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aDepartamento de Ciencias de la Computación e I.A., Universidad de Granada, Escuela Técnica Superior de
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Abstract

Due to the uncertainty of many of the factors that influence the performance of an emergency

medical service, we propose using Bayesian networks to model this kind of system. We use different

algorithms for learning Bayesian networks in order to build several models, from the hospital

manager’s point of view, and apply them to the specific case of the emergency service of a Spanish

hospital. This first study of a real problem includes preliminary data processing, the experiments

carried out, the comparison of the algorithms from different perspectives, and some potential uses of

Bayesian networks for management problems in the health service.
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1. Introduction

Over the past four decades, a lot of effort has been put into developing medical decision

support systems. There is a great variety of commercially available programs to assist

clinicians with diagnosis, decision-making, pattern recognition, medical reasoning, filter-

ing, etc. both for general and very specialized domain applications. In recent years,
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however, it has become clear that it is not only physicians but health professionals in other

areas as well who also need decision support: e.g. nursing, health administration, medical

education, patient care, etc. This paper is concerned with management in the health service,

but not as an isolated system component, since there is a great deal of interdependence

between components (for instance, clinical actions affect the treatment cost per patient;

conversely, reorganization and changes in the scheduling administration may change the

medical procedures). Moreover, they may have conflicting goals. Thus, from a hospital

manager’s perspective, a trade-off between quality of service and financial costs with

budgetary limitations must be found.

Health-care systems are complex and depend on organizational, economical, and

structural factors. The availability of appropriate tools for their representation would

allow the interactions between the different elements that determine their behavior to be

studied and understood, as well as some alternatives to be analyzed so as to improve their

performance. As many of the factors that influence the performance of a health-care system

are uncertain, Bayesian networks could play an important role in their study as formal

models to represent knowledge and handle uncertainty. We wish to take advantage of their

ability to describe the interactions between variables explicitly. An example of the interest

for managing resources for geriatric services in a hospital using Bayesian networks can be

found in [22], which aims to forecast the duration of stay and destination on discharge of

elderly people.

In this paper, we introduce some representation models, based on Bayesian networks,

which are applied to the specific case of an emergency medical service. These models have

been obtained from real data recorded at the hospital ‘‘Virgen de las Nieves’’, by using

several algorithms for learning Bayesian networks. Although our long-term objective is to

develop a management-oriented decision support system, in this paper we focus on a less

ambitious but necessary preliminary aspect: the study of the capabilities of different

Bayesian network learning algorithms in order to generate useful models for this problem.

We have therefore selected a representative subset of the currently available algorithms for

learning Bayesian networks and we have carried out a series of experiments to evaluate

their behavior from different perspectives.

The paper is structured as follows: in Section 2 we shall describe the problem to be

studied, the available data, and the pre-processing steps (discretization, variable selection,

etc.) which are used to obtain a suitable database for the learning algorithms. In Section 3,

we comment on the different learning algorithms we have considered for our experiments.

Section 4 describes the networks obtained for the different algorithms. In Section 5, we

summarize the results of several experiments, which attempt to assess the quality of the

networks from different points of view. Finally, Section 6 discusses the conclusions of this

work.

2. The problem

As we have already mentioned, we wish to model certain aspects of the health-care

system for patients arriving at a hospital’s emergency department. Our first aim is simply to

better understand the interactions between some of the factors that shape this system, and
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obtain a model that describes the nature of the system reasonably well. This model could

then be used to make predictions about some of the variables of interest, or even to make

decisions about the configuration of the system itself. Our approach is management

oriented, and attempts to help the hospital manager in organizational and economical

questions (for example, the possible redistribution or reinforcement of personnel and/or

infrastructure) rather than clinical problems (although a better use of the available

resources would also imply an improvement in the medical care).

2.1. The data set

From the set of variables which are collected when a patient enters the emergency

department, the variables displayed in Table 1 were initially selected. Some of these are

recorded when the patient arrives, others once the patient has been treated (although no

patient clinical data is taken into account). In this table, we also show either the number of

possible values or the range for each variable. For the experiments we had at our disposal a

database containing 31,937 records (corresponding to all the arrivals to the emergency

departments of the hospital ‘‘Virgen de las Nieves’’ at Granada, from 01 January–20

February 2001), although we could dispose of a separate data set of 12,291 records,

corresponding to the next admissions, occurred from 21 February–10 March 2001. This

second dataset will be used as a test set in our experiments.

