the true model we can
extract the following independence relationships relative to the nodes C, X3 and X5:
¬(X3 ⊥ C |∅),¬(X3 ⊥ X5|∅) and X3 ⊥ C |X5. In Fig. 3 we show all the allowed
configurations while exploring the neighboring configurations of the C-DAG in Fig. 2
(b), in order to consider the possible inclusion of node X3 in MB(C). All of them
reflect the relationship ¬(X3 ⊥ X5|∅), two of them ¬(X3 ⊥ C |∅), although none
represents the relationship X3 ⊥ C |X5; despite of this fault, all they would improve
the score. Then, one of the configurations (c), (d) or (e) in Fig. 3 would be chosen
and therefore the node X3 would be wrongly included in MB(C). Observe that the arc
X5 → X3, which would give rise to a configuration satisfying all the (in)dependence
relationships (and hence having a better score) will never be considered, because this
configuration is not an element in our search space.

Using the same reasoning with the node X7, it will also become connected
to the target variable. Thus the final returned MB is overpopulated, MB(C) =
{X1, X2, X5, X3, X7}.

This problem, which apparently does not affect the behavior of the CRPDAG algo-
rithm as a good classifier2 (Acid et al. 2005), is damaging for the selection of accurate
Markov boundaries.

Although the C-DAG and C-RPDAG spaces are good to represent the possible
topologies of the class’ MB, they are not expressive enough to represent intermediate
states. By constraining the search to the C-DAG or C-RPDAG spaces, we are forcing
the inclusion of some nodes in the MB because they cannot be taken into account in
any other way and, from the perspective of a scoring function, it is better to connect
these nodes in some way with the class variable than to leave them isolated. There-
fore, one of the causes of the problem is the use of a non specialized scoring function,
which measures the degree of fitness of the data to the global network. But precisely
our objective in this paper is to show that even this type of score can do a good job if it
is used in combination with the appropriate constrained search space, and the C-DAG
or C-RPDAG spaces, although promising, are not good enough.

Therefore, it is necessary to change slightly the search spaces and to include new
operators. We propose to use what we call “fringed” versions of the C-DAG and
C-RPDAG spaces, where arcs connecting the children or siblings of the class to other

2 Perhaps because, to improve classification rates, it is more important to capture all the relevant features,
even at the price of using also several irrelevant features, than using only some of the relevant features.
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nodes are permitted. Figure 2 (a) is an example of a fringed C-DAG. In this way,
when a node Xi exhibits some dependence with C but this dependency turns out to be
indirect (i.e. conditional independence), we do not need to connect Xi with C : we can
connect one or several children of C with Xi , thus keeping Xi outside MB(C). This
additional level (grandchildren of C) constitutes the fringes of the search space.

More formally, to define a fringed C-RPDAG we only have to change one of the
conditions characterizing C-RPDAGs in proposition 1:

Definition 2 A PDAG G = (V, EG), where V = U ∪ {C}, is a fringed C-RPDAG
(fC-RPDAG) iff it satisfies the conditions 1, 2 and 4 in proposition 1 and the following
condition:

3′ ∀Xi ∈ U, if PaG(Xi ) �= ∅ then either (a) C ∈ PaG(Xi ) and either |PaG(Xi )| ≥ 2
or |PaG(C)| ≥ 2, or (b) C �∈ PaG(Xi ) and ∀X j ∈ PaG(Xi ), X j ∈ ChG(C) ∪
SibG(C),

where ChG(C) = {Xi ∈ U|C→ Xi ∈ EG} is the set of children of C in G.

The definition of a fringed C-DAG is also very similar to that of a C-DAG:

Definition 3 A DAG G = (V, EG), where V = U ∪ {C}, is a fringed C-DAG (fC-
DAG) iff it satisfies the following condition:

∀Xi , X j ∈V, if Xi→ X j ∈EG then either X j =C or Xi =C or C→ X j ∈EG or C→ Xi ∈EG .

(2)

In addition to the sets of parents, children, siblings and parents of children of node
C , a new set of nodes becomes relevant, the set of children of children, denoted by
CoC:

CoCG(C) = {Xi ∈ U\AdG(C) | ∃X j ∈ ChG(C) ∪ SibG(C) and Xi ∈ ChG(X j )}.

where AdG(C) = PaG(C)∪ChG(C)∪ SibG(C) is the set of nodes adjacent to C in
G.3 By virtue of either the condition [3′] (for C-RPDAGs) or the condition in Eq. 2
(for C-DAGs), this is equivalent to

CoCG(C) = {Xi ∈ U\AdG(C) | PaG(Xi ) �= ∅}.

We need to define two additional operators for adding and removing the new type of
allowed arcs:

– A_ChildOfChild(Xi , X j ), addition of the arc Xi→ X j if Xi is a child of C (or a
sibling of C).

– D_ChildOfChild(Xi , X j ), deletion of the arc Xi→ X j if Xi is a child of C (or a
sibling of C).

3 Obviously, in the case of C-DAGs, SibG (C) = ∅.

123



S. Acid et al.

These operators, in the case of the fC-DAG space, can be applied only if the node
Xi is a child of C ,4 since all the edges are oriented in a fC-DAG; in the case of the
fC-RPDAG space the same operators can also be applied when Xi is a sibling of C .5

Two of the previously used operators, D_ChildOfC(Xi ) and D_SiblingOfC(Xi ),
will be redefined as follows:

– D_ChildOfC(Xi ), deletion of the arc C → Xi , together with all the other arcs
X j → Xi such that X j is neither a child nor a sibling of C ; deletion of the arcs
Xi→ Xk whenever Xk is not a child of C .

– D_SiblingOfC(Xi ), deletion of the link C—Xi ; deletion of the arcs Xi → Xk

whenever Xk is not a child of C .

The reason for these changes is that, once Xi is deleted as either child or sibling of C ,
we need also to remove the fringes emanating from Xi . Moreover, it is not necessary
to remove the arcs X j→ Xi when X j is either a child or a sibling of C , as these arcs
may act as fringes of X j after removing the edge between C and Xi .

The remaining operators do not need to be modified, although for some of them the
conditions of applicability are slightly different.6 For the sake of completeness, Table
22 in the Appendix A shows the conditions that the current fC-RPDAG must verify
in order to apply each of the fourteen operators, together with the actions required to
transform it into a valid neighboring fC-RPDAG. Table 23 contains the same infor-
mation about the eight operators used for fC-DAGs.

In the same appendix it is described how to compute the score of the fC-RPDAG
(or fC-DAG) obtained after the application of every operator by using only two local
scores (see Acid and de Campos 2003; Acid et al. 2005 for a justification). Essentially,
all the operators can be evaluated by computing the difference between the new and
the old local score of a node and its parents (and adding it to the global score of the
current model). So, the algorithms proceed by evaluating at each step all the possible
operators and selecting the one producing the greatest difference of local scores. If this
difference is positive, the corresponding operator is applied to the current graph, and
the cycle continues until no operator gets a positive difference. The Markov boundary
is again composed by the parents, children, siblings and spouses of C in the final
graph, and the rest of connections (the fringes) are ignored. We will call DMB and
RPDMB to the new algorithms searching for MBs using the spaces of fC-DAGs and
fC-RPDAGs, respectively.

4.4 Improving the efficiency

Although the previous algorithms equipped with the new search spaces and operators
perform quite well, resulting in accurate Markov boundaries, their major drawback is
the lack of efficiency due to the effort invested in the assessment of a big amount of

4 And X j is not a child of C ; otherwise the operators to be considered would be A_ParentOfChild(Xi , X j )

and D_ParentOfChild(Xi , X j ).
5 And X j is not a sibling of C ; otherwise the operators to be considered would be A_HHOfChild(Xi , X j )

and D_HHOfChild(Xi , X j ).
6 Concretely for the operators A_ParentOfC, A_ChildOfC, A_SiblingOfC and A_HHOfC.
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network configurations, many of them useless, as we shall see. Our purpose is then to
increase the efficiency of the algorithms without losing (too much) in accuracy. This is
achieved by means of two heuristic strategies that modify the search process, inspired
by the constraint-based algorithms, which will be incorporated to the final versions of
our algorithms.

