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Chapter 1

Sequence alignment algorithms

“Cryptography has contributed a new weapon to the student of un-
known scripts.... the basic principle is the analysis and indexing of
coded texts, so that underlying patterns and regularities can be dis-
covered. If a number of instances are collected, it may appear that a
certain group of signs in the coded text has a particular function...”

– John Chadwick,The Decipherment of Linear B[4]

DNA, RNA, and protein are an alien language. Essentially, this book is about
methods for cryptographically attacking this language. As biologists, we want to
decipher both its meaning and its history.

Conveniently, the language is written in a small finite alphabet. Nucleic acids
are polymers composed of a sequence made from an alphabet four nucleotide
bases: A, C, G, and T (adenine, cytosine, guanine, and thymine) for DNA; A, C,
G, and U for RNA (uracil instead of thymine). Proteins are polymers composed
of a sequence made from an alphabet of twenty amino acids.1

The notion that biology might be based on an alphabetic code is older than
one might think. Friedrich Miescher, who first chemically isolated DNA, wrote
to his brother in 1892 that perhaps genetic information might be encoded in a lin-
ear form using a few different chemical units, “just as all the words and concepts

1Like almost any simple statement about molecular genetics, this is a lie. Biology is full of
exceptions to rules. Nucleic acids and proteins also contain modified residues besides the ba-
sic alphabets of four and twenty. Usually these modifications are added post-synthesis, after the
molecule has been assembled from residues in the standard alphabet (though not always; remem-
ber, exceptions to everything). We won’t need to worry about nonstandard residues in this book,
but you should be aware that they exist.

1
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Figure 1.1: Salvador Dali’sGalacidalacidesoxyribonucleicacid, Homage to Wat-
son and Crick, 1963. Note the figures in quartets to the right - signifying the
tetranucleotide hypothesis that DNA was composed of a simple repeating unit of
A, C, G, and T and was therefore too simple to encode genetic information - an
idea that was outdated by the time Dali paintedGalacid.

in all languages can find expression in twenty-four to thirty letters of the alpha-
bet”. Ironically, Miescher’s DNA was thought to be too simple to be the carrier of
hereditary information until the molecular genetics revolution of the 1940’s and
1950’s. The “tetranucleotide hypothesis” that DNA was composed of a simple
repeating tetramer of A, C, G, T even became part of a Dali painting (Figure 1.1).

It is fortunate that the genetic code is alphabetic. It makes it susceptible to
powerful forms of attack - string comparison and pattern recognition. We don’t
have to understand a language to recognize that some patterns recur, and to statis-
tically associate certain patterns with particular effects. In the old science fiction
movieThe Day the Earth Stood Still, the alien words “klaatu barada nikto” keep
the robot Gort from destroying the Earth; the movie never tells us what the phrase
means, but that’s fairly unimportant in the grand scheme of things. In biology,
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(a)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL
HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

(b)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

++ ++++H+ KV + +A ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

(c)
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS+ + G + +D L ++ H+ D+ A +AL D ++AH+
F11G11.2 GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

Figure 1.2: Three sequence alignments to a fragment of human alpha globin. (a)
Clear similarity to human beta globin. (b) A structurally plausible alignment to
leghaemoglobin from yellow lupin. (c) A spurious high-scoring alignment to a
nematode glutathione S-transferase homologue named F11G11.2.

once we know that one sequence encodes a protein kinase (a protein that attaches
phosphorus to specific target proteins, one of the main molecular signalling sys-
tems used in cells), we can guess that similar sequences also encode protein ki-
nases - even though we may not know anything about how the proteins fold, what
proteins they interact with, or where and when they act in the cell.

The concept ofsimilarity searchingis therefore central to computational se-
quence analysis. If two sequences are significantly similar to each other, we infer
that they probably have the same function.

We have to define what we mean by “significantly similar”.unfinished...some
introductory comments about sequence evolution and alignment, introducing the
notions of substitution, insertion, and deletion (which we will model), and dupli-
cation and inversion (which we generally won’t)...

An example is shown in Figure 1.2.