Financing represents the type of entity that covers the expenses (Social Security,

Insurance Companies, International Agreements, Mutual Health Insurance, etc.). Cause

of Admission codifies eight different values (considered as confidential by the hospital

staff). Pathology includes Common Disease, Common Accident, Industrial Accident,

Traffic Accident, Aggression, Self-inflicted Lesion and Other. P10 represents whether

the patient was sent to the emergency medical service by a family doctor. Identification

codifies the type of patient’s identification document (Identity Card, Social Security

Card, Passport, Oral Identification, Unidentified and Other). Cause of discharge repre-

sents several reasons (Return to Duty, Death, Hospitalization, Transfer to Another

Hospital, Voluntary Discharge, Indeterminate, etc.). Medical Service includes all of the

Table 1

Variables initially considered

Variable Possible values

Financing 10

Date of Admission Date

Time of Admission 0:01–24:00

Cause of admission 8

Pathology 7

P10 2

Identification 6

Date of Discharge Date

Time of Discharge 0:01–24:00

Cause of Discharge 9

Medical Service 36
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36 different emergency units at the hospital (Hematology, Intensive Care, Endocrinol-

ogy, etc.). All of the variables described (those in italics in Table 1) were used just as they

were, but for the remaining four variables in Table 1, some additional treatment was

necessary.

2.2. Pre-processing of data

We have discretized some variables as follows:

� Date of Admission. We discretized this into seven values, corresponding to the days of

the week. From now on, we shall call this variable Day.

� Time of Admission. We discretized this into three values, corresponding to the three

different time periods of the day: morning (8:01–15:00), evening (15:01–22:00) and

night (22:01–8:00). From now on, we shall call this variable Shift.

We also defined any new variables which were considered relevant:

� Duration. The length of time (h) that the patient stayed in the emergency department.

This value is calculated from the values of Date and Time of Admission and Date and

Time of Discharge. In addition, this new variable was discretized into three values (from

0 to 8 h, from 8 to 72 h, and more than 72 h) which were considered meaningful by the

physicians. They correspond, respectively, to ‘normal’, ‘complicated’ and ‘anomalous’

cases.

� Centre. The hospital has three different emergency departments corresponding to the

three centres that comprise it (Maternity Hospital, Orthopedic Surgery, and General

Hospital).

The variables Date and Time of Discharge were considered irrelevant for our purposes,

since the truly relevant information is the Duration of stay. These two variables were

therefore removed. Consequently, we have considered a total of 11 variables, which are

showed in Table 2. Note that the size of the space of states for the 11 variables is quite large:

411,505,920 possible configurations.

Table 2

Variables used in our model

Variable Possible values

Financing 10

Day 7

Shift 3

Cause of admission 8

Pathology 7

P10 2

Identification 6

Duration 3

Cause of discharge 9

Medical service 36

Centre 3
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3. The learning algorithms

As we are looking for a representative model for our problem, we used several algorithms

for learning the structure of a Bayesian network from the data set containing 31,937 cases.

The selected algorithms are driven by different principles and/or metrics, so the resulting

models may differ in their results—the relationships they extract. On the one hand, we aim to

compare their performance on a real problem; on the other hand, the arcs appearing in all the

learned networks could be considered as being the ‘core’ for this representation model. Any

consensus Bayesian network should be built from this shared structure.

Although there are a great many algorithms for learning Bayesian networks from data,

they can be subdivided into two general approaches: methods based on conditional

independence tests, and methods based on a scoring function and a search procedure.

There are also hybrid algorithms that use a combination of independence-based and

scoring-based methods.

The algorithms based on independence tests perform a qualitative study of the

dependence and independence relationships between the variables in the domain, and

attempt to find a network that represents these relationships as far as possible. They

therefore take a list of conditional independence relationships (obtained from the data by

means of conditional independence tests) as the input, and generate a network that

represents most of these relationships. Some of the algorithms based on this approach

can be found in [10,12,26].

The algorithms based on a scoring function (also called a metric) attempt to find a graph

that maximizes the selected score; the scoring function is usually defined as a measure of fit

between the graph and the data. All use a scoring function combined with a search method

in order to measure the goodness of each explored structure from the space of feasible

solutions. During the exploration process, the scoring function is applied in order to

evaluate the fitness of each candidate structure to the data. Each algorithm is characterized

by the specific scoring function and search procedure used. The scoring functions are based

on different principles, such as entropy [19], Bayesian approaches [8,14,18], or the

Minimum Description Length (MDL) [6,21].

