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Chapter 1

Probability theory

Biological motivation: motif finding

E. coli ribosome binding sites

thrA  aaggtaacgaggtaacaaccatg
thrB  atggaagttaggagtctgacatg
dnaK  tatatagtggagacgtttagatg
nhaR  cattgttatcagggagagaaatg
lytB  tccggcactggaggcgtaacatg
carA  aatattctctggagggtgttttg
fixC  gccgctgacagggagctcttatg
fixX  atgaaaggagtgaccgttttatg
kefC  ggaatggcaggaggcccatcatg
ilvH  aaaacggagagaacctgattatg

A GU
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SSU (16S) rRNA
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Figure 1.1:E. coli ribosome binding sites.Left: During translational initiation, aE.
coli ribosome binding site (RBS) is recognized by base pairing of the 3’ end of SSU
(16S) ribosomal RNA to a short sequence just upstream of the correct initiation codon.
The TAAGGAGG consensus sequence for theE. coliRBS is called theShine/Dalgarno
(SD) sequence [10]. Right: 20 nucleotides immediately upstream of the annotated
initiation codon for tenE. coli genes with strong SD sequences. The initiation codon
and SD sequences are highlighted in bold. The SD sequences only match part of the
consensus, and they occur with variable spacing with respect to the initiator. (Note that
one of the initiation codons is a TTG.E. coli does not always use ATG.)
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2 CHAPTER 1. PROBABILITY THEORY

More biological motivation: score matrices for pairwise
alignment

When we discussed alignment algorithms, we used ascore matrixσ(a, b) that told us
the score for aligning residuea to residueb. We needed these scoresσ(a, b) to obey
two conditions, so that Smith/Waterman and other local alignment algorithms would
work sensibly. First, at least one of the scores must be positive (favorable). Second,
the overall expected score by chance,

∑
ab fafbσ(a, b), must be negative (unfavorable)

- wherefa andfb are the frequencies that residuesa andb occur in sequences.
Then, in discussing BLAST and friends, we saw that there is a simple equation for

calculatingσ(a, b) as a log-odds score:

σ(a, b) =
1
λ

log
pab
fafb

(1.1)

We’re going to use theσ(a, b) equation as an excuse for introducing a whole chunk
of relevant probability theory that you will need repeatedly in computational biology.
But like many things theoretical, you don’t have to understand it fully to use it effec-
tively. First let’s make sure you know how to use it to calculate your own customized
substitution matrices - then we’ll start delving into the theory behind them.

Making customized score matrices

To make our own score matrix, we just need to specify our own numbers forpab, fa,
andfb and plug them into the log odds equation.

Let’s deal withfa andfb first. fa andfb are simply the observed independent
frequencies of residuesa andb - that is, how often we expect to find these residues just
by chance. We will typically get these numbers from some notion of the background
frequency of residues in our target database.

For a DNA substitution matrix, a reasonable starting assumption is that A,C,G,T
occur equiprobably, e.g.fx = 0.25 for all four residuesx. This is often not true in
any single particular genome because genomic G+C composition varies substantially
between organisms. But overall, if we use no auxiliary information about where the
two DNA sequences being compared came from, our best guess at DNA base composi-
tion is close to equiprobability. Table 1.1 shows nucleotide frequencies in the genome
sequences of three important organisms,E. coli, yeast, and human.E. coli does have a
roughly equiprobable base composition, whereas yeast and human are somewhat AT-
rich. (And there are also GC-rich genomes, of course.)

For an amino acid substitution matrix, we normally wouldn’t assume that amino
acids occurred equiprobably. Amino acid composition is biased in similar ways in all
organisms - leucine (L), for example, is much more commonly used than tryptophan
(W). We might obtainfx from amino acid occurrence frequencies in some representa-
tive sequence database. Table 1.2 shows the residue frequencies observed in SWISS-
PROT release 38.

What aboutpab? This is the probability that we see an alignment of residuea and
residueb in pairwise alignments of homologous sequences. We estimate these prob-
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Residue frequenciesfx in:
Symbol Nucleotide base bacteriumE. coli yeastS. cerevisiae humanH. sapiens

A adenine .246 .309 .295
C cytosine .254 .191 .205
G guanine .254 .191 .205
T thymine .254 .309 .295

Table 1.1: Nucleotide frequencies in three genome sequences.

abilities by counting aligned residue pairs in a database of trusted alignments. Some
interesting isssues arise. First, where do we get our trusted alignments from? (Since
we’re trying to estimate scoring parameters for alignment algorithms, the problem is a
bit circular). Second, clearlypab is a number that is dependent upon a factor we haven’t
mentioned yet - the evolutionary distance between the pair of sequences. For two se-
quences that diverged recently,pab will be close to 1 for identical residues and close to
0 for nonidentical residues. For two sequences that diverged billions of years ago,pab
will asymptotically approachfafb, the probability of seeing these two residues inde-
pendent of their evolutionary relationship. In between these two extremes is the realm
in which we’re interested, where subtle evolutionary relationships may be detected be-
causepab is significantly different fromfafb.

