
Contents

7 Clustering and classification methods 1
Introduction . 1
Hierarchical clustering . 2

Choice of pairwise distance calculations2
Choice of rules for calculating distances between clusters2

K-means clustering . 3
Multidimensional scaling . 3
Supervised classification with neural networks4

Perceptrons . 4
Backpropagation: the main MLP learning algorithm 5
Some practical issues in training a neural network7

Additional reading . 7

i

ii CONTENTS

Chapter 7

Clustering and classification
methods

Introduction

• Supervised vs. unsupervised. In a supervised method, we are given ”train-
ing data” for which we know the proper classification, and ”test data” where
we want to infer the proper classification. In an unsupervised method, we are
given a bunch of examples and asked to classify them de novo. Examples of
unsupervised methods include hierarchical clustering or k-means clustering. An
example of a supervised classification method is an artificial neural network.

• Model-based vs. distance-based classification. If we know enough about a
problem to model it with a probabilistic model, we can use EM or other algo-
rithms to solve classification problems; in our introduction to EM, we saw a
simple fair versus biased coin classification problem, for example. Sometimes
we don’t know enough about the problem to model it effectively, especially in
an exploratory phase of first looking at the problem, so we use cruder classifica-
tion methods based on clustering points that seem to be close by some distance
criterion.

• Hierarchical versus flat classification. We might classify examples into one
and only one of k classes, in which case we’re assuming a ”flat”, nonhierarchical
data structure. (Pfam, for instance, artifically imposes a flat structure on protein
domain annotation.) Alternatively, we can assume hierarchical classification,
often in the form of a binary tree structure, in which an example is a member of
many nested groups, defined by nodes on the tree.

• Fixed versus unknown class number.Some methods, such as k-means, will
assume that the number of classes is known a priori. Other methods, such as
hierarchical clustering, do not have to make an a priori assumption about the
number of clusters.

1

2 CHAPTER 7. CLUSTERING AND CLASSIFICATION METHODS

• Probabilistic versus absolute classification.Some methods (especially explicit
probabilistic modeling methods, but also including neural nets) allow the clas-
sification of an element to be probabilistic, e.g. modeling uncertainty about the
classification.

Hierarchical clustering

Algorithm: (see Durbin et al. p. 166):
Input: Distance matrixdij

• Choosei, j with smallest distancedij

• Joini, j in binary tree with a node at heightdij2 .

• Create a new clusterk by joining clustersi, j.

• Calculate new distancesdkl to all remaining clustersl. (matrix is now one
row/column smaller.)

• Repeat until all elements are joined.

Choice of pairwise distance calculations

Given two feature vectorsx, y with N components1..i..N :

• Euclidean:dxy =
√∑

i(xi − yi)2

• Manhattan:dxy =
∑
i |xi − yi|

• Chebyshev:dxy = maxi |xi − yi|

• Hamming:dxy =
∑
i δ(xi, yi) δ(a, b) = 1 if a 6= b

• for sequences, we often use 1-an optimal alignment ofx, y.

• In phylogenetic inference, we take the calculation of distances between sequences
much more seriously, imposing probabilistic models to convert observed residue
dissimilarity to an evolutionary distance.

Choice of rules for calculating distances between clusters

• Single linkage clustering.
dij = minx∈Ci,y∈Cj dxy

• Average linkage clustering
dij = 1

|Ci||Cj |
∑
x∈Ci,y∈Cj dxy

a.k.a. UPGMA, unweighted pair group method with arithmetic averaging

K-MEANS CLUSTERING 3

• Complete linkage clustering
dij = maxx∈Ci,y∈Cj dxy

K-means clustering

K-means is an example ofpartitional clustering, as opposed to hierarchical clustering.
We will seek to split the data points into K clustersC1..CK . We have to specify

K a priori. Each clusteri is defined by acentroidµi, which here simply means the
average position of all the points in the cluster.

K-means seeks to minimize a least-squares deviation of the data points from their
K assigned centroids:

K∑
i=1

∑
x∈Ci

D(x, µi)2

We have to define a functionD(., .) to calculate a distance between a data point
and a centroid. This is often just a Euclidean distance, but others are possible, as in
hierarchical clustering.

The K-means algorithm is very simple. It proceeds iteratively. To begin, K cen-
troids are chosen at random (perhaps by assigning the data points to K clusters ran-
domly, and calculating centroids). At each iteration, each point is assigned to the near-
est centroid from the previous iteration, and centroids are recalculated. The iteration
continues until satisfactory convergence is achieved (usually, until no data points are
reassigned in an iteration; but infinite cycles are possible.)

K-means clustering is not guaranteed to find a globally optimal solution. The pro-
cedure should be repeated with multiple random starting points.