The first strategy is to use a two phase exploration process. When testing the algo-
rithms, we found that in the first stages the operators which are actually applied
(improving the scoring function the most) are almost exclusively the operators for
addition, that allow to grow the model reflecting the found dependencies. Neverthe-
less, at every step all the deletion operators are also considered and thus we spend
time evaluating configurations which will be, almost surely, useless. Taking this into
account, we decomposed the exploring process into two consecutive phases. 1) A grow-
ing phase that expands the current configuration while improving the metric (only the
addition operators are considered); followed by 2) a shrinking phase that reviews every
connection in the current configuration (only the deletion operators are considered) in
order to assess simpler configurations not explored, again while the metric improves.
These two phases can follow one another repeatedly until no improvement is achieved
any more.

The second strategy is to prune bad candidates in the exploration process. In many
constraint-based algorithms for learning Bayesian networks, once two variables have
been found to be independent given some subset of variables, the corresponding edge
connecting them is removed from the graph, and its inclusion is never reconsidered.
Similarly, we have designed a way of definitively discarding candidate edges within
our search spaces, thus pruning many branches in the exploration process.

Until now, at any step, every valid operator is tentatively applied to the current
model and the new configurations are then assessed, giving to each one a scoring value.
Among all these configurations, only the one having the highest score is recorded, the
rest are disregarded. Some of these configurations may also improve the score of the
current model (although to a lesser extent than the best configuration), whereas other
even can make the score worse. Remember that any operator can be evaluated by
computing the difference of two local scores. For the addition operators, if this differ-
ence is negative (and therefore the global score gets worse), this may be interpreted
as the existence of an independence relationship between the two connected nodes
(Cowell 2001; Gámez et al. 2007; Moral 2004). Therefore, those addition operators
which turn the score worse obviously constitute a bad choice, and we could record
this information in order to avoid to reconsider them definitively. More precisely, each
time that the evaluation of an addition operator7 connecting two nodes gives a nega-
tive difference of local scores, then we include the edge between these nodes in a list
of forbidden links. In this way we are dynamically including structural restrictions
in the learning process (de Campos and Castellano 2007), and consequently saving
computation effort.

Similarly, for the deletion operators, if the difference of local scores is positive,
this means that the existing edge connecting the involved nodes should be removed,

7 Excluding the operator A_ChildOfChild, because its behavior is different from the rest of operators which
have a direct relation with the class.

123



S. Acid et al.

i.e. it again points out to an independence relationship and, therefore, we put the
edge between these nodes in the list of forbidden links. In this way, if the operator is
eventually applied, the removed edge will never be reconsidered for inclusion.

In Algorithm 1 we show an outline of the RPDMB algorithm, searching in the
space of fC-RPDAGs and using the two previous strategies. The algorithm returns
the Markov boundary of the variable C and optionally the topology of the subgraph
induced by the Markov boundary (i.e. we remove the fringes and obtain the associated
C-RPDAG). If desired, this network can also be directly used as a classification device,
once the corresponding probability distributions are estimated from the data. The same
pseudocode is valid for the algorithm DMB searching in the fC-DAG space, simply
changing the function Eval Best Operator by its counterpart using the operators for
fC-DAGs.

Algorithm 1 RPDMB
Require: an initial empty network G0 whose set of variables is U ∪ {C}
Require: a data stream D
Require: a struct operator = {value, op, nodex, nodey}.
Require: a vector of forbidden connections, tabu[ ].
Require: a variable, phase, to control the phase in development
Require: 2 flags change1, change2 to record if a change occurred at each phase
Require: 3 flags stop, stop1, stop2 to control the end of the search and the two phases
Ensure: mb, Markov Boundary for C and graph G
1: G ← G0, stop← f alse
2: while (stop = f alse) do
3: phase← 1, change1← f alse
4: stop1← f alse, stop2← true
5: while (stop1 = f alse) do // phase 1, apply only operators for adding
6: operator = Eval Best Operator(G, C, D, phase, tabu[])
7: if (operator �= null) AN D (operator.value > 0) then
8: change1← true, stop2← f alse
9: G ← ApplyOperation(G, operator)

10: else
11: stop1← true
12: end if
13: end while
14: phase← 2, change2← f alse
15: while (stop2 = f alse) do // phase 2, apply only operators for deleting
16: operator = Eval Best Operator(G, C, D, phase, tabu[])
17: if (operator �= null) AN D (operator.value > 0) then
18: change2← true
19: G ← ApplyOperation(G, operator)

20: else
21: stop2← true
22: end if
23: end while
24: if (change2 = f alse) then
25: stop← true
26: end if
27: end while
28: mb← ObtainM B(G, C)

29: return (mb, G)
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Table 1 Details of the Bayesian
networks used in the
experiments with synthetic data

Networks N. vars N. arcs N. states (avg.)

Alarm 37 46 2–4 (2.8)

Barley 48 84 2–67 (8.8)

Boblo 23 24 2–6 (2.7)

Hailfinder 56 66 2–11 (3.3)

Insurance 27 52 2–5 (3.3)

Pigs 441 592 3 (3.0)

5 Experiments and analysis

We have designed several experiments over a wide spectrum of databases, with sev-
eral sample sizes and running a variety of algorithms to compare with. The selected
algorithms are the already mentioned PCMB, KIAM and IAMB (as state-of-the-art
algorithms), CDAG and CRPDAG (because our algorithms are based on them), as well
as the proposed algorithms DMB and RPDMB, using three different metrics: BDeu,
BIC/MDL and MIT. We have also used a state-of-the-art FSS method, not based on
Markov boundaries, namely mRMR (Ding and Peng 2005). All the score+search-
based algorithms have been implemented on JAVA in the Weka platform (Hall et al.
2009). Moreover, we used the C++ implementation of PCMB, KIAMB and IAMB
provided by J.M Peña8 and the C++ implementation of mRMR provided by Peng.9

5.1 The data

We have used synthetic databases sampled from six well-known Bayesian net-
works: Alarm (Beinlich et al. 1989), Barley (Kristensen and Rasmussen 2002), Boblo
(Rasmussen 1995), Hailfinder (Abramson et al. 1996), Insurance (Binder et al. 1997)
and Pigs (Jensen 1997), all of them (except Boblo) available from the Bayes net reposi-
tory10; they all come from very different domains such as medical diagnosis, insurance
risk, meteorology and agriculture. Table 1 gives some details on the networks from
which the databases are sampled, including the number of variables and arcs that they
contain, as well as the minimum, maximum and average number of states per variable.

Each network has been used to generate several databases with different sample
sizes; more precisely, for each network and each size we have generated five datasets,
and the sample sizes considered are 100, 200, 500, 1000 and 10,000. Therefore, we
have used a total of 150 databases.

An experimental unit consists in learning the Markov boundary for a variable X
from a dataset of a given size in a domain problem, using X as the target variable
and then comparing the learned MB with the true MB of X . The learning process is
then repeated for each of the variables in the domain and each of the datasets. This

8 http://www.ida.liu.se/~jospe/.
9 http://penglab.janelia.org/proj/mRMR/.
10 http://www.cs.huji.ac.il/labs/compbio/Repository.
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Table 2 Details of the databases selected from the genetic domain

Alias Full name N. attr. N. train N. test

ALL-AML (Golub 1999) Leukemia-ALLAML (WhiteHead, MIT) 7,129 38 34

BCR-ABL (Yeoh 2002) Leukemia-subtype (Stjude) 12,558 215 112

LungCancer (Gordon 2002) LungCancer (Brigham and Women’s 12,533 32 149

Hospital, Harvard Medical School)

MLL (Armstrong 2002) Leukemia-MLL (WhiteHead, MIT) 12,582 57 15

ProstateCancer (Singh 2002) Prostate Cancer (Tumor vs Normal) 12,600 102 34

ColonTumor (Alon 1999) Colon Tumor 2,000 62 –

DLBCL-Stanford (Alizadeh 2000) DLBCL (Stanford) 4,026 47 –

CNS (Pomeroy 2002) Central Nervous System 7,129 60 –

DLBCL-Harvard (Shipp 2002) DLBCL (Harvard Medical School, 6,817 58 –

Whitehead, MIT) Outcome

represents a total of 15,800 experimental units. Each one of these experimental units
has been used by the different algorithms commented previously. The results that we
will show are the averages, across the number of variables and across the five datasets
of the same size for each domain, of the selected performance measures.