Brute force comparison

Probably the simplest possible string comparison algorithm is to determine whether
two equal-length strings are identical or not. We compare the first characters, sec-
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ond characters, third characters, and so on, until we either find a mismatch (and
thus the strings are not identical), or we run out of string (and thus the strings are
identical). In pseudocode, this algorithm is:

Algorithm 1: STRINGS IDENTICAL
Input: Two sequencesx andy of lengthN .
Output: TRUE if x andy are identical; elseFALSE.
(1) for i = 1 to N
(2) if xi 6= yi
(3) return FALSE
(4) return TRUE

How many operations does this take to compute? If we’re lucky, it can take
us as little as 1 character comparison, which happens when the first characters in
each string are different. If the strings are random sequences of characters chosen
equiprobably from an alphabet ofK letters, the probability of matching at any
given position by chance is1

K
; it usually won’t take us more than a character or

two to determine that two randomly chosen strings are different (the number of
comparisons follows a geometric distribution, and the expected number of com-
parisons is K

K−1
). If letters aren’t equiprobably distributed, the number of compar-

isons will increase, because spurious matches will be more common. In the worst
case (which is when the strings really are identical) our algorithm will take usN
character comparisons. We’ll say that the algorithm can take on the order ofN
steps in the worst case, and abbreviate this by saying this is anO(N) algorithm
(pronounced “order-N algorithm”, or we can also say “this algorithm has a big-O
of N ”.) We’ll discuss “big-O” notation in more detail soon.

The lowly(?) dotplot

Our brain is good at recognizing patterns in data. Some of the best tricks in a com-
putational biologist’s repertoire are visualization tools - the aim being to deliver
the data efficiently to the highly evolved pattern recognition machinery in your
brain. For recognizing similarities between two sequences, one of the most basic
visualizations is thedotplot.

In a dotplot, we draw a matrix with one sequence (call itx) as the vertical axis
and the other sequence (call ity) as the horizontal axis. Each cell of this dotplot
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Figure 1.3: A dotplot of two fictitious sequences.

matrixD(i, j) is going to represent the alignment of residuei of sequencex to
residuej of sequencey. The simplest dotplotting rule is that for every identical
pair of residuesxi andyj, we color the corresponding cellD(i, j) black. Signifi-
cant local alignments appear as strong diagonal lines in the resulting plot, against
a random background of uncorrelated dots. An example is shown in Figure 1.3.

We can use the dotplot procedure to better introduce the pseudocode notation
we’ll use for algorithms in this book. Given two sequencesx andy, the algorithm
to construct the dotplot matrixD is as follows:



6 CHAPTER 1. SEQUENCE ALIGNMENT ALGORITHMS

Algorithm 2: A dotplot representation of sequence similarity.
DOTPLOT(x, y)
(1) M ← LENGTH(x)
(2) N ← LENGTH(y)
(3) for i← 1 to M
(4) for j ← 1 to N
(5) if xi = yj
(6) D(i, j)← 1
(7) else
(8) D(i, j)← 0

Let’s define some of the notation in this pseudocode in more detail:

• The← symbol indicates assignment. For example,D(i, j)← 1 means “set
D(i, j) to 1”.

• The= symbol indicates comparison;xi = yj evaluates toTRUE if xi andyj
are the same character.

• A small cap font indicates calls to other functions. For example,LENGTH(x)
returns the length of sequencex in residues. Sometimes we won’t bother
to define “obvious” functions, includingLENGTH(), MIN (), andMAX (), but
most will be defined somewhere in the text. For example, the above algo-
rithm definesDOTPLOT(x, y), which takes two sequencesx andy as argu-
ments.

• A bold font indicates pseudocode logic constructs. You’re probably familiar
with these from some basic programming experience. Examples includefor
loops,while loops, andif/then andif/then/elseconditional statements.

For the purposes of this chapter, we’re just usingDOTPLOT to introduce the
notion of a matrix representation of sequence similarities, and our pseudocode
notation for algorithms. Nonetheless, don’t forget that dotplots can be very useful
tools in bioinformatics! Figure 1.4 shows an example of real dotplots, produced
with the software packageDOTTER [29]. DOTTER uses a more sophisticated
plotting algorithm than Algorithm 2.DOTTER uses a gray scale scheme to indi-
cate points that are supported by other similar or identical residue pairs along the
diagonal nearby, so that regions of consistent alignment are better highlighted.
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Figure 1.4: Three examples of real dotplots produced byDOTTER , illustrating
similarities of humanα-hemaglobin (horizontal axis) to structurally homologous
globin sequences of progressively less obvious sequence similarity: humanβ-
globin, mouse myoglobin, and the distantly related pea leghemoglobin (vertical
axes).
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sidebar - Big-O Notation

We’re often concerned with comparing the efficiency of algorithms. A natural
way to measure the efficiency of an algorithm is to show how required compu-
tational resources (both running time and memory) will scale as the size of the
problem increases. Problem sizes can often be measured in number of units,n.
For instance, in sequence alignment, we will measure problem sizes as the length
of one or more sequences in residues.