We have used the following algorithms, which are a representative sample of the

different approaches for learning Bayesian networks:

� PC [26], an algorithm based on independence tests. It starts by forming the complete

undirected graph, which it then thins by removing edges with zero order conditional

independence relationships, and then rethins with first order conditional independence

relationships, and so on. The set of variables conditioned only needs to be a subset of the

set of variables adjacent to one or other of the variables conditioned; this is constantly

changing as the algorithm progresses. We used an independence test based on the measure

of conditional mutual information [20], with a fixed confidence level equal to 0.99.

� Another algorithm, the BN Power Constructor (BNPC), uses independence tests and

mutual information [12]. This algorithm has a three-phase operation: drafting, thicken-

ing, and thinning. In the first phase, the algorithm computes mutual information of each

pair of nodes as a measure of closeness, and creates a draft based on this information. In

the second phase, the algorithm adds arcs when the pairs of nodes are not conditionally
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independent on a certain conditioning set. In the third phase, each arc is examined using

conditional independence tests and will be removed if the two nodes of the arc are

conditionally independent.

� A scoring-based algorithm, that uses local search (LS) in the space of directed acyclic

graphs (DAGs) [18]. This kind of method starts from an initial DAG and, at each step,

performs the local change (operator) yielding the maximal gain, until a local maximum

of the scoring function is reached. In our case, the local search used is based on the

classical operators of arc addition, deletion and reversal (and an initial empty graph).

The (Bayesian) scoring function considered is BDeu1 [18]. We used BDeu since it is by

far the most popular scoring function in recent Bayesian network learning literature.

We also carried out experiments with scoring-based algorithms using more powerful

search heuristics than a simple local search: Tabu Search (TS) [7] and Variable

Neighborhood Search (VNS) [11]. However, we obtained exactly the same results

as those of LS (and therefore, we do not report them separately).

� A version of the BENEDICT
2 (BE) algorithm [5]. This algorithm, which searches in the

space of equivalence classes of DAGs, is based on a hybrid methodology [1] (other

versions of BENEDICT, that search in the space of DAGs with a given ordering of the

variables, and use a slightly different metric, can be found in [3,4]). In contrast to other

approaches [15,28] that maintain the independence-based and scoring-based algorithms

as separate processes, combined in some way, in this case the hybridization is based on

the development of a scoring function that quantifies the discrepancies between the

independences displayed by the candidate network and the database, and the search

process is limited by the results of some independence tests. The basic idea of this

algorithm is to measure the discrepancies between the conditional independences

represented in any given candidate network G and those displayed by the database.

The smaller these discrepancies are, the better the network fits the data. The aggregation

of all these local discrepancies results in a measure of global discrepancy between the

network and the database (this is the scoring function to be minimized). The local

discrepancies are measured using the conditional mutual information between pairs of

non-adjacent variables in the candidate graph G, given a d-separating set of minimum

size [2]. The main search process is greedy and only addition of arcs is permitted,

although a final refining process (reinsertion of discarded arcs and pruning of inserted

arcs) mitigates the irrevocable character of the whole search method.

The experiments we shall describe have been performed using our own implementations

for the cases of PC, LS, and BE. The first two algorithms are integrated in the Elvira3

software package available at http://leo.ugr.es/�elvira. For BNPC, we used the software

package available at http://www.cs.ualberta.ca/�jcheng/bnsoft.htm.

In order to compute the conditional (or marginal) probability distributions stored at each

node in the network, thus obtaining a complete Bayesian network, we used a maximum

likelihood estimator (frequency counts) in all the cases.

1 With the value of the equivalent sample size parameter set to 1 and a uniform structure prior.
2 Acronym for BElief NEtwork DIscovery using Cut-set Techniques.
3 An environment for the edition, evaluation and learning of Bayesian networks and influence diagrams,

developed as a research project in our department, in collaboration with other Spanish universities.
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4. Results

After running the learning algorithms, we obtained four different networks, and these are

displayed in Fig. 1. We do not assume a causal interpretation of the arcs in the networks,

although in some cases this might be reasonable (other approaches that explicitly try to

detect causal influences are discussed in [17,24]). Instead, we interpret the arcs as direct

dependence relationships between the linked variables, and the absence of arcs means the

existence of conditional independence relationships.