Due to the extension of the results for the synthetic data (six domain problems,
five sample sizes, together several algorithms and scoring functions), we will display
only part of them in the main body of the paper, although the rest can be found in the
Appendix B.

We have also chosen databases from the genetic domain used for classification pur-
poses. The nine selected databases11 represent real problems with a large number of
attributes and one target variable. In Table 2 we can see some details of these datasets,
as the number of attributes and the sizes of the training and test sets. Observe that test
files are not provided in all the cases.

5.2 Performance measures

In the experiments with synthetic data, to compare the learned and the true Markov
boundaries we use the criteria of precision, recall, and two different aggregated per-
formance measures from the previous ones, that we shall mention later. Precision is
the number of true positives returned by the algorithm (i.e. the number of variables
in the learned MB which are also in the true MB), divided by the number of vari-
ables in the output (the size of the learned MB). Recall is the number of true positives
in the output, divided by the size of the true MB. Precision is a measure of exact-
ness, whereas recall is a measure of completeness, both ranging between 0.0 and 1.0.
A high value for precision indicates that most of the features selected by the algo-
rithm are correct, whereas a low value suggests that we have wrongly included many

11 The source site for the data is the Institute for Infocomm Research http://datam.i2r.a-star.edu.sg/datasets/
krbd.
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variables in MB. On the other hand, a high recall means that the algorithm has selected
a large proportion of the attributes that are part of the true MB. None of these two
measures makes sense in isolation from each other. For example, a non selective blind
algorithm that systematically includes all the features in MB (hence the true positives
are necessarily included) would obtain maximum recall but a very low precision; at
the other extreme, a very selective algorithm that returns a MB composed of only a
single true positive feature would get maximum precision, although the recall could
be very low if the true MB contains many features.

So, it is necessary to consider both measures and combine them into a unique per-
formance measure. In Peña et al. (2007) the Euclidean distance from perfect precision
and recall was proposed:

Ed =
√

(1− precision)2 + (1− recall)2 (3)

This measure ranges from 0.0 (correct MB) to
√

2.0. A much more standard way of
combining these two measures is the F measure,12 which is the harmonic mean of
precision and recall:

F = 2 ∗ precision ∗ recall

precision + recall
(4)

F ranges between 0.0 and 1.0, with F = 1 meaning that a totally precise and complete
MB has been found. We shall only use the Euclidean distance occasionally, because
no significant differences have been appreciated with respect to the F-measure, and
we prefer F because it is more commonly used.

In the experiments with real genetic data we do not know the true Markov boundary
of the class variable. Therefore we will measure the quality of the algorithms indi-
rectly: by building a classifier from the training set, using only the attributes found
in the corresponding learned MBs, and then measuring the predictive accuracy (the
percentage of successful predictions), either on the test set or using the leave-one-out
technique13 in the cases where no test set is provided.

5.3 Experimental results

We have divided our experiments into five groups, each one trying to analyze a different
aspect of the problem.

5.3.1 Comparing the score+search algorithms

First, we are going to compare the four score+search algorithms considered in this
paper, CDAG and CRPDAG against the two new algorithms DMB and RPDMB. In this

12 Which is so frequently used in the information retrieval and classification fields.
13 For a data set with n samples, this means running n learning processes, each one using n − 1 training
samples and a single sample to classify, and computing the average accuracy.
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Table 3 Precision values for the algorithms based on score+search, for databases of size 1,000

Alarm Barley Boblo Hailfinder Insurance Pigs

CDAG 0.5250 0.6031 0.2959 0.5587 0.5003 0.6524

CRPDAG 0.2657 0.4923 0.1957 0.4116 0.3230 0.2894

DMB 0.8801 0.6989 0.6053 0.8428 0.8759 0.9939

RPDMB 0.9178 0.6953 0.6047 0.8307 0.8823 0.9987

Table 4 Recall values for the algorithms based on score+search, for databases of size 1,000

Alarm Barley Boblo Hailfinder Insurance Pigs

CDAG 0.8663 0.4510 0.7070 0.4913 0.6013 0.9914

CRPDAG 0.9512 0.4885 0.7983 0.7601 0.8168 1.0000

DMB 0.8210 0.2793 0.5443 0.5395 0.5773 0.9210

RPDMB 0.8514 0.3077 0.6961 0.5591 0.5961 1.0000

Table 5 F values for the algorithms based on score+search, for databases of size 1,000

Alarm Barley Boblo Hailfinder Insurance Pigs

CDAG 0.6116 0.4608 0.4000 0.4790 0.4956 0.7445

CRPDAG 0.3831 0.4353 0.3012 0.4714 0.4159 0.3971

DMB 0.8189 0.3609 0.5448 0.6115 0.6611 0.9466

RPDMB 0.8570 0.3923 0.6443 0.6270 0.6810 0.9992

case we have considered the versions of the algorithms using the BDeu metric (using
an equivalent sample size equal to 1) and the databases of size 1,000. In Tables 3 and 4
we show the precision and the recall values of these experiments. We have emphasized
in bold font the best results for each domain in all the tables.

First, looking at the precision values in Table 3 we can observe that the new algo-
rithms get much better results than CRPDAG and CDAG, except for the Barley data-
base where the differences are not so big. That means that the MBs returned by RPDMB
and DMB contain less false positives that those of CDAG and CRPDAG, as it was
expected from the analysis carried out in Sect. 4.3.

However, the best results in recall are obtained by CDAG and specially CRPDAG,
i.e. the MBs returned by these algorithms contain a higher number of true positives.
In general, the sizes of the MBs returned by CRPDAG and CDAG are greater (and
consequently the running times invested in learning them were several times longer)
than those of RPDMB and DMB. In particular, CRPDAG is scarcely selective and
introduces a lot of false positives.

In order to obtain a final conclusion about the behavior of these algorithms, let us
observe the values of the measure F displayed in Table 5. The best algorithms are
clearly RPDMB and DMB (except in Barley), with RPDMB outperforming slightly
DMB. Thus, the relative completeness of the MBs generated by CDAG and CRPDAG
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Table 6 Precision values for the algorithm RPDMB combined with different scores, for databases of size
1,000

Alarm Barley Boblo Hailfinder Insurance Pigs

RPDMB+BDeu 0.9178 0.6953 0.6047 0.8307 0.8823 0.9987

RPDMB+MIT 0.8810 0.7698 0.7739 0.9246 0.8881 0.9921

RPDMB+BIC 0.9034 0.6500 0.7811 0.9000 0.8890 0.9970

Table 7 Recall values for the algorithm RPDMB combined with different scores, for databases of size
1,000

Alarm Barley Boblo Hailfinder Insurance Pigs

RPDMB+BDeu 0.8514 0.3077 0.6961 0.5591 0.5961 1.0000

RPDMB+MIT 0.8361 0.3791 0.5378 0.7385 0.6101 0.9999

RPDMB+BIC 0.7144 0.1985 0.4978 0.5872 0.4531 0.9671

Table 8 F values for the algorithm RPDMB combined with different scores, for databases of size 1,000

Alarm Barley Boblo Hailfinder Insurance Pigs

RPDMB+BDeu 0.8570 0.3923 0.6443 0.6270 0.6810 0.9992

RPDMB+MIT 0.8374 0.4698 0.6303 0.7740 0.6953 0.9950

RPDMB+BIC 0.7662 0.2843 0.6071 0.6636 0.5661 0.9778

cannot compensate their lack of precision. The more selective algorithms RPDMB
and DMB generate more balanced MBs.