Multidimensional scaling

Another way to do cluster analysis is not to cluster at all, but to render the data in a
convenient visualization that allows us to see the clusters in a high-dimensional data
set for ourselves, in our restricted world of two or three dimensions.

In multidimensional scaling (MDS), we are givenM data pointsx1..xi..xM . Each
point is a vector in an N-dimensional space. We can calculate anM × M distance
matrixDij of the “real” distances between all the points in this N-space. We seek a
K-dimensional representation (whereK < N , andK normally is 2 or, more rarely, 3)
of pointsy1..yi..yM . We can calculate anM ×M distance matrixdij of the “new”
distances between all the points in the visualizable K-space. The game is to place the
pointsy in such a way that we best approximate the original pairwise distancesDij .

For instance, a simple MDS algorithm is to chooseyi’s that minimize the squared
difference between the realDij and the newdij , summed over alli, j. This objec-
tive function is differentiable, so we can optimize it by standard steepest descents or
conjugate gradients methods.

4 CHAPTER 7. CLUSTERING AND CLASSIFICATION METHODS

There are a lot of possible nuances to MDS, including the choice of distance func-
tions, and the choice of objective function. For instance, by playing with the exponent
(making it a cube instead of a square, for instance), one can force long distances to be
satisfied at the expense of closer distances. One can also play with the optimization
procedure in various ways, for instance by fitting larger distances first, and progres-
sively fitting closer distances as they’s congeal toward a solution.

Supervised classification with neural networks

• ”definition”: neurons and connections, where the state of a neuron is a function
of the state of its connected neighbors and connection weights.

• A McCulloch/Pitts neuron is either on (1) or off (0):

ni(t+ 1) = F (
∑
j

(wijnj(t))− µi)

whereni(t + 1) is the state of neuroni at time t + 1; wij are the connection
weights between neuroni and other neuronsj; µi is a ”threshold” term that
determines the input level at which neuroni will fire; andF (.) is a step function,
F (x) = 1 if x > 0, F (x) = 0 if x ≤ 0.

• You can build a universal computing device (Turing machine) out of such units.

• Can generalize to continuous functiong(x) of the summed inputs instead of
F (x): sometimes called a ”squashing function”.

• Finding appropriate weights = ”learning”, or ”training” the network. Analogies
to biology are strained, but interesting.

• Various types of ANNs have been built from this basic concept. A terrific intro-
ductory example of the use of Hopfield networks for associative memory is in
chapter 2 of Hertz/Krogh/Palmer.

• We’ll focus, though, on a specific type of network:layered feedforward net-
works, a.k.a.perceptrons, introduced by Rosenblatt.

Perceptrons

• Simple (single layered) perceptron has input neurons and output neurons. (The
input layer isn’t counted as a layer, since it doesn’t compute anything, hence
”single layered” perceptron.)

• Can classify any ”linearly separable” problem.

SUPERVISED CLASSIFICATION WITH NEURAL NETWORKS 5

• Example of what a simple perceptron can’t do: the XOR problem:

input 1 input 2 output
1 1 0
1 0 1
0 1 1
0 0 0

• multilayered perceptron (MLP) one or more ”hidden” layers, in addition to the
input and output layer.

• Example of how an MLP can compute XOR:

input_1------------\+1
+1 \ -2 \

hidden ------ output
+1 / /

input_2------------/+1

w/ threshold 1.5 on hidden unit, and threshold 0.5 on output unit. Intuition: hid-
den unit is an ”AND” that switches on when both inputs are on, and suppresses
the output unit.

• A simple learning rule (the ”delta rule”): iterative bumping of the weights, ac-
cording to the magnitude of the output error and the magnitude of the input:

∆wji = −δiIj

whereδi is the difference between the desired (target) outputti and observed
outputOi for output neuroni; Ij is the value on input neuronj.

• For classification problems, outputs typically represent the classes.

– A softmax classifierinterprets the outputs as posterior probabilities.

• Minsky and Papert (1969) showed that simple perceptrons couldn’t solve XOR
and other problems. The Minsky/Papert paper was apparently devastating to the
perceptron field, for reasons I don’t fully understand (and probably make for a
good study of the sociology of science).

• More complex (multilayered) perceptrons can solve XOR but learning algo-
rithms for multilayered perceptrons didn’t exist at the time.

Backpropagation: the main MLP learning algorithm

• The delta rule is just steepest gradient descent on the weights.

• Reminder 1: gradient descent optimization, relation to partial differentiation.

• Reminder 2: chain rule in differential calculus.

6 CHAPTER 7. CLUSTERING AND CLASSIFICATION METHODS

• objective function to minimize: least squares error.