There are three main strategies for estimatingpab:

Algebraic Especially for DNA sequences, we can specifypab by making a few sim-
ple assumptions; for instance, if we assume that we’re looking for 80%
identical sequences, we might setpab to .2 for the 4 identical residue
pairs (.8 / 4) and 0.0166 for the 12 nonidentical pairs (.2 / 12). (A
slightly more sophisticated model would take into account thattransi-
tions (A ↔ G, C↔ T) are more probable thantransversions(A ↔ C,
A ↔ T, G↔ T, G↔ C).)

ExtrapolationSome of the first amino acid score matrices were derived by Dayhoff
[2]. She used closely related protein sequences that could be confidently
aligned, collected statistics on amino acid substitutions, and built a fre-
quency table called PAM1. PAM stands for “point accepted mutation”,
reflecting the fact that an observed substitution is the result of mutation
followed by selection. PAM1 contained residue subsitution frequen-
cies, normalized for pairs of sequences at 1% overall divergence. She
could then estimate substitution matrices for longer evolutionary times
just by matrix multiplication (PAM2 is PAM12; PAM120 is PAM1120;
etc.) One subtle drawback to the PAM matrices is that amino acid sub-
stitutions at very close distances are significantly affected by the genetic
code. Amino acid substitutions that require more than one base change
in the codon are underrepresented. Over the longer time periods that
are of more interest for remote homology detection, as base changes ac-
cumulate and equilibrate these code effects disappear, andpab is dom-
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Symbol Amino acid Observed counts Frequency,fx
A alanine 2205330 0.0758
C cysteine 483328 0.0166
D aspartic acid 1534944 0.0528
E glutamic acid 1851790 0.0637
F phenylalanine 1193226 0.0410
G glycine 1990933 0.0684
H histidine 654243 0.0225
I isoleucine 1690020 0.0581

K lysine 1729564 0.0595
L leucine 2745354 0.0944

M methionine 691771 0.0238
N asparagine 1292790 0.0444
P proline 1431286 0.0492
Q glutamine 1155060 0.0397
R arginine 1501462 0.0516
S serine 2074755 0.0713
T threonine 1650899 0.0568
V valine 1914781 0.0658
W tryptophan 360745 0.0124
Y tyrosine 928030 0.0319

total: 29085965

Table 1.2: Amino acid frequencies in SWISS-PROT 38.

inated by the propensity for residues to functionally substitute for each
other in protein structures.

Empirical Currently, the best score matrices are probably the BLOSUM matri-
ces [8]. BLOSUM62 is the default matrix for protein searches with
BLAST. The starting point for estimation of the BLOSUM matrices
was a large collection of automatically generated and reasonably trust-
worthy ungapped multiple sequence alignments, the BLOCKS database
[7]. Observed residue subsitutions were collected from all the pairwise
relationships in the BLOCKS multiple alignments, using a weighting
scheme that downweights the contribution of closely related sequences.
(BLOSUM62 downweights the counts collected from pairwise align-
ments over 62% identity; BLOSUM40 downweights counts from align-
ments over 40% identity. Therefore, the lower the BLOSUM number,
the more distant the sequence relationships; the opposite of PAM ma-
trix numbers.) BLOSUM is believed to outperform PAM in homology
searches because itspab’s are estimated directly from distantly related
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proteins.

Even this brief discussion should raise a number of questions in your mind. Surely
we can outperform the simple assumptions of these models, which are our current state
of the art in bioinformatics! And indeed we can - but we will want to be fluent in the
tools of probability theory.

Basics of probability

We all have at least an intuitive idea of what a probability is. For instance, for some
event with N possible outcomes, the probability of obtaining outcomei is pi. These
probabilitiespi have the properties:

N∑
i=1

pi = 1.0; pi ≥ 0

Common examples ofdiscreteprobabilities include the probability of flipping heads
or tails with a coin, rolling 1..6 on a die, observing A/C/G/T at some position in a DNA
sequence, or observing one of the twenty amino acids at some position in a protein
sequence.

“Uniform” probabilities (or “fair”, in the case of coins and dice) mean equiprobable
outcomes,pi = 1

N . The probability of rolling a 6 with a fair die is16 . The probabil-
ity of some base in a DNA sequence being an A is1

4 (until we start worrying about
nonuniform base composition in a genome sequence).

In many cases we will be able to estimate and interpet probabilities as frequencies;
that is, from counting the numberci of outcomesi in T repeated trials. AsT gets large,
the frequency of seeingi will approachpi:

pi = lim
T→∞

ci
T

Joint probability and independence

Thejoint probabilityof a co-occurrence of event A and event B is written asP (A,B) or
justP (AB). If the events are both rolls of a fair die, for example,P (6, 6) is 1

6×
1
6 = 1

36 .
Multiplying the probabilities of individual events together to obtain the joint probability
assumes that the events areindependent. Independence is a reasonable assumption for
simple repeated trials like die rolls and coin flips, but more often, we will not get off so
easily.