In order to summarize the differences and resemblances between models, Table 3 shows

the two numbers l=a for each pair of algorithms, where l is the number of common edges

(in either direction), and a the number of common arcs4 between the networks learned by

these algorithms. The main diagonal in this table represents the number of arcs contained in

each network. Fig. 2 displays the edges in common to all the networks: three arcs and five

Cause Admission

Cause Discharge

Shift

P10 Medical Service Pathology

Duration

Identification

Financing

Day Centre

11 arcs

(a)

Cause Admission

Cause Discharge

Shift

P10 Medical Service Pathology

Duration

Identification

Financing

Day Centre

17 arcs

(b)

Cause Admission

Cause Discharge

Shift

P10 Medical Service Pathology

Duration

Identification

Financing

Day Centre

16 arcs

(c)

Cause Admission

Cause Discharge

Shift

P10 Medical Service Pathology

Duration

Identification

Financing

Day Centre

13 arcs

(d)

Fig. 1. The different structures recovered by the selected algorithms: (a) PC, (b) LS, (c) BE and (d) BNPC.

4 Taking into account the fact that the direction of some arcs is not relevant, i.e. if we change the direction of

these reversible arcs, we obtain an equivalent model [25].
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undirected edges5. We also display two additional edges in this figure that are supported by

all the networks except one. Note that the number of possible edges in this domain is 55,

and only a total of 26 different edges appear in these models. The four models therefore

agree in the presence of 8 edges and the absence of 29 edges, i.e. the existence of 8 direct

dependence and 29 conditional independence assertions between pairs of variables.

The direct dependence relationships that are common to all models may be explained in

the following way: the reason for the strong relation between Pathology and Financing6 is

due to the fact that different entities cover the expenses depending on the type of pathology

(Traffic Accident, Industrial Accident, etc.). Financing also depends on Identification

(obviously the expenses will only be covered by a particular entity or company if the

patient can be identified as belonging to this entity). The connection between Pathology

and Cause of Admission is obvious. The relation between Cause of Admission and Shift

may be due to the fact that the reason for going to the emergency department varies

according to the arrival time. The connection between Medical Service and Centre is

justified because Centre is a variable functionally dependent on Medical Service (each

Table 3

Number of common links and arcs, l=a, between pairs of learned networks

PC LS BE BNPC

PC 11/11 9/8 9/7 8/5

LS – 17/17 12/10 9/7

BE – – 16/16 10/7

BNPC – – – 13/13

5 In the last ones, there was some disagreement in the directionality of the edges: in Fig. 2, an undirected edge

A–B means that each network contains either the arc A! B or the arc A B.
6 This link was introduced into the graph at a very early stage by the different algorithms when their respective

models were constructed.

Cause Admission

Cause Discharge

Shift

P10 Medical Service Pathology

Duration

Identification

Financing

Day Centre

Fig. 2. The incomplete structure shared by all the networks (solid lines). Dashed lines represent edges shared by

three of the four networks.
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Centre has its own emergency medical units). The Duration of the stay at the emergency

department essentially depends only on the medical unit (Medical Service) that treated the

patient, and the Cause of Discharge (the seriousness of the diseases and the degree of

congestion of the service, which are strongly related with the duration of the stay, probably

vary from one unit to another). In turn, these two variables are highly correlated: for

example, the cause of discharge being death is much more unlikely for some medical units

than others. Some of these relationships are more or less obvious, but others, although they

may not be particularly remarkable, may be useful for management purposes: the edge

connecting Cause of Admission and Shift may suggest a reinforcement of some Services

for some Shifts. Similarly, the fact that only Cause of Discharge and Medical Service

directly influence the Duration of the stay (all the remaining variables being conditionally

independent of Duration) suggests the need for a detailed study of these three variables in

order to better understand why some medical units require a longer stay than others.

Each network, in addition to the eight direct dependence relationships described above,

represents other connections. For example, three of the four models establish an edge

linking Medical Service and Pathology, which is, in our opinion, quite plausible. Three of

the networks also find a direct connection between Shift and P10, which may indicate that

the arrival pattern is different according to whether the patients have a P10 document or

not. Two of the models establish a (probably weak) connection between the existence of a

P10 document and the three variables Day, Medical Service, and Identification. Finally,

there are several edges which are supported by only one network model.