Generally we will discuss the efficiency of an algorithm by analyzing itsasymp-
totic worst-case running time. If an algorithm takes time proportional to the square
of the number of units in the problem, for instance, we will say that the algorithm
is O(n2) (“order n-squared”) in time. ThisO() notation is called “big-oh” nota-
tion.

Let’s be more precise. Mathematically what we’re saying with big-O notation
is as follows. The real running time of an algorithm is a functionf(n) of the
problem sizen. We could (and often do) measuref(n) empirically, by actually
implementing an algorithm in a program and timing the program on problems of
varying sizen. We expectf(n) to increase monotonically with increasingn, but
aside from thatf(n) can be a rather complex and arbitrary function because some
of the factors it depends on are independent of our algorithm – most notably, how
fast our computer executes individual lines of code, how long it takes to execute
any necessary overhead in our program compared to the core of the algorithm it-
self, and whether this particular problem of sizen is a hard case or an easy case for
our algorithm to solve. At least at first glance we’re not interested in such details;
we’re more concerned with the behavior of the essence of the algorithm, in the
realm of larger problem sizes where its demands (rather than trivial programmatic
details) dominatef(n). When we say an algorithm isO(g(n)), we mean that there
are constantsc andn0 such thatcg(n) >= f(n) for all problems of sizen > n0.

We will call anO(kn) algorithm (for some integer k) anexponential timealgo-
rithm, and we will be reluctant if not horrified to use it; sometimes we will go so
far as to call the problemintractableif this is the best algorithm we have to solve
it. We will call anO(nk) algorithm apolynomial timealgorithm, and so long ask
is reasonable (3 or less) we will usually speak of the problem that this algorithm
solves astractable. Some problems have no known polynomial time solutions.
We will run across this later in a discussion of so-called NP (nondeterministic
polynomial) problems.

In general we will tend to believe that anO(2n) algorithm is inferior to an
O(n3) algorithm , which is inferior to anO(n2) algorithm, which is inferior to
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anO(n log n) algorithm, which is inferior to anO(n) algorithm... and so on.
However,O() notation, though ubiquitous and useful, does need to be used with
caution. A superiorO() does not necessarily imply a faster running time, and
equalO()’s do not imply the same running time.

Why not? First of all, there’s that constantc. TwoO(n) algorithms may have
quite different constants, and therefore run in quite different times. Second, there’s
the notion (embodied in the constantn0) thatO() notation indicates anasymptotic
bound, as the problem size increases. AnO(n) algorithm may require so much
precalculation and overhead relative to anO(n2) algorithm that its asymptotic
speed advantage is only apparent on unrealistically large problem sizes. Third,
there’s the notion thatO() notation is aworst-casebound. We will see examples
of algorithms that have poorO() because of a rare worst case scenario, but their
average-case behavior on typical problems is much better.

We will useO() notation to describe the asymptotic worst-case memory re-
quirement of an algorithm, as well as its asymptotic worst-case running time. For
example, we will often say something like “this algorithm isO(n3) in time and
O(n2) in memory”.

We will sometimes see examples of trading time for memory (or vice versa).
Especially when memory is the major factor limiting us, we may favor an al-
gorithm with a worse constant or even a worseO() in time, in exchange for an
improvedO() in memory. In general, in computational biology, we will be rea-
sonably happy if an algorithm isO(n2) or better in time and memory, and quite
pleased to haveO(n) in either or both. We will present a few algorithms that are
O(n3) in time or even higher. Only rarely will we see algorithms that areO(n3) in
memory or higher; gene sequences are usually in the ballpark of length 100-10000
residues, and on current computers, though we may survive square matrices with
up to 100002 ' 108 numbers in them (400 megabytes), we generally won’t be
able to deal with cubic lattices with100003 ' 1012 numbers in them (4 terabytes).