We may explicitly assume independence for the sake of simplifying a calculation,
even if it is only crudely true. For example, a common model of “random” (nonho-
mologous) sequences is thei.i.d. (independent, identically distributed)model. Given a
protein sequencex of lengthL, with residues numberedx1..xi..xL, what is the proba-
bility P (x) of that sequence? We need to specify a discrete probability distribution over
the20L possible amino acid sequences of lengthL, which would require us to know
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Bayesians and frequentists. What about events that only happen once and have a
single outcome – like whether or not it will rain this afternoon? It doesn’t make sense
to talk about the frequencyof it raining this afternoon; it’s either going to rain or it’s
not. But we still talk about the probability of rain, even though we don’t think of
that probability in a frequentistsense. Thus, clearly we also sometimes interpret a
probability as a degree of belief – or, more concretely, as betting odds. If my general
mechanism of estimating probabilities is correct, over the long haul, the number of
times I am right will approach the number of times I expected to be right. If my way
of estimating odds is better than yours, I will make money from you in the long run.

And indeed, a consistent (Bayesian) theory of probability can be derived from a few
first principles, the desiderata for an optimal statistical inference (e.g. betting) system.
The frequentist view of probability falls out of the derivation as a special case. A
particularly lucid exposition of this derivation and the Bayesian canon is in [9].

The “frequentist” (probability = frequency) and “Bayesian” (probability = degree of
belief) views can be argued to great depths of subtlety and fundamentalism, but both
views have merit. I will take a pragmatic approach and use whichever view seems
appropriate for the biological problem at hand – though I confess a fondness for the
clarity of the Bayesian view.

20L numbers. By assumingindependence, we assume thatP (x) =
∏L
i=1 Pi(xi).

Now we need to know “only”20L numbers, a distribution of 20 probabilitiesPi(xi)
for each positioni in the sequence. By additionally assuming that residue probabilities
areidentically distributed(independent of position in the sequence), we further reduce
the number of parameters to just 20 residue probabilitiesP (x) in the final i.i.d. model
– the same numbers we saw asfa andfb in log-odds scores.

Some notational issues, before we proceed

Before we go further, let’s clarify some notation. When I sayP (AB), the upper case
lettersA andB refer torandom variables. When I sayP (ab) or pab, the lower case
lettersa andb refer tospecificoutcomes, e.g. values thatA orB may adopt. A random
variableA corresponds to a set of possible eventsa1, a2, . . . an. For example,A might
refer to a roll of a die, which has 6 possible outcomes. Or, if I sayP (AB) is the
probability of a pair of aligned homologous amino acid residues, the random variable
AB can assume 400 values over all possible amino acid pairs.ab, in contrast, is a
specificevent, wherea andb correspond to particular choices of amino acids.pa is the
probability thatA assumes the specific valuea: P (A = a) = pa, and

∑
A pa = 1.

Thus I talk about aprobability distributionP (A) for a random variableA, when I
can specify the individual probabilitiespa for all the kinds of events thatA represents.

The key thing to keep in mind is thatpa is asingle numberanda is aspecific out-
come, whereasA is aset of outcomesandP (A) is aset of numbers(e.g. a probability
distribution).

So far we’re only talking aboutdiscrete random variablesthat can assume one of an
enumerable set of outcomes (like the nucleotides ACGT, or an integer). Soon we’ll also
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seecontinuous random variables, where the outcomes are real numbers. When we do,
we’ll also see the worddistributionshow up in a very different context as aprobability
distribution function, as opposed to aprobability density function, where distribution
will have an almost entirely different meaning. We’ll worry about that when we get
there.

Conditional probabilities

The conditional probabilityP (a|b) is the probability of eventa given that we have
observed an eventb. A conditional probability distributionP (A|B) is the probability
distribution for random variableA, given that we have observed the outcome of random
variableB.

For example, the probabilityP (u|q) that the letteru follows the letterq in written
English is close to 1.0, and quite different thanP (u) by itself.

In calculating score matrices, we are implicitly using a conditional probability
P (a, b|t), the probability of seeing residuesa and b aligned, given an evolutionary
divergence “time” oft.

There is an algebraic relationship between conditional and joint probabilities:

P (AB) = P (A|B)P (B)

and

P (A|B) =
P (AB)
P (B)

.

Marginal probabilities

Given a joint probability distribution, we can always obtain themarginal probability
distribution for any subset of random variables by summing over the others:

P (A) =
∑
B

P (AB)

=
∑
B

P (A|B)P (B)

We can usemarginalizationto eliminate so-callednuisancerandom variables, ones
for which we’re not currently interested in their distribution.

