Juan Gómez Romero

I'm a Professor of Computer Science and Artificial Intelligence at Universidad de Granada, where I co-lead the SAIL laboratory on Applied Artificial Intelligence and Sustainability. My research centers on machine learning and knowledge engineering, particularly their application to the modeling, simulation, and control of complex systems.

Juan Gómez Romero portrait

Research lines

Artificial Intelligence & Machine Learning

Deep learning and reinforcement learning for complex cyber-physical and socio-technical systems, with emphasis on robust and interpretable decision making.

Energy Systems & Smart Buildings

Artificial intelligence for smart grid management, focusing on physics-informed system identification and simulation-based optimization in buildings.

Disinformation & Online Platforms

Computational analysis of disinformation and conspiracy narratives on online platforms, including explainable AI and topic modelling.

Knowledge Representation & Ontologies

Knowledge graphs, ontologies, and fuzzy extensions of description logics to represent imprecision and uncertainty.

Selected publications

Google Scholar ORCID
  1. Campoy, A., Manjavacas, A., Jiménez-Raboso, J., Molina-Solana, M., & Gómez-Romero, J. (2025). Sinergym: A virtual testbed for building energy optimization with Reinforcement Learning . Energy and Buildings, 327, 115075.
  2. Manjavacas, A., Gómez-Romero, J., Ernst, D., Vázquez-Barroso, M. A., & Martín-Fuentes, F. (2025). MELGYM: A dynamic control interface for MELCOR simulations . SoftwareX, 30, 102148.
  3. Barzola-Monteses, J., Gómez-Romero, J., Espinoza-Andaluz, M., & Fajardo, W. (2025). Time series forecasting techniques applied to hydroelectric generation systems . International Journal of Electrical Power & Energy Systems, 164, 110424.
  4. Gómez-Romero, J., Cantón-Correa, J., Pérez Mercado, R., Prados Abad, F., Molina-Solana, M., & Fajardo, W. (2025). pytopicgram: A library for data extraction and topic modeling from Telegram channels . SoftwareX, 30, 102141.
  5. Huitzil, I., Molina-Solana, M., Gómez-Romero, J., Schorlemmer, M., Garcia-Calvés, P., Osman, N., Coll, J., & Bobillo, F. (2024). Semantic Building Information Modeling: An empirical evaluation of existing tools . Journal of Industrial Information Integration, 42, 100731.
  6. García Uceda, R., Gijón, A., Míguez-Lago, S., Cruz, C. M., Blanco, V., Fernández-Álvarez, F., Álvarez de Cienfuegos, L., Molina-Solana, M., Gómez-Romero, J., Miguel, D., Mota, A., & Cuerva, J. M. (2024). Can deep learning search for exceptional chiroptical properties? The halogenated [6]helicene case . Angewandte Chemie, e202409998.
  7. Manjavacas, A., Campoy, A., Jiménez-Raboso, J., Molina-Solana, M., & Gómez-Romero, J. (2024). An experimental evaluation of Deep Reinforcement Learning algorithms for HVAC control . Artificial Intelligence Review, 57, 173.
  8. Bülte, C., Kleinebrahm, M., Yilmaz, H. Ü., & Gómez-Romero, J. (2023). Multivariate time series imputation for energy data using attention modeling . Energy and AI, 100239.
  9. Fernández de la Mata, F., Gijón, A., Molina-Solana, M., & Gómez-Romero, J. (2023). Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities . Physica A: Statistical Mechanics and Its Applications, 610, 128415.
  10. Molina-Solana, M., Senaka, F., Amador, J., Serban, O., Gómez-Romero, J., & Guo, Y. (2020). Towards a large-scale Twitter observatory for political events . Future Generation Computer Systems, 110, 976–983.

Selected projects

Contact

Universidad de Granada
Facultad de Ciencias
Building Mecenas Module B
Office M3 (map)

E-mail