Analyzing algorithms to determine theirO() can be a bit of an art form, but
in this book will usually be straightforward. For example, the depth of nesting
of a dynamic programming algorithm’s inner loop gives away its running time;
“for i = 1..n, j = 1..n, k = 1..n, do something constant” is obviouslyO(n3)
in time. Similarly, the memory usage of a dynamic programming algorithm is
usually implicit in the notation for the score being calculated; a calculation of a
square matrixF (i, j), where bothi andj range from1..n, is obviouslyO(n2) in
memory.

Problem sizes are not necessarily expressed with a single numbern. In pair-
wise alignment, for instance, we will define the problem size in terms oftwo
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sequence lengths,M andN , and talk about algorithms that areO(MN) in time
and memory.

There are various additional subtleties toO() notation, related asymptotic no-
tations, and algorithmic analysis in computer science. For example, we will ca-
sually assume for simplicity that our computing machine performs its basic op-
erations inO(1) time, though pedantically speaking this isn’t true – the number
of bits it requires to store a numbern scales withlog n, so for extremely largen,
when numbers exceed the native range of 32-bit or 64-bit arithmetic on our com-
puting machine, it will no longer takeO(1) time to perform storage, retrieval, and
arithmetic operations. But these concerns leave the realm of computational biol-
ogy and enter the realm of careful computer science theory. The reader is advised
to consult Cormen et al. [5] or Knuth [17] for more formal details on algorithmic
analysis.

Longest common substring

With a small modification in the dotplot algorithm, we can convert it into an al-
gorithm that finds the longest common substring (LCS) that the two stringsx and
y have in common. For example, the LCS of GATTACA and GAATTC is ATT, 3
letters long. The LCS algorithm is as follows:

Algorithm 3: Longest common substring.
LCS(x, y)
(1) Initialization:
(2) D(0, 0) = 0.
(3) for i = 1 to M
(4) D(i, 0) = 0.
(5) for j = 1 to N
(6) D(0, j) = 0.
(7) Recursion:
(8) for i = 1 to M
(9) for j = 1 to N
(10) if xi = yj
(11) D(i, j)← D(i− 1, j − 1) + 1
(12) else
(13) D(i, j)← 0
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Figure 1.5: Finding the LCS of two fictitious sequences.

The score (length) of the LCS is given bymax( i, j)D(i, j). A D matrix cal-
culated by this algorithm is shown in Figure 1.5.

This now introduces some key new concepts:
Dynamic programming. ScoringD(i, j) requires that we knowD(i− 1, j −

1). Our solution isrecursive. We solve smaller problems first, and use those solu-
tions to solve larger problems. We know what problems are smaller (and already
calculated) by our position in the tabular matrixD. Computer scientists refer to a
recursive method that stores the results of intermediate solutions in a tabular ma-
trix as adynamic programmingmethod. (Here the word “programming” refers to
the tabular matrix, not to computer code – another place this usage might confuse
you is the term “linear programming”, a tabular method for solving systems of
equations.) Dynamic programming methods are pivotal in computational biology.

Initialization. Dynamic programming methods have to worry about boundary
conditions. You can’t start recursing until you’ve defined the smallest solutions
non-recursively. We have to make sure that if the recursion is going to look into a
particular cell(i, j), that cell must always have a valid number in it. In the LCS
algorithm, this means initializing the0 row and the0 column to0, soD(i−1, j−1)
never accesses an uninitialized cell.
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Solution and traceback. The LCS algorithm only gives us a score matrix
D(i, j). To get the LCS itself, we have to do additional operations on that matrix.
The length of the LCS is obtained bymax( i, j)D(i, j). The LCS itself is obtained
by atracebackfrom the starting cell(i′, j′) = argmax(i, j)D(i, j) - we follow the
optimal path back along the diagonal until we reach a 0, halting the traceback of
the LCS.

This LCS algorithm isO(n2) for two strings of lengths∼ n. Much more
efficientO(n) algorithms are possible using suffix trees [11]. The reason to show
this relatively less efficient LCS algorithm is purely pedagogical, a stepping stone
on our way to explaining dynamic programming sequence alignment algorithms.

sidebar: The basics of scoring alignments

It would be pretty straightforward to convert the exact-match LCS algorithm into
an algorithm that found theoptimal scoringlocal ungapped alignment, if we de-
fined a scoring functionσ(a, b) for aligning two residuesa, b. LCS essentially
imposes a scoring function ofσ(a, b) = 1 if a = b, σ(a, b) = −∞ if a 6= b. If,
say, we instead setσ(a, b) = −1 for a 6= b, the algorithm would allow matching
substrings that included some mismatches.