Bayes’ theorem

To getP (A|B) from P (B|A), we useBayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
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which is equivalent to

P (A|B) =
P (B|A)P (A)∑

A

P (B|A)P (A)

Bayes’ theorem is trivial, falling straight out of the algebraic relationships between
conditional, joint, and marginal probabilities:

P (AB) = P (A|B)P (B)
P (AB) = P (B|A)P (A)

P (A|B)P (B) = P (B|A)P (A)

P (A|B) =
P (B|A)P (A)

P (B)

P (B) =
∑
A

P (B|A)P (A)

P (A|B) =
P (B|A)P (A)∑
A P (B|A)P (A)

Bayes’ theorem becomes more interesting when it is used as the heart ofBayesian
statistical inference, where one of our random variables represents possible data sets
we could observe, and the other represents possible hypotheses we want to consider to
explain the data. As scientists we are interested in knowingP (H|D), the probability of
our hypotheses given our observed data, because we want to choose the most probable
hypothesis. If we express our hypotheses as probabilistic models, we will generally
be able to calculateP (D|H), the probability of data given a hypothesis. We can use
P (D|H) to calculateP (H|D) by applying Bayes’ theorem. To do this, we need to
specifyP (H) – thea priori probability of our hypotheses,before the data arrive. As
scientists, we are quite used to doing this, at least intuitively. Occam’s Razor tells us
to favor simple hypotheses over complex ones. But can we actually assign objective
numbers toP (H)? P (H) is a difficult number to know, and you might even wonder if
there isn’t some circular logic lurking here – can we claim to be objectively calculat-
ing a data-dependent probabilityP (H|D) for our hypotheses, if we had to explicitly
assume a subjective prior distributionP (H) over our hypotheses before we saw any
data?

This is getting us into an area of deep controversy among statisticians. We’ll defer
further discussion of Bayesian inference ’til later in the chapter, when we take more
time to contrast it against other ways of testing models, such as maximum likelihood
inference and classical statistical inference (null hypothesis rejection testing). It’s im-
portant to remember that Bayes’ theorem itself is noncontroversial – indeed, it’s true
by definition.

fragmentary outline...

• contingency table (”truth table”) illustration of how to think about joint, condi-
tional, and marginal probabilities.
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• Example: The occasionally dishonest casino. Two types of dice; 99% are fair,
1% are loaded such thatp6 = 0.5. Conditional P(6 — loaded); joint P(6,loaded);
marginal P(6).

• Example: Alan Templeton’s critique of ”disease genes”. Imagine a gene with
two alleles A and a, and another gene with two alleles B and b. The a and b
alleles interact to cause a genetic disease in ab individuals. The loci are unlinked,
and the allele frequencies are a=.01, A=.99, b=.9, B=.1. The prevalence of the
disease in the population is P(ab), 0.001. If you have the a allele, the probability
you have the disease is P(ab — a), 90%. If you have the b allele, the probability
you have the disease is P(ab — b), 1%. a is a better predictor of disease status...
but does that mean that a is a ”disease” allele?

• Example: AUG initiator codon consensus. P(1,2,3 — initiator) = P(3 — 1, 2,
initiator) P(1,2 — initiator), etc.

• Markov dependency: examples of probabilistic models of genomic DNA.

Probabilistic models

An ungapped matrix model of theE. coli Shine/Dalgarno motif

Let’s return to our example ofE. coli translational initiation sites. The SD sequence
often does not exactly match the consensus, and it is located at different distances from
the initiation codon. If someone gives us a sequence upstream of someE. coli coding
region of interest, can we automatically predict the location and sequence of its SD?

To frame this as a probabilistic modeling problem, we first need to stateP (S|M):
the probability distribution over sequencesS, given a modelM for what SD’s look like.
There are an infinite number of possible sequences, and we’d hate to have to specify
an infinite number of parameters for our modelM , so we’ll make two simplifying
assumptions. First, we’ll assume that the SD can be modeled as anungapped, fixed
lengthmotif of widthW ; thusP (S) is P (x1, x2, . . . xW ), the joint probability of the
W contiguous bases in the motif. Second, we make an independence assumption: the
probability of seeing a particular base at some position in the motif is independent of
the specific bases at the other positions. Thus for each positioni in the model, we
need 4 probability parameterspi(a), pi(c), pi(g), andpi(t) specifying the probability
of each base at that position (a total of 4W parameters). Then:

P (S|M) = P (x1 . . . xW |M) =
W∏
i=1

pi(xi)

This kind of model is the probabilistic version of a so-calledweight matrixor
position-specific sequence motif(PSSM), a commonly used model of ungapped se-
quence consensus in computational biology. The difference right now is that our num-
bers are products of probabilities rather than sums of scores. (Later, we’ll start working
with probability parameters as log probabilities or log-odds scores, at which point we’ll
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The prosecutor’s fallacy.

The difference between a likelihood and a posterior probability can be illustrated by
the prosecutor’s fallacy.

A person stands accused of a murder. DNA evidence recovered from crime scene has
been subjected to genetic fingerprinting, and is found to match the DNA fingerprint
of the accused person. There is an extremely low probability that a randomly chosen
person would have this fingerprint. The prosecutor stands before the jury and says,
“The odds of obtaining such a good DNA fingerprint match by chance are one in a
million. This probability is so low that the accused is clearly guilty beyond reasonable
doubt.”