5.3.2 Comparing different scoring functions

Once we have shown that the proposed algorithms RPDMB and DMB outperform the
other score+search method, we consider the question of the possible influence of the
standard metrics used to guide the search process on the quality of the results. In other
words, are there some metrics more appropriate than other to deal with this task?

In order to answer the previous question, we have carried out experiments with
the databases of size 1,000, using RPDMB and the three different scoring functions
already mentioned: BDeu (again with equivalent sample size η = 1), BIC/MDL and
MIT (using α = 0.999 as the parameter representing the confidence level). The results
of these experiments are displayed in Tables 6, 7 and 8.

We can observe that, although the situation is more or less balanced with respect
to precision, where no metric is clearly better or worse than the others, things are
different with respect to recall: the BIC/MDL metric behaves almost systematically
worse than both BDeu and MIT (only in one case BIC beats BDeu). This fact can also
be observed in the results of the combined F measure.
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Table 9 Constraint-based versus score+search algorithms

Alarm Barley Boblo Hailfinder Insurance Pigs

PCMB 0.9380 0.3760 0.6435 0.7323 0.8661 0.9837

KIAMB 0.8580 0.5638 0.6855 0.5679 0.8121 0.6989

IAMB 0.8983 0.6167 0.7450 0.5890 0.8576 0.7210

DMB+BDeu 0.8801 0.6989 0.6053 0.8428 0.8759 0.9939

DMB+MIT 0.8948 0.7965 0.7761 0.9483 0.8909 0.9830

RPDMB+BDeu 0.9178 0.6953 0.6047 0.8307 0.8823 0.9987

RPDMB+MIT 0.8810 0.7698 0.7739 0.9246 0.8881 0.9921

Precision on databases of size 1,000

Table 10 Constraint-based versus score+search algorithms

Alarm Barley Boblo Hailfinder Insurance Pigs

PCMB 0.7894 0.6158 0.2522 0.6313 0.5279 0.9999

KIAMB 0.7622 0.2108 0.4130 0.5173 0.5570 0.9009

IAMB 0.7886 0.2426 0.4543 0.5323 0.5795 0.9258

DMB+BDeu 0.8210 0.2793 0.5443 0.5395 0.5773 0.9210

DMB+MIT 0.7730 0.3400 0.3326 0.6051 0.5934 0.8795

RPDMB+BDeu 0.8514 0.3077 0.6961 0.5591 0.5961 1.0000

RPDMB+MIT 0.8361 0.3791 0.5378 0.7385 0.6101 0.9999

Recall on databases of size 1,000

Therefore, we conclude that, at least from the perspective of learning accurate MBs
using score+search methods, we should discard BIC/MDL and use either BDeu or
MIT instead.

5.3.3 Comparing score+search versus constraint-based algorithms

In order to have an idea of the relative accuracy of our proposed algorithms based on
score+search, we want to compare them with some algorithms from the constraint-
based approach, namely, PCMB, KIAMB and IAMB.

We have performed a comparative study of these three algorithms versus four
instances of our proposed algorithms: DMB and RPDMB equipped with the BDeu
and MIT metrics. In Tables 9 and 10 we display the precision and recall values obtained
by learning from datasets of 1,000 samples. The best absolute results for each domain
are still displayed in bold font, and the best results within the other block (either
constraint-based or score-based) are represented in italic font.

In Table 9 we can see that better precision is reached by the score-based algorithms
most of the time (and the best precision in five from the six domains), in particular
by the algorithm DMB+MIT (best in four from the six domains). Within the con-
straint-based block, the algorithm PCMB has a better behavior in four from the six
domains.
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Table 11 Constraint-based versus score+metric algorithms

Alarm Barley Boblo Hailfinder Insurance Pigs

Euclidean

PCMB 0.2432 0.7904 1.0333 0.4985 0.5389 0.0163

KIAMB 0.2827 0.9357 0.7692 0.6479 0.4936 0.3170

IAMB 0.2394 0.8810 0.6995 0.6227 0.4544 0.2887

DMB+BDeu 0.2197 0.8333 0.6147 0.4928 0.4472 0.0792

DMB+MIT 0.2605 0.7118 0.8002 0.3983 0.4323 0.1217

RPDMB+BDeu 0.1728 0.8106 0.5126 0.4791 0.4269 0.0013

RPDMB+MIT 0.2168 0.6865 0.6406 0.2725 0.4176 0.0079

F-measure

PCMB 0.8363 0.4268 0.3398 0.5863 0.6352 0.9902

KIAMB 0.7819 0.2901 0.4794 0.4907 0.6293 0.7431

IAMB 0.8136 0.3295 0.5264 0.5104 0.6602 0.7661

DMB+BDeu 0.8189 0.3609 0.5448 0.6115 0.6611 0.9466

DMB+MIT 0.7977 0.4415 0.4796 0.6897 0.6801 0.9137

RPDMB+BDeu 0.8570 0.3923 0.6443 0.6270 0.6810 0.9992

RPDMB+MIT 0.8374 0.4698 0.6303 0.7740 0.6953 0.9950

Euclidean distance and F measures on databases of size 1,000

Observing Table 10, we can see that in general the recall values are lower than
their respective precision values. This means that, although the algorithms may be
very precise, the returned MBs may lose many true positives (except for the case of
the Pigs domain). The patterns for recall are similar to those observed for precision:
the algorithms based on score+search get in general better recall values than the con-
straint-based. The algorithms that get the most complete MBs are RPDMB+BDeu and
RPDMB+MIT. In the block of constraint-based algorithms, PCMB usually reaches
the best values.

The aggregated performance measures from precision and recall, i.e. Euclidean
distance14 and F-measure, are displayed in Table 11. As we can observe, the algo-
rithms that reach the best values for Euclidean distance match those that reach the
best values for F, so that it seems that there are not very important differences in the
behavior of these two measures. In this case the best values are always obtained by the
score-based algorithms (RPDMB+BDeu and RPDMB+MIT are each the best on three
of the six domains). From the 72 pairwise comparisons between a score-based and a
constraint-based algorithm (using the F measure), in 64 cases score-based algorithms
are the winners. The results of the constraint-based methods are particularly bad in
the Boblo and Hailfinder domains, and in general PCMB obtains the best results in
this block.

Concerning the computational costs of the different algorithms, Table 12 displays
their running times (in seconds). It seems that constraint-based methods are, in gen-
eral, several times faster than score-based ones, although in most cases these times

14 We use it here because this measure was proposed by the authors of PCMB and KIAMB.
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Table 12 Constraint-based versus score+metric algorithms

Time (s) Alarm Barley Boblo Hailfinder Insurance Pigs

PCMB 0.0399 0.1220 0.0176 0.0858 0.0472 6.6886

KIAMB 0.0249 0.0244 0.0135 0.0394 0.0197 0.3651

IAMB 0.0229 0.0243 0.0132 0.0382 0.0185 0.3793

DMB+BDeu 0.1183 0.0792 0.0794 0.1400 0.0979 32.4051

DMB+MIT 0.1026 0.0995 0.0339 0.0800 0.1047 48.8053

RPDMB+BDeu 0.1498 0.1082 0.0902 0.1710 0.1320 2.9440

RPDMB+MIT 0.1661 0.2075 0.0553 0.1544 0.1544 5.1402

N. statistics

PCMB 483 105,198 134 102,297 560 57,331

KIAMB 158 118 66 243 114 1,836

IAMB 143 116 64 226 104 1,759

DMB+BDeu 211 146 140 217 170 2,362

DMB+MIT 181 138 54 158 173 2,044

RPDMB+BDeu 256 208 160 294 207 3,022

RPDMB+MIT 266 245 107 280 222 3,124

Running times and number of different statistics computed by the algorithms on databases of size 1,000

Table 13 Pairwise comparison between score-based and constraint-based algorithms

Sample size 100 200 500 1,000 10,000 Total

Times score-based better 50 50 56 64 49 269

Times constraint-based better 22 22 16 8 15 83

are rather small (less than one second). As the implementation of the constraint-based
and score-based algorithms is quite different, we have also used another crude way
of measuring complexity: the number of different statistics truly computed from the
data, in order to calculate either the result of a statistical test or a score.15 Table 12 also
displays these numbers. In general terms, the advantage is still for constraint-based
methods, but the differences are much smaller.