Since we’re about to introduce dynamic programming optimal alignment algo-
rithms, it’s worth thinking a little more deeply about scoring functions. We need a
procedure for assigning numerical scores to alignments, so we can rank them and
find the best.

Actually enumerating all possible pairwise alignments and ranking them is
unrealistic. There are

22L

√
2πL

possible global alignments between two sequences of length L [6, p.18]. Since we
are concerned with biological sequences where L might range from hundreds (for
protein sequences) to millions(for chromosomal DNA sequences), this number of
alignments is clearly too large to handle.

Therefore we are concerned with the functional form of our alignment scoring
procedure. We will want to make independence assumptions, so that we solve
optimal alignment problems efficiently using recursive dynamic programming al-
gorithms, without having to enumerate all possible alignments.

A very simple functional form for an alignment scoring procedure is to score
+1 for every identical pair of residues. Maximizing this score amounts to find-
ing the pairwise alignment of maximal percent identity. Though molecular biol-
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ogy papers routinely cite “pairwise sequence identity” as if it were a meaningful
statistic, in fact it’s not a good idea to use sequence identity as the sole criterion
for choosing optimal alignments (and no popular bioinformatics program does).

First, we want to use more information about residue conservation than just
simple identity. In proteins, for example, we want to capture information about
structural and chemical similarity between amino acids – for example, a K/R “mis-
match” should be penalized fairly little (and maybe even rewarded) because lysine
(K) and arginine (R) are both positively charged amino acids with similar roles in
protein structures, whereas an R/V mismatch should be penalized fairly strongly
because arginine and valine (V) are dissimilar amino acids that don’t substitute
for each other well. So, more generally, we can assign a scoreσ(a, b) to a residue
pair a, b - σ(a, b) can be high ifa andb are an acceptable substitution, and low if
not. We’ll callσ asubstitution matrix.

We also need a scoring function for gaps. If we don’t penalize our use of
gaps somehow, our “optimal” alignments can get pretty unrealistic; the computer
will insert lots of gap symbols trying to maximize the apparent similarity of the
residues. In a pairwise sequence alignment, we can’t tell the difference between
an insertion in one sequence versus a deletion in the other; therefore we sometimes
refer to gaps asindels, short for insertion/deletion. Most generally we can subtract
a gap score penaltyγ(n) every time we invoke a gap of lengthn in an alignment.
We will see that generalized gap score functions are rarely used. Instead, we
will more often use two simple functional forms that are more compatible with
efficient recursive solutions.Linear gap penaltieshave the formγ(n) = nA -
a cost ofA units per gap character.Affine gap penaltieshave the formγ(n) =
nA + B - B is a gap-opencost to start the gap in the first place, andA is a
gap-extendcost per residue in the gap.

For now we will defer the important issue of where these scoresσ(a, b) and
γ(n) come from. In the examples below, we’ll use some simple values just to
illustrate how the alignment algorithms work. In a later chapter, we’ll work on the
scoring functions themselves, using probability theory.

Global alignment: Needleman/Wunsch/Sellers

Let’s look at the problem ofglobal sequence alignment: what is the best pair-
wise alignment between two complete sequences (including gaps), and what is its
score?

The first dynamic programming algorithm for global sequence alignment was
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introduced in 1970 by Needleman and Wunsch. We still refer to global dynamic
programming alignment algorithms asNeedleman/Wunsch algorithms, although
this is a bit imprecise. Many people have even forgotten that the original 1970
Needleman/Wunsch algorithm isO(N3) in time, and haven’t noticed that their
“Needleman/Wunsch” implementation is actually a different algorithm. Sellers
(1974) introduced a simpler version of the algorithm using linear gap penalties that
runs in timeO(N2). Needleman/Wunsch/Sellers is also a slightly easier algorithm
to understand, so we’ll start with it. The version that is actually most often used is
the affine gap version of the algorithm, due to Gotoh (1982), and we’ll see it later.

We are given two sequencesx andy. x containsM residues numbered1..M ;
we will refer to thei’th residue inx asxi. Similarly,y is composed ofN residues,
referred to asyj, for j = 1..N . We are given a scoring systemσ(a, b) andγ(n).
Finally, we make a crucial simplifying assumption: the gap penaltyγ(n) is a linear
gap penalty,γ(n) = nA.