We can see the fallacy here by expressing this in terms of probability theory. We
have two random variables: V (the correct verdict) which can assume two values g
and i representing guilt or innocence; and F (the DNA fingerprint) which represents
one of many possible discrete fingerprints f . What we want to know is the probability
P (i|f), the probability that the accused is innocent given that we’ve seen the fingerprint
data f . What the prosecutor is telling us is P (f |i), the probability that we obtain
fingerprint f from an innocent person. (We’ll assume that P (f |g) is 1: we assume that
the fingerprint we obtained at the scene is from the murderer, not the result of a mistake
at the lab or a deliberate mishandling of the evidence.) Bayes’ rule tells us that:

P (i|f) =
P (f |i)P (i)
P (f)

=
P (f |i)P (i)

P (f |g)P (g) + P (f |i)P (i)

=
P (f |i)P (i)

P (f |g)P (g) + P (f |i)(1− P (g))

So to calculate the posterior probability P (i|f), we need to know the prior probability
P (g) that a randomly chosenindividual would be guilty (note that P (i) = 1− P (g)).
If we assume that the killer is somewhere in Los Angeles, with a population of about 10
million, the probability P (g) that a randomly chosen Angeleno is the killer is 1/107.
Substituting the relevant numbers and solving gives us:

P (g|f) =
10−6 ∗ (1− 10−7)

1 ∗ 10−7 + 10−6(1− 10−7)
= 0.91

So the probability the accused person is innocent is 91%, if this is the only evidence
the prosecutor is presenting! Truly a far cry from the “one in a million” chance that the
prosecutor is telling the jury.

This is intuitive if you think about it this way. If there’s a one in a million chance of
a spurious DNA fingerprint match, this means that a total of 10 innocent people out
of the 10 million population of Los Angeles have the fingerprint, in addition to the 1
guilty person. If you show me an individual that has this particular fingerprint, all I
know is that they’re one of these 11 people. The odds that any given one of them is the
guilty one are 1 in 11.

Another example of the prosecutor’s fallacy arose in a debate in the pages of Nature
about the probability that the pope is a human or an alien [3].
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also be summing terms instead of taking products, and the parallel to weight matrices
and PSSMs will be even more clear.)

Figure 1.2 shows an example of a parameterized matrix model of theE. coli RBS,
using a widthW = 8.

position
residue 1 2 3 4 5 6 7 8

A 0.342 0.350 0.407 0.644 0.075 0.234 0.614 0.274
C 0.159 0.116 0.310 0.111 0.082 0.037 0.038 0.041
G 0.165 0.171 0.234 0.0790.805 0.721 0.097 0.542
T 0.334 0.363 0.049 0.166 0.038 0.008 0.252 0.142

consensus: A/T A/T A A G G A G

Figure 1.2: Ungapped probabilistic model ofE. coli ribosome binding sites. (The exact
numbers here should not be taken as biologically “real”. They’re just an example that
comes from running an EM algorithm on a dataset of 823E. coli translational initiation
sites of lengthL = 20, using an ungapped matrix model of widthW = 8. The EM
algorithm is introduced later in the chapter.

If I showed you the 8-mer sequence ATAAGGAG (the best match), you would
calculate that its probabilityP (S|M) is 0.00629. The sequence CCTGTTCC (the
worst match) has probability3.38× 1011 under this model.

Now consider an upstream region of length L: for instance, the 23 nucleotides up-
stream of theproA gene, ACCCGTTAAGGAGCAGGCTGATG, inclusive of the ini-
tiator ATG. Where is the SD sequence?

Now we need a probabilistic model of the complete upstream sequenceS. We
assume thatS containsone and only oneSD motif. We also assume that the other
residues (outside the SD) occur with position-independent background probabilities
f(a), f(c), f(g), f(t); and for further simplicity, let’s assume that theL−W bases in
the non-motif sequence occur equiprobably (f(a) = f(c) = f(g) = f(t) = 0.25). If
we knew the SD motif started at positionk (wherek = 1 . . . L−W + 1), then:

P (S|k,M) =
k−1∏
j=1

f(xj)
W∏
i=1

pi(xk+i−1)
L∏

j=k+W

f(xj)

= 0.25(L−W )
W∏
i=1

pi(xk+i−1)

Our problem is that we don’t know the motif positionk. That’s what we want to
determine. Specifically, we wantP (k|S,M): the probability that the motif starts at
positionk, given the sequence and the model.

Applying Bayes’ theorem gives us:

P (k|S,M) =
P (S|k,M)P (k|M)

P (S|M)
=

P (S|k,M)P (k|M)∑
k P (S|k,M)P (k|M)



12 CHAPTER 1. PROBABILITY THEORY

So to get ourposteriorP (k|S,M), we need not only thelikelihood P (S|k,M)
but also aprior P (k|M): the probability that the site is at positionk a priori, that
is, before the sequence data “arrive”. The simplest assumption we can make is that
the priorsP (k|M) are a uniform distribution (allk are equiprobablea priori; then the
P (k|M) will cancel out and leave us with:

P (k|S,M) =
P (S|k,M)∑
k P (S|k,M)

And because of our assumption of equiprobable background frequencies, every
P (S|k,M) term contains a constant factor of0.25(L−W ) which also cancels, leaving
us with:

P (k|S,M) =
∏W
i=1 pi(xk+i−1∑L−W+1

k′=1

∏W
i=1 pi(xk′+i−1

And that’s all we need to get an answer. The numbers calculated for the log like-
lihood logP (S|k,M) and the posteriorP (k|S,M) for each of the 16 positions in the
proA sequence are shown in Figure 1.3 (23-8+1 = 16 positions at which the motif can
occur; it can’t start in the last 7 positions because of the edge effect). According to our
model, the proA SD is almost certainly at position 6 (P = 0.972), with the sequence
TTAAGGAGG - as it happens, a very good consensus SD.

likelihood posterior
positionk motif atk logP (S|k,M) P (k|S,M)

1 acccgtta -35.106 0.000
2 cccgttaa -38.367 0.000
3 ccgttaag -33.853 0.000
4 cgttaagg -36.200 0.000
5 gttaagga -33.604 0.000
6 ttaaggag -25.888 0.972
7 taaggagc -33.577 0.000
8 aaggagca -34.400 0.000
9 aggagcag -30.140 0.014

10 ggagcagg -34.696 0.000
11 gagcaggc -35.743 0.000
12 agcaggct -31.016 0.006
13 gcaggctg -33.692 0.000
14 caggctga -38.629 0.000
15 aggctgat -33.308 0.001
16 ggctgatg -30.993 0.006

Figure 1.3: Posterior probability calculations for the position of the SD in 23 nu-
cleotides of theE. coli proA ribosome binding site, ACCCGTTAAGGAGCAGGCT-
GATG.

Some discussion of how the theory immediately allows us to see how to expand our
power...
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The decision to assume a fixed width W for the motif.

The decision to allow one and only one motif.

The decision to assume a uniform prior for k.

The decision to assume equiprobable base frequencies.

The decision to assume the motif contains no indels.

Computing with probabilities. ... why we work in log prob’s, not prob’s. ... the
LogSum() trick for doing sums while still in log space. ... and the even fancier static-
table version.

Parameter estimation

We are given some observed counts of events, such as rolls of a die, flips of a coin, or
counts of A/C/G/T at some position in a DNA sequence. From these counts, we want
to estimate the probabilities of these events. The problem of estimating probability
parameters from observed count data is fundamental to computational biology.

Maximum likelihood (ML) parameter estimation

The simplest way to estimate parameters from count data is just

p̂x = fx =
cx∑
y cy

.

That is, the frequency of an event is themaximum likelihood (ML) estimateof the
probability of the event. ML estimation works well if the counts are a large, unbiased
sample. ML estimation converges on the true probability as the size of the (unbiased)
samples grow towards infinity.

For example, our estimates offa andfb for background amino acid or nucleotide
probabilities are exactly this: frequencies in a huge sample of millions (even billions)
of observed residues.

Laplace’s law of succession

ML estimation is often not sufficient, because we don’t always have a large sample.
The most glaring problem occurs when we haven’t seen an event at all yet, so that

its observed countcx = 0. Should we assume thatpx = 0? Probably not.
... Laplace plus-one here ... MP estimator under flat Dirichlet prior ...



14 CHAPTER 1. PROBABILITY THEORY

Pseudocounts

And of course the problem ofsmall sample statisticsarises even for nonzero counts.
For instance, with a fair coin, I might flip the coin 100 times and get 48 heads and 52
tails; so I observe a frequency offH = .48. Does this mean that the probability of
flipping a head on thenext flipis 0.48? Probably not; more likely, that probability,pH ,
is 0.5, because we expect that the coin is fair. Since we’ve observed a frequency of
0.48 heads, intuitively we might easily conclude that that frequency’s consistent with
pH = 0.5.

Indeed, if one were estimating parameters and betting based on our expectations
given those parameters, a sensible person will generally win on average against an ML
estimator. The person uses information that the ML estimator does not: that is, the fact
that in general we expect a coin to be fair, though we would eventually allow the data to
override that prior belief if it became clear that the coin was clearly flipping too many
tails or heads.

... pseudocounts presented here as an ad hoc procedure with the right behavior ...
That is, we will often be interested in estimating unobserved parameterspx of a

probabilistic model, based on a finite number of observations that will often be in the
form of counts,cx. When we infer thesep’s, we may want to also take into account
prior knowledgeabout our problem - that is, knowledge we have before we look at
the data - such as the idea that coins are usually fair. We will have to formalize this
notion so that we know how to combine prior knowledge with the data. We don’t
yet have enough machinery in our repertoire to deal with this, so we’ll delay further
discussion ’til after we’ve seen more about Bayes’ theorem, posterior probabilities, and
prior probabilities.

The rest of a fragmentary outline on parameter estimation

• We’ve seen how to infer what model is correct, but where did the models come
from? In particular, how do I infer the best parameters to use in a model?

• Example: a single coin and lots of flips. The intuition is to use observed fre-
quencies as probability parameters. This intuition is largely correct; that’s the
maximum likelihood estimate.