Apart from these dependence relations, by using the graphical criterion of independence

called d-separation [23], we also can obtain a number of conditional independence

relationships, some of which might contribute useful information. For example, all the

models indicate that Pathology and Cause of Discharge are independent once Medical

Service is known; in addition, Financing and Duration are conditionally independent given

Pathology (and given Pathology together with any other subset of variables).

With respect to the algorithm running times, it is not very useful in this case to make time

comparisons, since the algorithms proceed from different sources (except PC and LS) and

they were run over different platforms. In any case, our implementations of PC, LS, and BE

were quite fast: they required 63, 41, and 30 s, respectively, in order to learn the structure of

the corresponding networks.

5. Experiments

When we have a set of different algorithms for performing a task (or the only algorithm

available may run with different parameters), and the obtained results (the network models)

are different, it is useful to provide some criteria in order to select a preferred model.

In order to assess the quality of the different network models, one of the most commonly

used criteria is the percentage of classification success. However, while it is important to

stress the representation power of the Bayesian networks for a given problem, there is not a

unique classification variable: from a manager’s perspective, the duration of the stay, the

involved medical unit or even the shift might be of interest. Consequently, other additional

evaluation methods are therefore necessary. We need some measures that assess the degree
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of discrepancy or the fitness of a network to the available data, for example the probability

that the data have been generated by a given network model.

We have collected the following performance measures about the networks obtained

with the different learning algorithms:

� The Kullback–Leibler (KL) distance (cross-entropy) between the probability distribu-

tion, PD, associated to the database D (the empirical frequency distribution), and the

probability distribution associated to the learned network, PG. In this way, we attempt to

assess the performance of the algorithm from the perspective of how closely the

probability distribution learned approximates the empirical frequency distribution. We

have in fact calculated a decreasing monotonic transformation of the Kullback–Leibler

distance, since this has exponential complexity and the transformation may be com-

puted very efficiently [9]. The interpretation of our transformation of the Kullback–

Leibler distance is: the higher this value, the better the network fits the data. However,

this measure should be handled cautiously, because a high KL value may also indicate

overfitting (a network with many edges will probably have a high KL value).

� The values (in log version) of the K2 [14], the BDeu [18], and the BIC [27] metrics for

the learned networks. These measures can offer an idea of the quality of the networks

from different points of view. BDeu and K2 are Bayesian metrics, and both measure the

marginal likelihood PðDjGÞ (which, together with a uniform structure prior, PðGÞ,
enables us to compute PðG;DÞ). The difference between BDeu and K2 lies in the

choice of the priors for the conditional Dirichlet distributions of the network para-

meters given a fixed structure7. The Bayesian Information Criterion (BIC) metric is a

penalized version of the likelihood PðDjĜÞ (with the parameters associated to the

network structure estimated using maximum likelihood), and contains an explicit

penalty term for network complexity. It should be noted that the BIC metric can also

be seen as an MDL metric. In all three cases, the higher the value of the metric, the better

the network.

The values of the different metrics for all the networks considered are showed in Table 4.

We have also computed the performance measures corresponding to the empty network

(;em), which is obviously a rather poor model (with no interaction between the variables),

but its corresponding values may serve as a kind of base line. In the table, the numbers in

brackets represent, for each metric, the relative merit of each algorithm (with (1)

corresponding to the best value, and (5) to the worst one). We also show the number

of arcs included in each network8.

In the light of the resulting values, we can conclude that the LS algorithm performs quite

well with respect to all the metrics. Moreover, LS is the algorithm that obtains the densest

network (17 arcs). On the other hand, PC produces the sparsest network (11 arcs) and

obtains bad KL, K2, and BDeu values. The BE and BNPC algorithms obtain quite balanced

networks with respect to all the metrics and an intermediate number of arcs. It should be

7 BDeu uses a uniform joint distribution whereas K2 uses a distribution that is locally but not globally

uniform.
8 This number may be of assistance when selecting simpler networks, according to Occam’s razor, if other

measures do not discriminate between models.
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noted that we are using a logarithmic version of the metrics, so the differences are much

greater in a non-logarithmic scale.

In order to test a possible overfitting of the networks to the data, we have also computed

the same performance measures but using a test set which differs from the training set used

to learn the networks (the data set containing 12,291 cases). The results are showed in

Table 5.