The idea of the algorithm is to find the optimal alignment of the sequence
prefix x1..xi to the sequence prefixy1..yj. Let us call the score of this optimal
alignmentF (i, j). (F here stands for “Forward” – later you’ll see why.) The key
observation is this: I can calculateF (i, j) easily if I already knowF for smaller
alignment problems. The optimal alignment ofx1..xi to y1..yj can only end in one
of three ways:

1. xi is aligned toyj. F (i, j) will be the score for aligningxi to yj) - σ(xi, yj))
- plus the optimal alignment score I’d already calculated for the rest of the
alignment not includingxi andyj - F (i− 1, j − 1).

2. xi is aligned to a gap character. This means we’re adding a gapped residue
(which costs us a penalty ofA) to the optimal alignment we’ve already
calculated forx1..xi−1 to y1..yj: so the score of this alternative isF (i −
1, j)− A.

3. yj is aligned to a gap character. This is analogous to the case above. This
alternative forF (i, j) has the scoreF (i, j − 1)− A.

The optimalF (i, j) is the maximum of these three alternatives.
So, I’ve defined a recursive solution, meaning that I’ve definedF (i, j) strictly

in terms of solutions of smaller subproblemsF (i − 1, j − 1), F (i − 1, j), and
F (i, j − 1). Now I need to arrange my calculations so that I make sure I calculate
F (i − 1, j − 1), F (i − 1, j), andF (i, j − 1) before I try to calculateF (i, j).
An obvious way to do this is to arrange the numbersF (i, j) in a matrix, start
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at the upper left corner for the smallest alignment problem,F (0, 0), and work
my way towards the lower right corner,F (M,N). When I’m through,F (M,N)
contains the optimal score for aligning the prefixx1..xM to y1..yN ... in other
words, the score for aligning all ofx andy globally to each other. We call this a
global alignment. We’ll see an example oflocal alignment(and revisit the LCS
algorithm) in a little while.

The first stage of the Needleman/Wunsch/Sellers algorithm is then as follows:

Algorithm 4: Needleman/Wunsch/Sellers, fill
Input: Two sequencesx andy of lengthM andN , respectively;
scoring matrixσ(a, b); linear gap costA.
Output: Dynamic programming matrixF .

(1) Initialization:
(2) F (0, 0) = 0.
(3) for i = 1 to M
(4) F (i, 0) = −iA.
(5) for j = 1 to N
(6) F (0, j) = −jA.
(7) Recursion:
(8) for i = 1 to M
(9) for j = 1 to N

(10) F (i, j) = max


F (i− 1, j − 1) + σ(xi, yj),
F (i− 1, j)− A,
F (i, j − 1)− A.

The algorithm isO(MN) in time and memory. When we’re done,F (M,N)
contains the optimal alignment score. Figure 1.6 shows an example.

However, we don’t yet have the optimal alignment. To get that, we perform a
tracebackin F to find the path that led us toF (M,N).

One way to traceback is by recapitulating the score calculations from algo-
rithm 4. We start in cell(i = M, j = N) and find which cell(s) we could have
come from, by recalculating the three scores for coming from(i − 1, j − 1),
(i− 1, j), or (i− 1, j) and seeing which alternative(s) give usF (i, j) and are thus
on the optimal alignment path. We then choose one of these possible alternatives
(either at random, but more usually arbitrarily, by order of evaluation), and move
to that cell. If the optimal path moves to(i − 1, j − 1) we alignxi to yj; if the
optimal path moves to(i−1, j) we alignxi to a gap; and if the optimal path moves
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Figure 1.6: The dynamic programming matrix calculated for two strings GAT-
TACA and GAATTC, using a scoring system of+1 for a match,−1 for a mis-
match, and−1 per gap.
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to (i, j − 1), we alignyj to a gap. We iterate this process until we’ve recovered
the whole alignment.

There’s an implementation detail we need to worry about. The output of our
algorithm will be two aligned strings (let’s call the aligned stringsx̄ and ȳ) of
equal lengthL. We don’t knowL when we start the traceback, so we don’t know
where to start storing characters inx̄ and ȳ. A simple trick is to buildx̄ and ȳ
backwards, then reverse them when we’re done and we knowL.