• Parameter estimation viewed as yet another inference problem:P (θ|D) = P (D|θ)P (θ)/P (D).

• Sidebar:P (θ|D) is our first example of a continuous probability function. Defi-
nition of distributions and densities.

• Back to the coin example: plotP (D|θ). Pick the peak; ”maximum likelihood”
estimation.

• A problem with ML estimation: if we flip 49 heads and 51 tails, would you really
bet thatP (head) = 0.49? Or would you bet thatP (head) = 0.5? 0.49 is the
more ”likely” choice based on the observed data, but you would probably lose a
bet on this.
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• Another (related) problem: what if I observe 0 of some event. Do I really infer
P (event) = 0? Leads to rejection of hypothesis by a single rare observation.

• A second estimation approach: maximum a posteriori (MAP) estimation. In-
clusion of prior information in parameter estimation. The Laplace ”plus-one”
prior. Pseudocounts and their intuitive properties. Necessity for formal prior
distributions; concept of a ”conjugate prior”...

ML estimation revisited more formally?; proof of ML

• Our goal: show the derivation of ”optimal scores”, and show that they have
probabilistic meanings.

• Consider a set of counts (rolls of a die, or observed amino acids in an aligned
column).

• The multinomial distribution asP (D|M).

• Find parameters that maximizeP (D|M).

• maximizinglogP (D|M) becomes convenient (additive). (Sidebar: Viewlog px
as ”scores” to add up.)

• The derivation; differential calculus; constrained optimization and Lagrange mul-
tipliers – there’s a reason why calculus is a prerequisite for comp bio...

• ta-da: the simple ML estimatepx = cx∑
y
cy

.

MAP estimation and Dirichlet priors

• Remember our simple ”Laplace plus-one” and ”pseudocount” rules. Now let’s
justify them formally.

• Bayes:P (M |D) proportional toP (D|M)P (M); MAP estimate forpx arepx
that maximizeP (c|p)P (p).

• Wait; what isP (p)? A probability distribution over probability distributions.
Analogy to ”the dice factory” (MacKay). What does such a distribution look
like?

• Another factor in choosing this distribution: the notion of a ”conjugate” prior.
After the calculus above, it’s easy to imagine that we want a prior that doesn’t
greatly complicate our differential calculus.

• The Dirichlet distribution defined.

• Important properties of the Dirichlet to fix one’s intuition: mean; peaky behavior
for coefficients< 1; ”flat” if all coefficients = 1; variance inversely proportional
to sum of coefficients.
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• Maximization ofP (c|p)P (p): px = cx + ax − 1, normalized.

• OK, almost there. Now, mean posterior estimation;px = cx + ax.

• Now we can review Laplace plus-one and pseudocounts. Plus-one corresponds
to a flat Dirichlet prior. Pseudocounts correspond to a Dirichlet, specifying a
certain expected mean and variance.

• A slight variation: estimation using mixture Dirichlets. Illustration using dice
factories and amino acid distributions.

Expectation maximization

We will often be faced by a problem that involvesmissing data. That is, my probabilis-
tic model will be dependent on some factor that I don’t knowa priori and must infer.
That is, I can’t calculateP (data|model) directly; I need to calculate it by marginalizing
away some hidden nuisance variableν:

P (data|model) =
∑
ν

P (data|ν,model)P (ν|model)

For example, in the case of ribosome binding sites, my model forP (S|M) was
expressed in terms of a conditional probabilityP (S|k,M), because the overall proba-
bility of an RBS was dependent on the position of the SD motif. Given known proba-
bility parameters for the modelM , I could infer a posterior distribution for the correct
positionk in a RBS. Or, given known motif positionsk in a set of example sequences,
I could extract and align the motifs, count the occurrence of bases in each aligned
column, and estimate the probability parameters of the model.

What if I don’t know either the parameters or the positions of the motifs? That
is, what if I’m faced with the following biological problem of general interest: I’m
given a set ofN unaligned sequences of lengthL. Each sequence contains a conserved
motif of lengthW . Can I simultaneously infer both the positions of the motifs and
a probabilistic model of the motif consensus, starting from nothing but the unaligned
data?

A very powerful and simple algorithm for this problem isexpectation maximization
(EM). In outline, EM works as follows:

• Initialize the model M to random parameters.

• While not converged:

– Estimate the posterior probability distribution for the hidden variable. (As-
suming the parameters are correct, what is the motif positionk?)

– Collect expected counts from the data, given the estimated posterior distri-
bution.

– Given those expected counts, estimate new maximum likelihood parame-
ters for the model. (Assuming the motif positionsk are estimated correctly,
what are the best model parameters?)
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This iterative algorithm is guaranteed to converge to a local (not global) optimum.

• another example:P (seq|model) =
∑

alignmentsP (seq,alignment|model)

• Toy example: two dice.

• Expectation step: using current parameters, estimate expected counts.

• Maxmization step: using current expected counts, re-estimate new parameters.

• simple ways to get around local optimality: running from multiple randomly
chosen starting points.

• Related algorithms include ”Gibbs sampling”, “simulated annealing”, “Markov
chain Monte Carlo” (MCMC).