In order to assess the sensitivity of the algorithms under different circumstances, we
have carried out the same experiments using four different sample sizes, ranging from
small (100) to rather large sample sizes (10,000). The results of these experiments are
displayed in Tables 24, 25, 26 and 27 in the Appendix B. In addition to the expected
conclusion that the performance of all the algorithms deteriorates systematically when
decreasing the sample size,16 we can observe essentially the same pattern as before,
where score-based methods tend to outperform constraint-based ones. A comparative
summary between score-based and constraint-based methods can be seen in Table 13,

15 Note that this is usually the most costly process for scoring-based and constraint-based learning
algorithms, as it requires accessing to the dataset and computing frequencies.
16 The exception is the dataset Pigs with almost all algorithms, where performance decreases when chang-
ing from size 1,000 to 10,000.
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Table 14 Number of times that the algorithm in row i is better than the algorithm in column j

PCMB KIAMB IAMB DMB+ DMB+ RPDMB+ RPDMB+ Total
BDeu MIT BDeu MIT better

PCMB − 18 13 12 13 10 5 71
KIAMB 10 − 0 3 6 2 3 24

IAMB 15 30 − 6 12 5 5 73

DMB+BDeu 16 27 24 − 19 4 5 95

DMB+MIT 15 24 18 11 − 8 0 76

RPDMB+BDeu 18 28 25 26 22 − 12 131

RPDMB+MIT 23 27 25 25 30 18 − 148

Total worse 97 154 105 83 102 47 30

based on pairwise comparisons between each score-based and each constraint-based
algorithm, for each sample size. In global terms, 76% of times score-based methods
are better than constraint-based.

Going into more details, in Table 14 we compare each algorithm with the others.17

The entry in row i column j represents the number of times that algorithm i is bet-
ter than algorithm j. Each row displays the times that the corresponding algorithm is
better, whereas each column says how many times the algorithm is worse.

The results are quite conclusive. The best algorithm is clearly RPDMB (with both
the MIT and BDeu metrics), followed by DMB+BDeu. DMB+MIT is always outper-
formed by RPDMB+MIT, and the same happens with KIAMB and IAMB. In turn,
IAMB and PCMB are roughly comparable.

5.3.4 Learning MBs for real problems with high dimensional data

In order to check the capabilities of the algorithms for learning Markov boundaries in
high dimensionality problems, we have used the real genetic databases described in
Sect. 5.1. We measure indirectly the quality of these MBs by computing the predictive
accuracy obtained by training a classifier using only the attributes that belong to the
Markov boundaries.

The algorithms used in these experiments are IAMB and PCMB from the con-
straint-based paradigm and RPDMB+BDeu and RPDMB+MIT from the score-based
approach. The baseline classifier considered is naive Bayes (Langley et al. 1992).
As it is known, it sets all the selected attributes dependent on the class variable and
also assumes conditional independence of the attributes given the class. However, the
C-RPDAG returned by RPDMB can be used directly as a classifier, once the cor-
responding probability distributions are estimated from the data; we will also use it
to compute the predictive accuracy (thus evaluating how this more complex topol-
ogy may affect the performance). The results of these experiments are displayed in

17 The number of comparisons between each pair of algorithms is 30 (six domains and five sample sizes),
except in those cases involving PCMB, where this number is 28. This happens because we could not run
the PCMB algorithm with two of the databases of size 10,000.
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Table 15 Predictive accuracy for the genetic databases

Naive Bayes C-RPDAG

IAMB PCMB BDeu MIT BDeu MIT

ALL-AML 91.18 91.18 85.29 91.18 91.18 91.18

BCR-ABL 92.86 94.64 98.21 94.64 99.11 94.64

LungCancer 79.19 10.07 97.99 81.88 89.93 81.88

MLL 93.33 80.00 86.67 93.33 100.00 93.33

ProstateCancer 26.47 41.18 26.47 73.53 29.41 70.59

ColonTumor 82.26 80.65 80.65 79.03 80.65 79.03

DLBCL-Stanford 80.85 72.34 97.87 78.72 93.62 74.47

CNS 78.33 76.67 65.00 63.33 60.00 60.00

DLBCL-Harvard 74.14 63.79 68.97 72.41 72.41 72.41

Average 77.62 67.84 78.57 80.89 79.59 79.73
SD 20.39 26.78 23.02 10.57 22.89 11.71

Table 16 Number of features
selected by each algorithm for
the genetic databases

IAMB PCMB BDeu MIT

ALL-AML 1 1 9 1

BCR-ABL 3 1 46 5

LungCancer 1 0 13 1

MLL 3 193 40 1

ProstateCancer 4 1 130 6

ColonTumor 3.92 1.76 21.48 3.00

DLBCL-Stanford 2.66 0.77 28.23 2.70

CNS 3.07 3.28 32.12 2.17

DLBCL-Harvard 6.00 6.03 21.02 5.88

Average 3.07 23.09 37.87 3.08

Table 15. The best results for each domain are displayed in bold font, and the second
best in italic font. The number of features selected by each algorithm for each database
is displayed in Table 16.

In general, the differences between the different algorithms are not so clear as in the
previous experiments, although in some cases their behavior is quite different. Over-
all, the worst algorithm is PCMB (it obtains an average accuracy 10% lesser than the
others and the highest standard deviation), but there is not a clear winner. IAMB gets
more frequently (4 times from 9) the best results, but all the score-based algorithms
obtain better average accuracy. The standard deviation of the score-based algorithms
using MIT is considerably lower than in the other cases, and they also get the best
average accuracies, which suggests a more stable behavior.

With respect to the use as classifier of the more complex structure (the C-RPDAG)
returned by RPDMB instead of naive Bayes, it is clearly positive in the case of using
BDeu (better average accuracy, lower standard deviation, better results in five from
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Table 17 Running times of
each algorithm for the genetic
databases

IAMB (s) PCMB BDeu MIT

ALL-AML 1.10 1.19 s 6.17 min 5.32 min

BCR-ABL 2.39 2.33 s 24.89 s 8.97 s

LungCancer 1.63 2.37 s 1.24 h 26.33 min

MLL 1.71 s 16.43 min 17.27 h 1.33 h

ProstateCancer 3.08 2.15 s 15.96 h 16.55 min

ColonTumor 0.26 0.26 s 15.64 s 4.31 s

DLBCL-Stanford 0.57 1.20 s 1.74 min 38.74 s

CNS 0.83 0.86 s 12.79 s 1.42 s

DLBCL-Harvard 0.83 0.85 s 6.44 s 0.82 s

Table 18 Predictive accuracy
for the HIVA dataset

Naive Bayes C-RPDAG

IAMB PCMB BDeu MIT BDeu MIT

HIVA 96.51 – 96.08 95.57 99.15 99.15

nine cases). In fact the C-RPDAG obtained by RPDMB+BDeu is the best classifier
if we consider pairwise comparisons with the other algorithms. However, when using
the MIT score the results of the C-RPDAG do not improve those of naive Bayes.

In Table 17 the running times of the different algorithms are displayed. We can
observe that constraint-based methods are considerably more efficient than score-
based ones in most of the cases. BDeu is less efficient than MIT, although this is
probably due to the greater size of the MBs generated by BDeu (see Table 16).

A possible explanation for the difference between the results obtained for the syn-
thetic and the genetic databases is the number of attributes and samples used in both
cases (the number of attributes is small compared with the number of samples in the
synthetic databases, whereas in the genetic datasets the number of attributes is much
greater than the number of samples). Another possible explanation lies in the different
performance measures used in each case (F measure and predictive accuracy): the
differences between constraint-based and score-based methods are greater when we
use them to estimate accurate MBs18 than when using them as FSS methods. Given
the relatively high running time of RPDMB in some of the datasets, we believe that,
in its current version, this algorithm is not suitable for very large-scale datasets.