This traceback algorithm is as follows:
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Algorithm 5: Needleman/Wunsch/Sellers, traceback
Input: Two sequencesx andy of lengthM andN ; scoring matrix
σ(a, b); linear gap costA; and matrixF calculated with algorithm
4.
Output: Aligned sequences̄x andȳ, containing gap characters, of
equal lengthL.
(1) k = 0
(2) i = M
(3) j = N
(4) while i > 0 or j > 0
(5) k = k + 1
(6) if i > 0 and j > 0 and F (i, j) = F (i − 1, j − 1) +

σ(xi, xj)
(7) x̄k = xi
(8) ȳk = yj
(9) i = i− 1
(10) j = j − 1
(11) else ifi > 0 and F (i, j) = F (i− 1, j)− A
(12) x̄k = xi
(13) ȳk = -
(14) i = i− 1
(15) else ifj > 0 and F (i, j) = F (i, j − 1)− A
(16) x̄k = -
(17) ȳk = yj
(18) j = j − 1
(19) L = k
(20) for k = 1 to L/2
(21) SWAP(̄xk, x̄L−k+1)
(22) SWAP(̄yk, ȳL−k+1)

Lines 20 to 22 are just the routine for reversing the order of the two aligned
strings. The traceback takes usO(M + N) time and memory (not counting the
O(MN) memory of the input dynamic programming matrixF ). Because the
traceback is linear-time, and the fill stage was quadratic-time, we don’t pay a
significant computational cost to recapitulate the calculations of the fill stage to
trace the optimal path.
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Local alignment: Smith/Waterman

A local alignmentis the best (highest scoring) alignment of asubstringof x to
a substringof y, as opposed to a global alignment of the entire strings. Local
alignment is usually more biologically useful. It is usually the case that only part
of two sequences is significantly similar, so those parts must be identified.

The local alignment problem could be solved by brute force, using the Needle-
man/Wunsch/Sellers global alignment algorithm. For a sequence of lengthN ,
there are aboutN2 substrings (choose a starting pointa = 1..N and an endpoint
b = i..N ). We could globally align all∼ N2M2 combinations of substringsxa..xb
andyc..yd using theO(MN) global alignment algorithm, and finding the choice
of a, b, c, d start and end points that give us the optimal alignment score. This
yields anO(M3N3) local alignment algorithm, which is pretty ugly. At least we
know the problem is solvable in polynomial time!

We can do that a bit better, by noting that we really only have to consider all
possible start pointsa = 1..N , defining all possible suffixes of each sequence. If I
use N/W/S to align a suffixxa..xN to yc..yM , I can find the best endpointsb, d by
finding the maximum score in theF matrix,

(a, b) = argmaxi,jF (i, j),

instead of just looking at the score in the bottom right cell. Now I only need to run
theO(MN) global alignment algorithm onO(MN) combinations of suffixes, so
I’ve improved to aO(M2N2) local alignment algorithm. We already used this
idea of searching the whole matrix to find the optimal alignment endpoints in
the LCS algorithm, and it’s one of the two keys to dynamic programming local
alignment.

Now how do we avoid having to test all possible suffixes starting at positionsa
andb? The amazing thing is that optimal local alignment can be done inO(MN)
time by a second tiny modification to the global alignment algorithm, one that’s
also akin to what we did in the LCS algorithm: allow a fourth choice forF (i, j) of
0. The0 allows the alignment to restart at any internal start point inx andy. Re-
markably, this tweak wasn’t introduced until 11 years after Needleman/Wunsch;
Temple Smith and Michael Waterman published it in 1981 [27]. Local dynamic
programming alignment algorithms are calledSmith/Watermanalgorithms.

In pseudocode, the Smith/Waterman algorithm is as follows:
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Algorithm 6: Smith/Waterman, fill
Input: Two sequencesx andy of lengthM andN , respectively;
scoring matrixσ(a, b); linear gap costA.
Output: Dynamic programming matrixF .

(1) Initialization:
(2) F (0, 0) = 0.
(3) for i = 1 to M
(4) F (i, 0) = 0.
(5) for j = 1 to N
(6) F (0, j) = 0.
(7) Recursion:
(8) for i = 1 to M
(9) for j = 1 to N

(10) F (i, j) = max


0,
F (i− 1, j − 1) + σ(xi, xj),
F (i− 1, j)− A,
F (i, j − 1)− A.