We can see that the results in Table 5 are similar to the ones obtained in Table 4. We can

therefore conclude that from the point of view of the selected performance measures, the

best algorithm for this domain is LS, the worst is PC, whereas BE and BNPC obtain

intermediate results.

However, an important question is whether the differences between the networks in

terms of these metrics also lead to differences in terms of the usefulness of these networks

for specific situations.

As we mentioned above, the networks learned can also be used with predictive purposes,

by using the inference methods (propagation of evidence) available for Bayesian networks.

More precisely, from the perspective of a classification problem, we want to use the

networks in order to predict the most probable values of any variable of interest given some

evidence, and compare the predictions obtained with the true values of this variable, thus

obtaining the corresponding percentages of success. For this purpose, we have considered

three different situations:

(a) Predicting the values of Duration, given evidence about the values of all the other

variables, except Cause of Discharge. In this way, we attempt to determine the most

Table 4

Performance measures for the different learned networks, with respect to the training set

Algorithm Metrics Number of arcs

KL K2 BIC BDeu

BE 2.447 (3) 
101016 (2) 
243420 (2) 
233339 (3) 16

PC 2.152 (4) 
104834 (4) 
249509 (3) 
240611 (4) 11

LS 2.490 (1) 
100241 (1) 
243243 (1) 
229728 (1) 17

BNPC 2.485 (2) 
101308 (3) 
258123 (4) 
231768 (2) 13

;em 0.000 (5) 
133315 (5) 
306937 (5) 
306874 (5) 0

Table 5

Performance measures for the different learned networks, with respect to the test set

Algorithm Metrics

KL K2 BIC BDeu

BE 2.35 (3) 
38740 (2) 
99483 (1) 
89643 (3)

PC 2.07 (4) 
39972 (4) 
99816 (2) 
91238 (4)

LS 2.40 (1) 
38324 (1) 
99896 (3) 
87279 (1)

BNPC 2.40 (1) 
39054 (3) 
113297 (4) 
88776 (2)

;em 0.00 (5) 
49969 (5) 
115032 (5) 
114974 (5)
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probable duration of the stay at the emergency department before the patient is

effectively discharged.

(b) Predicting the values of Medical Service, given evidence relative to all the remaining

variables, except Pathology, Cause of Discharge, and Duration, which would be

unknown at the time the patient arrives. If accurate, this prediction could serve to

direct the arriving patient to the appropriate emergency unit.

(c) Predicting the value of each of the 11 variables, given evidence about all the 10

remaining variables. In this way, we attempt to test the behavior of the network

models for different problems. This experiment could serve to assess the robustness

of the networks as general classifiers (as opposed to having to manage a different

model to classify each variable of interest).

For all the classification problems, we used the previously learned networks and the

success percentages were calculated using the independent test set containing 12,291

cases.

Table 6 displays the percentages of success of the different networks for the first two

classification problems considered. In the case of predicting the duration of the stay, all the

learned networks perform equally well, whereas in the other situation, PC and BE obtain

the best results. With respect to predicting the duration of the stay, it should be noted that

the results are worse than the ones obtained by the empty network. The reason is that the

distribution of the duration of the stay is rather biased towards its first value (from 0 to 8 h),

and therefore the default rule, which assigns the ‘a priori’ most probable class to all the

cases, obtains a high percentage of correct classifications9. For the problem of predicting

the medical service involved, the results remarkably outperform the prediction of the

empty network.

Table 7 displays the percentages of success of the different networks for the other 11

classification problems. The results are somewhat surprising, because the supposedly best

algorithm, LS, performs rather poorly, whereas BE and BNPC obtain the best results.

In the light of the poor result obtained by LS from a classificatory point of view, we raise

the following question: Is this result due to the specific metric (BDeu) being considered? In

other words, could an LS algorithm equipped with another scoring metric outperform the

results obtained by BE and BNPC (which are algorithms based on independence tests

instead on scoring metrics)? In order to answer this question, we have considered two

Table 6

Success percentages of classification for Duration and Medical Service, using the test set

Algorithm Duration (%) Medical Service (%)

BE 91.6 (2) 75.0 (2)

PC 91.6 (2) 76.1 (1)

LS 91.6 (2) 74.5 (3)

BNPC 91.6 (2) 71.5 (4)

;em 96.1 (1) 31.9 (5)

9 A finer discretization of the variable Duration would probably lead to much better results.
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Table 7