Anyway we also want to test the behavior of the algorithms in situations where there
are not only many variables but also many samples. To this end we have used the HIVA
dataset, which contains 1,617 variables and 42,678 samples (half for training and half
for testing). HIVA is a chemoinformatics dataset where the objective is to predict which
compounds are active against the AIDS HIV infection.19 The results obtained in this

18 Which are more useful in learning causal models.
19 This dataset has been previously used, among others, in the active learning challenge of the Pascal2
network of excellence and is available at http://www.causality.inf.ethz.ch/al_data/HIVA.html.
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Table 19 F values of mRMR, RPDMB+BDeu and RPDMB+MIT, for the synthetic databases of size 100,
200, 500, 1000 and 10,000

Alarm Barley Boblo Hailfinder Insurance Pigs

Size 100

mRMR 0.5019 0.2226 0.3817 0.3490 0.4671 0.4227

RPDMB+BDeu 0.5423 0.2228 0.4124 0.3152 0.4236 0.7530

RPDMB+MIT 0.4310 0.2618 0.4285 0.5404 0.3451 0.7326

Size 200

mRMR 0.5789 0.2803 0.3926 0.3577 0.5018 0.4315

RPDMB+BDeu 0.6915 0.2831 0.4535 0.3867 0.4696 0.9273

RPDMB+MIT 0.5477 0.3008 0.4964 0.6745 0.4424 0.9304

Size 500

mRMR 0.6187 0.3729 0.4822 0.3892 0.5650 0.4347

RPDMB+BDeu 0.7931 0.3368 0.5527 0.5338 0.6088 0.9879

RPDMB+MIT 0.7267 0.4332 0.5690 0.7505 0.6213 0.9896

Size 1,000

mRMR 0.6452 0.4285 0.4983 0.4035 0.5907 0.4362

RPDMB+BDeu 0.8570 0.3923 0.6443 0.6270 0.6810 0.9992

RPDMB+MIT 0.8374 0.4698 0.6303 0.7740 0.6953 0.9950

Size 10,000

mRMR 0.6436 0.5053 0.5791 0.3912 0.6235 0.4408

RPDMB+BDeu 0.8942 0.5700 0.7959 0.7799 0.7773 0.9985

RPDMB+MIT 0.8868 0.6727 0.7897 0.8282 0.8239 0.9979

new experiment are displayed in Table 18. We can observe that in this case the use
of the more complex C-RPDAG structure is positive for both BDeu and MIT, which
outperform the result obtained by IAMB. PCMB could not be run on this dataset.

5.3.5 Comparing with mRMR

Finally, we are going to compare our algorithms with an extra state-of-the-art method
for feature selection coming outside the Markov boundary field. We have selected20

the minimum Redundancy Maximum Relevance (mRMR) algorithm (Ding and Peng
2005; Peng et al. 2005). This is a filter method which does not rank variables inde-
pendently but it tries to find a balance between relevance (dependence between the
attributes and the class) and redundancy (dependence between attributes). A diffi-
culty with mRMR is that it requires the number of variables to be selected as the
input parameter. Therefore, in our experiments we have used, depending on the case,
different values for this parameter.

Table 19 displays the results obtained by mRMR, measured with the F values, when
it is applied to the synthetic datasets. For the sake of clarity, and in order to facilitate

20 Following the recommendation of a reviewer.
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Table 20 Predictive accuracy of
mRMR for the genetic databases

ALL-AML 82.35

BCR-ABL 98.21

LungCancer 97.32

MLL 86.67

ProstateCancer 70.59

ColonTumor 90.32

DLBCL-Stanford 95.74

CNS 81.67

DLBCL-Harvard 87.93

Table 21 Predictive accuracy of mRMR for the HIVA dataset, for different number n of selected variables

n 1 3 5 10 25 50 75 100

HIVA 96.38 96.54 96.53 96.34 95.58 95.04 94.69 93.36

the comparison of mRMR with the methods based on MBs, we have also included
in the table the results obtained by two of these methods, namely RPDMB using the
BDeu and MIT scores. In this case, the number of variables used by mRMR has been
fixed to the size of the true MB in each experimental unit. Notice that we are giving
to mRMR a valuable information that will not be known by RPDMB, which has to
estimate the size of the MB.

We can observe that RPDMB gets better results than mRMR most of the time, more
precisely 25 and 26 times from the 30 trials when using BDeu and MIT, respectively.

For the genetic databases we have also used mRMR in combination with a naive
Bayes classifier trained only with the attributes selected. In this case the parameter
representing the number of variables to be selected by mRMR has been fixed to three,
which is the average number of variables included in the MBs of the class variables
by the algorithms IAMB and RPDMB+MIT (see Table 16). The obtained results are
displayed in Table 20.

In these experiments mRMR obtains good results, outperforming all the MB-based
methods in three from the nine datasets. In the other six databases mRMR does not
perform better than either RPDMB+MIT or RPDMB+BDeu.

Finally, the results obtained by mRMR with the HIVA dataset, using in this case
several values for the number of variables to be selected, are displayed in Table 21. We
can observe that the predictive accuracy of mRMR and the MB-based methods which
also use naive Bayes is very similar, although the use of the C-RPDAG structure is
still advantageous.

6 Concluding remarks

We have proposed to perform FSS by means of methods for learning Markov bound-
aries based on score+search. Two different algorithms, searching in two specialized
spaces by means of greedy adapted methods but using standard scoring functions,
have been studied. This represents a rather novel way to tackle the problem of learning
Markov boundaries, where the dominant approach is to use constraint-based methods.
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The proposed algorithms, DMB and RPDMB, search in the new spaces of fringed
C-DAGs and fringed C-RPDAGs, respectively, which are modifications, more adapted
to the task of learning Markov boundaries, of the C-DAGs and C-RPDAGs spaces.
The search methods have also been modified to improve the efficiency, by defining
a two phase search process and a pruning strategy, inspired by the constraint-based
algorithms.

We have tested our algorithms through a series of experiments with a variety of
synthetic and real domains, using databases with different complexity and compar-
ing with several algorithms. In those cases where the true Markov boundaries were
available (the synthetic domains), the quality of the results was measured as a com-
bination of precision and recall (mainly the so-called F measure). When the under-
lying models were unknown (the real domains), we measured the quality indirectly
through the predictive accuracy of the classifiers built using the attributes found in
the learned Markov boundaries. The experimental results support the conclusion that
the proposed score+search-based algorithms (especially RPDMB, using either the
BDeu or MIT metrics) can compete favorably with the state-of-the-art constraint-based
algorithms in terms of effectiveness, although constraint-based methods are more
efficient.

For future work we will investigate how to modify the proposed methods in order
to make them more efficient and, in consequence, able to deal with larger domain
problems. Another interesting task to explore in the future would be to consider the
possibility of designing hybrid methods for learning Markov boundaries, using both
score-based and constraint-based approaches, in the same way as hybrid methods for
learning Bayesian networks have proven successful (Tsamardinos et al. 2006).
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Appendix A: Details of the applicability and evaluation of the operators

Tables 22 and 23 give details about the operators used for searching in the fC-RPDAG
and fC-DAG spaces, respectively.

We shall also explain how an fC-RPDAG (fC-DAG respectively) obtained after
applying each one of the fourteen (eight respectively) operators can be evaluated
using a decomposable and score-equivalent21 metric.

So, let G be an fC-RPDAG (fC-DAG) and G ′ be any fC-RPDAG (fC-DAG) obtained
by applying one of the operators described in Table 22 (Table 23) to G; let g be a score
equivalent and decomposable function.