After filling the F matrix, we find the optimal alignment score and the opti-
mal end points by finding the highest scoring cell,maxi,j F (i, j). To recover the
optimal alignment, we trace back from there, terminating the traceback when we
reach a cell with score0.
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Variants of the core DP alignment algorithms

Affine gap penalties: the Gotoh algorithm

Algorithm 7: Affine Smith/Waterman, fill
Input: Two sequencesx andy of lengthM andN , respectively;
scoring matrixσ(a, b); gap-open costA; gap-extend costB.
Output: Dynamic programming matricesM , Ix, andIy.

(1) Initialization:
(2) for i← 0 to M
(3) M(i, 0)← 0,
(4) Ix(i, 0)← −∞
(5) Iy(i, 0)← −∞
(6) for j ← 1 to N
(7) M(0, j)← 0
(8) Ix(0, j)← −∞
(9) Iy(0, j)← −∞
(10) Recursion:
(11) for i← 1 to M
(12) for j ← 1 to N

(13) M(i, j)← max


0,
M(i− 1, j − 1) + σ(xi, xj),
Ix(i− 1, j − 1) + σ(xi, xj),
Iy(i− 1, j − 1) + σ(xi, xj)

(14) Ix(i, j)← max

{
M(i− 1, j)− A,
Ix(i− 1, j)−B

(15) Iy(i, j)← max

{
M(i, j − 1)− A,
Iy(i, j − 1)−B

Arbitrary gap penalties: the Needleman/Wunsch algorithm

The original 1970 Needleman/Wunsch algorithm didn’t assume any particular
functional form for the gap penalty. It could work with an arbitrary gap penalty
functionγ(n). For an arbitraryγ(n), we have to examine all possible gap lengths
to decide how we optimally reachF (i, j), not just the cells inF to our immediate
top and left.
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For instance, instead of only considering the possibilityF (i, j) = F (i−1, j)−
A for aligningxi to a gap symbol with costA, I actually need to know how many
consecutive gap symbols are in̄y before I can assign a score to the gap. This
means finding the best scoring alternative for aligningyj to some residuexh, for
h < i, then aligning all the rest of the residuesxh+1..xi to gaps. The length of the
gap isi−h. The score of this possible alternative forF (i, j) isF (ĥ, j)+γ(i− ĥ),
for the optimal choice of̂h, which I find by maximizingF (h, j) + γ(i − h) over
all 0 <= h < i. I treat gaps in̄x analogously.

The original Needleman/Wunsch algorithm is then as follows:

Algorithm 8: Needleman/Wunsch, fill
Input: Two sequencesx andy of lengthM andN , respectively;
scoring matrixσ(a, b); gap penalty functionγ(n).
Output: Dynamic programming matrixF .

(1) Initialization:
(2) F (0, 0) = 0.
(3) for i = 1 to M
(4) F (i, 0) = γ(i).
(5) for j = 1 to N
(6) F (0, j) = γ(j).
(7) Recursion:
(8) for i = 1 to M
(9) for j = 1 to N

(10) F (i, j) = max


F (i− 1, j − 1) + σ(xi, xj),
max0<=h<i F (h, j) + γ(i− h),
max0<=k<j F (i, k) + γ(j − k).

The traceback algorithm for this, by analogy to algorithm 5, should be obvi-
ous.

This algorithm isO(MN(M + N)) in time andO(MN) in memory. The
extra time factor of(M + N) comes from finding optimalh andk by looking
back over entire rows and columns. Since usuallyM ' N (the sequences are of
similar lengths), we more loosely say Needleman/Wunsch isO(n3) in time and
O(n2) in memory.

We can extend the Smith/Waterman local alignment algorithm to arbitrary gap
penalties in the same manner.
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Linear memory: score-only

Reduced memory: shadow traceback matrices

Linear memory: the Myers/Miller algorithm

History and further reading

Dynamic programming sequence alignment was introduced by Saul Needleman
and Christian Wunsch [20]. The more efficientO(n2) version of the algorithm,
for linear gap cost, was introduced by Peter Sellers [26]. Local alignment was
introduced by Temple Smith and Michael Waterman [27]. TheO(n2) algorithms
for affine gap alignment that are the most commonly used form today were intro-
duced by Osamu Gotoh [10]. Michael Waterman and Mark Eggert described one
of the best known “declumping” algorithms for obtaining multiple suboptimal in-
dependent local alignments [31]. The memory-efficient “Myers/Miller” algorithm
was introduced to computational biology by Gene Myers and Webb Miller [19]
based on earlier computer science work by Dan Hirschberg [12].
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