Success percentages of classification for the 11 variables, using the test set

BE PC LS BNPC ;em

CoA% 91.7 (2) 91.6 (3) 88.1 (5) 91.8 (1) 91.4 (4)

CoD% 75.6 (1) 74.3 (2) 74.3 (2) 74.3 (2) 62.4 (5)

Cen% 100 (1) 100 (1) 94.3 (4) 100 (1) 39.6 (5)

Day% 13.8 (1) 13.2 (2) 12.6 (3) 12.6 (3) 12.6 (3)

Dur% 91.4 (2) 91.4 (2) 91.4 (2) 91.4 (2) 96.1 (1)

Fin% 93.7 (2) 93.7 (2) 93.6 (3) 93.6 (3) 93.8 (1)

Ide% 81.9 (2) 79.1 (3) 79.1 (3) 79.1 (3) 82.2 (1)

MS% 81.8 (2) 81.6 (3) 81.6 (3) 83.0 (1) 31.9 (5)

P10% 95.2 (1) 95.2 (1) 95.2 (1) 95.2 (1) 95.2 (1)

Pat% 83.3 (1) 81.9 (4) 83.3 (1) 83.3 (1) 80.7 (5)

Shi% 46.2 (2) 45.1 (5) 45.9 (3) 46.6 (1) 45.8 (4)

Table 8

Number of common links and arcs, l=a, between pairs of learned networks, using the LS algorithm and different

metrics

LS þ BDeu LS þ BIC LS þ K2

LS þ BDeu 17/17 12/10 14/11

LS þ BIC – 13/13 12/11

LS þ K2 – – 27/27

Table 9

Performance measures for the different learned networks, with respect to the training set, using the LS algorithm

and different metrics

KL K2 BIC BDeu

LS þ K2 2.59 (1) 
99679 (1) 
12855896 (3) 
242665 (3)

LS þ BIC 2.43 (3) 
100530 (3) 
233672 (1) 
230545 (2)

LS þ BDeu 2.49 (2) 
100241 (2) 
243243 (2) 
229728 (1)

Table 10

Success percentages of classification for Duration and Medical Service, using the LS algorithm and different

metrics

Algorithm Duration (%) Medical Service (%)

LS þ BDeu 91.6 74.5

LS þ BIC 91.6 76.1

LS þ K2 91.6 76.1
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additional scoring metrics, K2 and BIC, and we have used them within an LS algorithm.

We have then carried out the same experiments. The results are showed in Tables 8–11.

From Table 8, we can see that LSþ BIC produces a rather sparse network, as expected

(see Fig. 3), whereas LSþ K2 obtains an extremely dense network.

In Table 9, we can see that each algorithm obtains its best score with the metric used to

guide the search process. Globally, LSþ BDeu seems to be slightly more robust than the

other metrics.

With respect to the classification problems, we should remark that, due to the great

complexity of the network obtained by LSþ K2, we were not able to perform the

propagations.10 For this reason, the results displayed for LSþ K2 refer to a pruned

network containing only the first 18 arcs of the original network. The results in Tables 10

and 11 show that the simpler network built using LSþ BIC performs much better than

LSþ BDeu. Nevertheless, BE and BNPC are still preferable for classification purposes.

Observing the results of the experiments, it is quite surprising that the combination of an

algorithm such as LS (and it should be remembered that we obtained the same results as LS

using more powerful search methods) and the metric BDeu, both of which are very common

in the literature, does not obtain good results on this problem. The use of a non-Bayesian

metric such as BIC, within the scoreþ search paradigm, improves the results. However,

other algorithms, based on independences, such as BNPC (even the classic PC), or the

hybrid BENEDICT, perform better. A possible explanation might be based on the following

observation: as we mentioned above, there is a variable, Centre, which is functionally

dependent on Medical Service in our domain; therefore, Centre is conditionally independent

of any other variable given Medical Service. Despite this, all the scoreþ search algorithms

include several edges linking Centre with several variables other than Medical Service

(whereas in the independence-based algorithms these arcs connect Medical Service with

exactly the same variables). Perhaps the problem arises because Medical Service is a

variable with 36 cases, whereas Centre only has 3 cases. A conditional independence test (or

the independence-based metric used by BENEDICT) can easily detect this independence, but

Table 11

Success percentages of classification for the 11 variables, using the LS algorithm and different metrics