(a) If the operator is A_ParentOfC(X) then
g(G ′ : D) = g(G : D)− gD(C, PaG(C))+ gD(C, PaG(C) ∪ {X})

(b) If the operator is A_ChildOfC(X) then

21 A function that gives the same score to independent-equivalent DAGs.
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Table 22 The operators for searching in the space of fringed C-RPDAGs, their conditions of applicability
and the required actions

Operator Conditions Actions

A_ParentOfC(X) X �∈ AdG (C); PaG (C) �= ∅ insert(X→C)

X �∈ CoCG (C)

A_ChildOfC(X) X �∈ AdG (C); insert(C→ X )

PaG (C) �= ∅ or X ∈ CoCG (C)

A_SiblingOfC(X) X �∈ AdG (C); PaG (C) = ∅ insert(X—C)

X �∈ CoCG (C)

A_HHOfC(X, Y ) X �∈ AdG (C); PaG (C) = ∅ insert(X→C)

Y ∈ SibG (C); X �∈ CoCG (C) delete(Y —C); insert(Y→C)

∀Z ∈ SibG (C)\{Y } {

delete(C—Z ); insert(C→ Z )}

A_ParentOfChild(X, Y ) X �∈ AdG (Y ); Y ∈ ChG (C) insert(X→Y )

There is no directed path

from Y to X in G

A_HHOfChild(X, Y ) X �∈ AdG (Y ); Y ∈ SibG (C) insert(X→Y )

There is no directed path delete(C—Y )

from Y to X in G insert(C→Y )

D_ParentOfC(X) X ∈ PaG (C); |PaG (C)| ≥ 3 delete(X→C)

D_ChildOfC(X) X ∈ ChG (C) delete(C→ X )

∀Z ∈ ChG (X)\ChG (C) delete(X→ Z )

∀Z ∈ PaG (X)\(ChG (C) ∪ SibG (C))

delete(Z→ X )

D_SiblingOfC(X) X ∈ SibG (C) delete(X—C)

∀Z ∈ ChG (X)\ChG (C) delete(X→ Z )

D_HHOfC(X, Y ) X ∈ PaG (C); Y ∈ PaG (C) delete(X→C)

|PaG (C)| = 2 delete(Y→C); insert(Y —C)

∀Z ∈ ChG (C) if PaG (Z) = {C} {

delete(Z→C); insert(Z—C)}

D_ParentOfChild(X, Y ) X ∈ PaG (Y ); Y ∈ ChG (C) delete(X→Y )

|PaG (Y )|≥3 or PaG (C) �=∅
D_HHOfChild(X, Y ) X ∈ PaG (Y ); Y ∈ ChG (C) delete(X→Y )

|PaG (Y )| < 3; PaG (C) = ∅ delete(C→Y ); insert(C—Y )

A_ChildOfChild(X, Y ) X ∈ ChG (C) ∪ SibG (C) insert(X→Y )

Y �∈ AdG (X) ∪ AdG (C)

There is no directed path

from Y to X in G

D_ChildOfChild(X, Y ) Y ∈ ChG (X); Y �∈ ChG (C) delete(X→Y )

X ∈ ChG (C) ∪ SibG (C)
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Table 23 The operators for searching in the space of fringed C-DAGs, their conditions of applicability
and the required actions

Operator Conditions Actions

A_ParentOfC(X) X �∈ AdG (C) ∪ CoCG (C); insert(X→C)

A_ChildOfC(X) X �∈ AdG (C); insert(C→ X )

A_ParentOfChild(X, Y ) X �∈ AdG (Y ); Y ∈ ChG (C) insert(X→Y )

There is no directed path

from Y to X in G

D_ParentOfC(X) X ∈ PaG (C) delete(X→C)

D_ChildOfC(X) X ∈ ChG (C) delete(C→ X )

∀Z ∈ ChG (X)\ChG (C) delete(X→ Z )

∀Z ∈ PaG (X)\ChG (C)

delete(Z→ X )

D_ParentOfChild(X, Y ) X ∈ PaG (Y ); Y ∈ ChG (C) delete(X→Y )

A_ChildOfChild(X, Y ) X ∈ ChG (C) insert(X→Y )

Y �∈ AdG (X) ∪ AdG (C)

There is no directed path

from Y to X in G

D_ChildOfChild(X, Y ) Y ∈ ChG (X); Y �∈ ChG (C) delete(X→Y )

X ∈ ChG (C)

g(G ′ : D) = g(G : D)− gD(X, PaG(X))+ gD(X, PaG(X) ∪ {C})
(c) If the operator is A_SiblingOfC(X) then

g(G ′ : D) = g(G : D)− gD(X,∅)+ gD(X, {C})
(d) If the operator is A_HHOfC(X, Y ) then

g(G ′ : D) = g(G : D)− gD(C, {Y })+ gD(C, {X, Y })
(e) If the operator is A_ParentOfChild(X, Y ) then

g(G ′ : D) = g(G : D)− gD(Y, PaG(Y ))+ gD(Y, PaG(Y ) ∪ {X})
(f) If the operator is A_HHOfChild(X, Y ) then

g(G ′ : D) = g(G : D)− gD(Y, {C})+ gD(Y, {C, X})
(g) If the operator is D_ParentOfC(X) then

g(G ′ : D) = g(G : D)− gD(C, PaG(C))+ gD(C, PaG(C) \ {X})
(h) If the operator is D_ChildOfC(X) then

g(G ′ : D) = g(G : D)− gD(X, PaG(X))+ gD(X, PaG(X) \ {C})
(i) If the operator is D_SiblingOfC(X) then

g(G ′ : D) = g(G : D)− gD(X, {C})+ gD(X,∅)
(j) If the operator is D_HHOfC(X, Y ) then

g(G ′ : D) = g(G : D)− gD(C, PaG(C))+ gD(C, PaG(C) \ {X})
(k) If the operator is D_ParentOfChild(X, Y ) then

g(G ′ : D) = g(G : D)− gD(Y, PaG(Y ))+ gD(Y, PaG(Y ) \ {X})
(l) If the operator is D_HHOfChild(X, Y ) then

g(G ′ : D) = g(G : D)− gD(Y, {C, X})+ gD(Y, {C})
(m) If the operator is A_ChildOfChild(X, Y ) then
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g(G ′ : D) = g(G : D)− gD(Y, PaG(Y ))+ gD(Y, PaG(Y ) ∪ {X})
(n) If the operator is D_ChildOfChild(X, Y ) then

g(G ′ : D) = g(G : D)− gD(Y, PaG(Y ))+ gD(Y, PaG(Y ) \ {X})
It is important to remark that the evaluation of the operators D_ChildOfC and

D_SiblingOfC is somewhat particular, because we evaluate the effect of removing
only either the arc C → X or the link X—C but after that we also eliminate other
arcs (e.g. the fringes), in order to keep the resulting graph within the search space. For
example, the strict evaluation of the operator D_SiblingOfC(X) would give rise to

g(G ′ : D) = g(G : D)− gD(X, {C})+ gD(X,∅)
+

∑

Z∈ChG (X)\ChG (C)

(−gD(Z , PaG(Z))+ gD(Z , PaG(Z)\{X}))

If we evaluate these operators taking into account all the changes that their applica-
tion requires, then we would almost never use them. The reason is that the other arcs
involved represent true dependencies in the model and their removal almost surely
would decrease the score of the graph.

Appendix B: Some additional experiments

As we described in Sect. 5, the experiments comparing score+search versus constraint-
based algorithms were carried out considering different sample sizes: 100, 200, 500,
1000 and 10,000 samples. The results for 1,000 samples were already displayed there.
We present here the results obtained for the remaining sample sizes.