Statistical inference

... what I mean by “inference”...

Bayesian inference

Let’s consider the interesting case where we have a random variableD that represents
possible observed outcomes in a data, and a random variableM that represents a set of
models (hypotheses) that we want to test.

In science, we’re usually interested in distinguishing between alternative models
and finding the most likely one, given some data. That is, we are interested inP (M |D),
the probability of two or more alternative models given the data.

If we’re lucky, we will know enough about the hypotheses we’re considering that
we will be able to specify them asprobabilistic models, which means that we can
calculateP (D|M) – the probability of obtaining particular observations if we assume
that a particular hypothesis is true.

more fragmentary notes on Bayesian statistical inference

• Consider the AUG initiator codon problem. Suppose we are given a triplet, and
asked to infer, is this an initiator or not?

• Another example: consider the occasionally dishonest casino. We choose a die,
roll it three times, and every roll comes up a 6. Did we pick a loaded die?

• Both questions involve statistical inference. We want to know the probability of
a hypothesis, H, given somedata, D. Either hypothesis can explain the data, so
we cannot know for sure, but one hypothesis may be more probable so that we
can assign betting odds.

• Bayes’ rule:P (H|D) = P (D|H)P (H)/P (D)

• P(D) is a marginal probability;P (D) =
∑
H P (D|H)P (H)
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• Algebraic derivation of Bayes.

• Definition of posterior probabilityP (M |D), prior probabilityP (M), and model
likelihoodP (D|M).

• Worked example for the casino; 21% chance that the die is a loaded one.

• ”Bayesian statistical inference”

• Subjectivity of priors; example: the use of Bayesian inference in the recovery of
a lost American nuclear weapon off the coast of Spain in the 1960’s.

Maximum likelihood inference

• Likelihood ratios; log likelihood ratios (LLR)

• Relationship of LLR and chi-squared test

• Relationship of LLR and Bayesian posterior

• Substitution matrices are log-likelihood ratios

• Derivation of BLOSUM matrices (Henikoff 1992 paper)

• Interpretation of arbitrary score matrices as probabilistic models (Altschul 1991
paper)

Frequentist inference

• What BLAST/FASTA P-values and E-values mean

• The meaning ofP (S ≥ x) and why we want to know it.

• Expectation value,E = NP (S ≥ x)

• BLAST’s ”P(n)”; Poisson assumption;P (n) = 1− exp(−NP (S >= x))

• These are ”frequentist” or sampling statistics

• ”Significance” = rejection of null hypothesis; comment on logical fallacy of ac-
cepting a proposed hypothesis by rejecting a different one.

Probabilistic models of ungapped pairwise alignments

Information theory

(See also: ”Information Theory Primer With an Appendix on Logarithms” by Thomas
D. Schneider http://www-lecb.ncifcrf.gov/ toms/paper/index.html.

• ”How conserved is this alignment column?” We need a justified measure for
conservation.

http://www-lecb.ncifcrf.gov/~toms/paper/index.html
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• From Shannon, we have a definition of average uncertainty: the so-called ”en-
tropy” H(X) = −

∑
x pxlogpx

• Properties: maximal ifpx equiprobable; zero if onepx = 1.0.

• Common to uselog2 and expressH(X) in ”bits”: can be viewed as the number
of yes/no questions necessary to resolve uncertainty.

• Connection to probabilistic modeling: recalllog px viewed as a log likelihood
”score” in the above section. Under such an additive scoring system, the ex-
pected (average) score is

∑
x pxlogpx – the Shannon entropy.

• The meaning of ”information”: reduction in uncertainty. Viewed as the differ-
ence in uncertainty before and after an ”informative” event.I = Hbefore −
Hafter.

• Example: entropy of random DNA

• Example: information content of an aligned column. Information content as a
legitimate measure of conservation.

• Relative entropy (Kullback-Leibler ”distance”).H(P ||Q) =
∑
x pxlog(px/qx).

Identical to information content if Q is a uniform background distribution; two
terms often used interchangeably.

• Connection to probabilistic modeling: relative entropy = log odds score, and log
odds score can be viewed as a rearrangement of a Bayesian posterior.

• Mutual informationM(XY ) =
∑
x ypxylog(pxy/pxpy). Example: RNA se-

quence alignments.

Additional reading

Perhaps the best general reference on probability theory is Feller’sIntroduction to
Probability Theory and its Applications[5, 6]. Cover and Thomas’sElements of In-
formation Theoryis my favored reference for Shannon information theory [1]. An-
thony Edwards’Likelihood is an unusually lucid (and dogmatic) book on maximum
likelihood inference [4]; it also particularly accessible to biologists, since Edwards is a
geneticist.

A wonderfully eccentric book on Bayesian inference is the unpublished and unfin-
ishedProbability Theory: The Logic of Science, by Ed Jaynes [9]. Jaynes was a pro-
fessor emeritus in the physics department here at Washington University in St. Louis
until his recent death. I treasure a collection of some of his papers and manuscripts that
came into my possession.
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