LS þ BDeu LS þ BIC LS þ K2

CoA% 88.1 91.9 87.9

CoD% 74.3 74.6 74.3

Cen% 94.3 99.9 94.1

Day% 12.6 12.6 11.9

Dur% 91.4 91.6 91.4

Fin% 93.6 93.7 93.6

Ide% 79.1 82.1 79.0

MS% 81.6 81.8 81.5

P10% 95.2 95.2 95.2

Pat% 83.3 81.9 80.5

Shi% 45.9 45.4 42.3

10 In order to give an idea of the complexity of this network, the amount of disk space required to store it was

54 Mb, while LSþ BDeu required only 27 Kb.
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all the metrics considered appear to be rather sensitive to the number of cases of the

variables, and penalize edges involving variables with a high number of cases.

In addition to the ability of Bayesian networks to represent available information

intelligibly and to make predictions when new data is received, they can also be useful

tools for performing specific inference tasks such as those requested by a hospital manager: a

network model can be used to compute the posterior probability of any variable in different

contexts. In the following experiment, in order to illustrate this possibility, we have calculated

the posterior probability distribution of Shift given P10 and Day for all the possible values of

these two variables (using the network learned by BE). Table 12 summarizes the results.

It is interesting to note how the pattern of arrival at the emergency medical services is

homogeneous for the different days (including the weekend), but this pattern is different

according to whether the patient has a P10 document or not (as expected, patients with a

P10 document arrive more frequently in the morning); this would allow patient categories

to be defined.

With the same process, the manager could study anomalous cases, for instance, the

duration of stays longer than 72 h (theses cases represent almost 1% of the database). Given

that the variable Duration reaches its greatest value, we have computed the posterior

probability distributions of the variables Centre and Medical Service. The Centre involved

is almost always the same (with a probability greater than 0.99), and there are basically

only two medical units involved (with probabilities of 0.87 and 0.11). Another sign which

reveals some kind of anomaly is that in these cases the variable Cause of Discharge takes

the value ‘‘indeterminate’’ with a probability of 0.88.

Fig. 3. Structure recovered by the LSþ BIC algorithm.

Table 12

Posterior distribution of Shift given P10 and Day

Configuration Morning Evening Night

P10 ¼ no for all Day 0.34 0.47 0.18

P10 ¼ yes, Day ¼Weekday 0.47 0.36 0.17

P10 ¼ yes, Day ¼Weekend 0.44 0.37 0.18
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6. Concluding remarks

Due to the complexity of health-care systems, they should be represented, studied,

and optimized with the appropriate tools. Bayesian networks offer a very attractive

formalism for representing uncertain knowledge (resulting from the synergy of

statistical methods for data analysis and Artificial Intelligence tools) and have success-

fully been applied in different fields. However, although Bayesian networks have so far

only been used in medicine essentially to assist in the diagnosis of disorders and to

predict the natural course of disease after treatment (prognosis), we believe that

Bayesian networks can also be applied to other management-oriented, medical pro-

blems.

What we have presented in this paper is by no means a conclusive document that

introduces a mature management decision support system ready to be implemented, but

rather a first prototype that would have to be considerably extended and refined in the

future. Nevertheless, we believe that our work illustrates the usefulness of Bayesian

networks and their technologies for non-diagnostic medical problems.

Our comparative study of several algorithms for learning Bayesian networks using

the emergencies dataset has revealed some interesting facts: (1) the widespread belief

about the superiority of the scoring-based approach over the independence-based

approach is questionable; in our case, the opposite turned to be true; (2) high values

of the usual, non-specialized scoring functions do not necessarily result in useful

network structures; (3) some non-Bayesian metrics, such as BIC (or the independence-

based metric used by BENEDICT) may direct the search process towards network

structures that behave more robustly than those obtained by some Bayesian metrics.

Although these assertions cannot be generalized without extensive experimentation

using many different datasets, previous work on Bayesian network classifiers [13,16]

does not contradict our results.

In the future, we plan to extend and refine our model using consensus networks, to

include more variables (e.g. seasonal variables or significant temporal periods11, some

additional clinical information (i.e. diagnostic information, number of tests performed on

the patients, specific variables for financial control)), to validate it by taking expert

knowledge into account, and to use it as a tool to help the hospital manager balance

resource allocation. We also plan to apply Bayesian networks to other management

medical problems, such as waiting lists (which nowadays are an indicator of the

performance of the health service).
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