Table 24 Results on databases of size 100

Alarm Barley Boblo Hailfinder Insurance Pigs

Precision

PCMB 0.5428 0.1816 0.5514 0.5450 0.6249 0.8246

KIAMB 0.6469 0.1875 0.6260 0.5685 0.6976 0.7354

IAMB 0.6929 0.2000 0.6913 0.6149 0.7803 0.8104

DMB+BDeu 0.6322 0.4570 0.4966 0.5509 0.6616 0.9183

DMB+MIT 0.6712 0.6313 0.7000 0.8453 0.7568 0.8804

RPDMB+BDeu 0.5949 0.4514 0.3668 0.5459 0.6874 0.9325

RPDMB+MIT 0.6838 0.6271 0.6811 0.8351 0.7630 0.8699

Recall

PCMB 0.3649 0.0747 0.2113 0.3561 0.3180 0.8161

KIAMB 0.3761 0.0341 0.2378 0.2403 0.2637 0.5194

IAMB 0.4100 0.0359 0.2630 0.2759 0.3121 0.5855

DMB+BDeu 0.5769 0.1480 0.4565 0.2311 0.3336 0.6515

DMB+MIT 0.2968 0.1523 0.2309 0.4029 0.2015 0.5700

RPDMB+BDeu 0.5804 0.1693 0.5809 0.2452 0.3367 0.6825

RPDMB+MIT 0.3601 0.1794 0.2839 0.4477 0.2415 0.6837
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Table 24 continued

Alarm Barley Boblo Hailfinder Insurance Pigs

F measure

PCMB 0.3861 0.0871 0.2884 0.3740 0.3863 0.7980

KIAMB 0.4386 0.0561 0.3306 0.3186 0.3553 0.5795

IAMB 0.4744 0.0592 0.3645 0.3576 0.4121 0.6481

DMB+BDeu 0.5522 0.2059 0.4076 0.3014 0.4022 0.7186

DMB+MIT 0.3720 0.2330 0.3837 0.4968 0.2966 0.6544

RPDMB+BDeu 0.5423 0.2228 0.4124 0.3152 0.4236 0.7530

RPDMB+MIT 0.4310 0.2618 0.4285 0.5404 0.3451 0.7326

Table 25 Results on databases of size 200

Alarm Barley Boblo Hailfinder Insurance Pigs

Precision

PCMB 0.7055 0.2969 0.6609 0.6342 0.7810 0.9668

KIAMB 0.6829 0.4167 0.6435 0.6264 0.7409 0.7462

IAMB 0.7623 0.4708 0.6667 0.6507 0.8027 0.7947

DMB+BDeu 0.7490 0.5403 0.4997 0.6383 0.7286 0.9621

DMB+MIT 0.7609 0.6813 0.7478 0.9280 0.7930 0.9439

RPDMB+BDeu 0.7522 0.5332 0.4051 0.6286 0.7443 0.9643

RPDMB+MIT 0.7609 0.6813 0.7173 0.9159 0.7833 0.9364

Recall

PCMB 0.4543 0.2630 0.2252 0.4815 0.3512 0.9560

KIAMB 0.4785 0.0819 0.2848 0.3749 0.3730 0.7612

IAMB 0.5412 0.0961 0.2909 0.3923 0.3952 0.8206

DMB+BDeu 0.6788 0.1766 0.4339 0.2883 0.3986 0.8024

DMB+MIT 0.3895 0.1818 0.2670 0.5247 0.3148 0.7832

RPDMB+BDeu 0.7081 0.2205 0.5748 0.3120 0.3736 0.9078

RPDMB+MIT 0.4796 0.2102 0.3691 0.5969 0.3329 0.9431

F measure

PCMB 0.5115 0.2380 0.3304 0.4392 0.4651 0.9543

KIAMB 0.5270 0.1321 0.3733 0.4375 0.4661 0.7135

IAMB 0.5939 0.1531 0.3839 0.4562 0.4991 0.7657

DMB+BDeu 0.6658 0.2475 0.4245 0.3679 0.4845 0.8537

DMB+MIT 0.4716 0.2683 0.4234 0.6189 0.4221 0.8271

RPDMB+BDeu 0.6915 0.2831 0.4535 0.3867 0.4696 0.9273

RPDMB+MIT 0.5477 0.3008 0.4964 0.6745 0.4424 0.9304
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Table 26 Results on databases of size 500

Alarm Barley Boblo Hailfinder Insurance Pigs

Precision

PCMB 0.8356 0.3540 0.6435 0.6971 0.8351 0.9825

KIAMB 0.8102 0.6042 0.6574 0.5625 0.8207 0.7843

IAMB 0.8710 0.6771 0.7181 0.5896 0.8588 0.8189

DMB+BDeu 0.8391 0.6289 0.5369 0.7665 0.8381 0.9873

DMB+MIT 0.8330 0.8044 0.7565 0.9479 0.8794 0.9764

RPDMB+BDeu 0.8557 0.6125 0.5155 0.7599 0.8401 0.9955

RPDMB+MIT 0.8247 0.7896 0.7348 0.9240 0.8826 0.9847

Recall

PCMB 0.6911 0.5602 0.2304 0.6296 0.4617 0.9993

KIAMB 0.6795 0.1728 0.3630 0.4209 0.4938 0.7989

IAMB 0.7173 0.1971 0.4022 0.4449 0.5184 0.8385

DMB+BDeu 0.7728 0.2330 0.5139 0.4207 0.5259 0.8938

DMB+MIT 0.6545 0.2688 0.2957 0.5874 0.4879 0.8694

RPDMB+BDeu 0.7931 0.2628 0.6230 0.4557 0.5187 0.9842

RPDMB+MIT 0.6986 0.3363 0.4717 0.7055 0.5146 0.9983

F measure

PCMB 0.7238 0.3946 0.3210 0.5377 0.5727 0.9893

KIAMB 0.7119 0.2551 0.4288 0.4427 0.5876 0.7499

IAMB 0.7574 0.2906 0.4755 0.4675 0.6156 0.7860

DMB+BDeu 0.7749 0.3095 0.4836 0.5057 0.6188 0.9250

DMB+MIT 0.7022 0.3725 0.4463 0.6760 0.5900 0.9037

RPDMB+BDeu 0.7931 0.3368 0.5527 0.5338 0.6088 0.9879

RPDMB+MIT 0.7267 0.4332 0.5690 0.7505 0.6213 0.9896

Table 27 Results on databases of size 10,000

Alarm Barley Boblo Hailfinder Insurance Pigs

Precision

PCMB 0.9708 – 0.8000 0.6573 0.9526 –

KIAMB 0.8700 0.6514 0.7431 0.5684 0.8456 0.5357

IAMB 0.8863 0.7320 0.8123 0.5922 0.8786 0.5434

DMB+BDeu 0.9047 0.8298 0.8285 0.8985 0.8828 0.9876

DMB+MIT 0.8720 0.7843 0.8696 0.9260 0.8575 0.9780

RPDMB+BDeu 0.9068 0.8297 0.8234 0.8770 0.9087 0.9977

RPDMB+MIT 0.8955 0.7699 0.8696 0.9323 0.8940 0.9969

Recall

PCMB 0.9036 – 0.4261 0.4432 0.6951 –

KIAMB 0.8784 0.4017 0.5787 0.6714 0.7566 0.9698

IAMB 0.8915 0.4407 0.6283 0.6599 0.7681 0.9752
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Table 27 continued

Alarm Barley Boblo Hailfinder Insurance Pigs

DMB+BDeu 0.8812 0.5344 0.6283 0.6729 0.7239 0.9191

DMB+MIT 0.8596 0.5765 0.4978 0.6689 0.7661 0.8813

RPDMB+BDeu 0.9121 0.5034 0.7496 0.7416 0.7240 1.0000

RPDMB+MIT 0.9110 0.6568 0.7261 0.8173 0.8076 1.0000

F measure

PCMB 0.9279 – 0.5230 0.4977 0.7860 –

KIAMB 0.8606 0.4698 0.6059 0.5430 0.7730 0.6482

IAMB 0.8757 0.5176 0.6635 0.5630 0.7954 0.6555

DMB+BDeu 0.8727 0.5973 0.7255 0.7286 0.7667 0.9413

DMB+MIT 0.8454 0.6189 0.6403 0.7240 0.7755 0.9115

RPDMB+BDeu 0.8942 0.5700 0.7959 0.7799 0.7773 0.9985

RPDMB+MIT 0.8868 0.6727 0.7897 0.8282 0.8239 0.9979
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