E = 0.5
∑
i

(ti −Oi)2

where ti is the target output for neuroni, andOi is the observed output for
neuron i. Remember thatOi is a function of the inputs:

Oi =
∑
j

wjiIj

• First partial derivative w.r.t. parameterwji:

= −(ti −Oi)Ij = −δiIj

• That is: backprop is easy to derive from first principles, you’re just minimizing
an error function by gradient descent.

• Example: write error function of a two-layered MLP as a function of all weights.

E = 0.5
∑
i

[ti −Oi]2

= 0.5
∑
i

[ti − (
∑
j

WjiV j)]2

= 0.5
∑
i

[ti − (
∑
j

Wji(
∑
k

wkjIk))]2

• w.r.tWji (hidden layer to output layer), derivative looks like simple perceptron:

= −δiVj

• w.r.t. wkj (input to hidden layer):

= −
∑
i

(ti −Oi)WjiIk

The
∑
i(ti −Oi)Wji term is interpreted as a backpropagation of the error(ti −

Oi) in thei layer to the hidden units in thej layer, weighted byWji.

• This holds up recursively for more complex MLPs with more layers.

• Two properties of interest. First, the backprop algorithm islocal: corrections to
the weight of a neuron only depends on information from its neighbors. This
is considered to be biologically attractive. Second, the algorithm is recursive
and computationally efficient. Calculating N partial derivatives isO(N2), but
backprop isO(N).

• More complex backprop algorithms (momentum, etc.) can be viewed from the
standpoint of standard optimization theory (e.g. conjugate gradient descent, etc.)
- see Press et al., Numerical Recipes in C.

ADDITIONAL READING 7

Some practical issues in training a neural network

• Generalization: the ability of a neural network to properly classify data that
weren’t in the training set.

• Data are typically split into atraining setandtest set, so generalization can be
measured on the test set.

• In cross-validation, the available data are split multiple ways: for example, in
a five-fold crossvalidation experiment, the data are split into five equal chunks
abcde; five different networks are trained on abcd, acde, abde, abce, and bcde;
tested on the 20was left out in each experiment; and the average of the five
performances is reported.

• OvertrainingIf you plot generalization versus the number of training iterations,
ANNs typically show a peculiar behavior: although their performance on the
training set always increases with more iterations, after a certain point, their per-
formance on the test set will start to degrade after a certain point. The intuition
is that the network has started to memorize peculiarities specific to the training
data. The best way to avoid overtraining is to keep the networks as simple as
possible. (There is also a large literature on Bayesian NNs, where priors, ”reg-
ularizers”, are used to reduce overfitting.) However, an easy way to minimize
overtraining is to split the available data into three sets, not two: a training set,
a validation set (used forearly stopping, stopping training when performance on
the validation set starts degrading), and a test set (used to evaluate generalization.

• This raises a general point about training and testing machine learning methods.
The test set can only be usedonce. The moment you peek at test results and react
to them, improving and tweaking your algorithm, you’ve effectivly used the test
set for training, and you can no longer use it fairly to predict generalization.

• Another issue, particularly important in biological applications: we are often
interested in training on some data and measuring our ability to generalize to
non-homologousdata. For example, if I train a genefinder, I want to know how
well it will predict new genes. But if my available data include all known genes,
and I split the datarandomly into cross-validation training and test sets, odds
are very good that I’ll have many homologous sequences in the test and training
sets. But I don’t want to be measuring the ability of my algorithm to predict the
gene structure of a mouse gene that’s 100Cross-validation experiments on non-
independent data (like biological sequences) should be done not randomly, but
by a procedure that minimizes the nonindependence: for example, by clustering
the data and choosing different clusters for training and testing.

Additional reading

For a practical introduction to the use of neural networks, seeIntroduction to the The-
ory of Neural Computation, by Hertz, Krogh, and Palmer [2]. Anderson and Rosenfeld

8 CHAPTER 7. CLUSTERING AND CLASSIFICATION METHODS

have compiled a collection of classic papers in the field of “neurocomputing” [1]. On
the Internet, the http://www-2.cs.cmu.edu/Groups/AI/html/faqs/ai/neural/faq.html col-
lects together a great deal of useful information.

file:comp.ai.neural-nets FAQ

Bibliography

[1] J. A. Anderson and E. Rosenfeld, editors.Neurocomputing: Foundations of Re-
search. MIT Press, 1989.

[2] John Hertz, Anders Krogh, and Richard G. Palmer.Introduction to the Theory of
Neural Computation. Addison-Wesley, Reading, Massachusetts, 1991.

9

	Clustering and classification methods
	Introduction
	Hierarchical clustering
	Choice of pairwise distance calculations
	Choice of rules for calculating distances between clusters

	K-means clustering
	Multidimensional scaling
	Supervised classification with neural networks
	Perceptrons
	Backpropagation: the main MLP learning algorithm
	Some practical issues in training a neural network

	Additional reading

