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The current interest in gene expression data has

increasingly focused on image quantification, data

processing, and data analysis. Data processing

includes background subtraction, normalization, and

detection of outliers. Data analysis can be viewed 

in two broad categories: (1) pattern recognition, 

which can be unsupervised (cluster analysis, class

discovery) or supervised (discriminant analysis, class

prediction); or (2) detection of differential expression

on a probe-by-probe basis. This article discusses

conceptual statistical issues concerning data

processing and differential expression.

The current bottleneck in the processing of

microarray data occurs after the data are generated;

the magnitude of the problem is proving to be on a par

with developing the technology itself. The difficulties

stem primarily from the myriad potential sources of

random and systematic measurement error in the

microarray process [1,2] and from the small number

of samples (e.g. cell lines, patients) relative to the

large number of variables (probes). This raises

questions about the validity of many of the

microarray findings reported to date [3]. Not enough

information is available to allow an adequate

estimation of all parameters of interest within the

limits of standard analysis. Confronting these issues

is crucial to providing useful microarray data and

drawing informative conclusions.

This article focuses on the elucidation of issues

rather than an exhaustive review of the burgeoning

technical literature. Although differing in their

particulars, issues and solutions are common to all

array technologies (cDNA versus oligonucleotide-

spotted arrays; radioisotopic versus fluorescent

labeling; nylon membrane versus glass slide 

versus biochip substrates). Other sources contain

introductions to microarrays [4–6], data acquisition

and analysis [7], data mining [1,8,9], quantitative

biology [10], and statistical concepts [11,12].

Statistical and scientific inference

Consider the problem of detecting a difference in

expression between two groups. Contributing to this

difference is a biological (treatment) component, which

is negligible in the case of no difference, and an error

component, which is divided into systematic and

random components. The purpose of the statistical

analysis in this context is to detect whether there is a

reliable, biologically relevant difference in expression

level. Difficulties in detecting a difference in expression

stem from problems such as CONFOUNDING (see Glossary)

of the systematic error and the treatment components

(which might result in a statistically significant result

that has no biological underpinning) and small sample

sizes (which engender large random error and potential

violation of PARAMETRIC assumptions, leading to

difficulties in interpreting results).

True expression values are unknown in real-world

applications and must be inferred from measured

data. Observed differences in expression that exceed

a threshold defined jointly by random error and by the

probability of a false positive are considered ‘statistically

significant’, a minimum requirement for biological

significance. If chance factors provide a reasonable

explanation for a putative effect, then biological

significance is moot. In both instances, statistical

results must be interpreted within the context of the

experimental design and the purpose of the study:

• Statistically significant effects can reflect the

biasing effects of EXTRANEOUS FACTORS rather than

biology (see the section on systematic error, below).

• Lack of statistical significance can reflect low

experimental SENSITIVITY, rather than absence of a

biological effect. Low sensitivity can be caused by an

inadequate number of REPLICATES, failure to control

extraneous factors that contribute to random error,

or both (see the section on errors of inference, below).

Gene expression data can be analyzed in several

ways; here we discuss univariate procedures, which

are critical for planning experiments, determining the

function of specific genes, and producing high quality

data for subsequent analyses. Figure 1 shows how

univariate procedures can be incorporated profitably

into the early stages of microarray analysis.

Errors of measurement
There are two types of measurement error: random and

systematic. Random error is minimized by controlling

extraneous factors and by obtaining more repeated

measurements (replicates). Systematic errors (bias) are

The study of gene expression with printed arrays and prefabricated chips is

evolving from a qualitative to a quantitative science. Statistical procedures for

determining quality control, differential expression, and reproducibility of

findings are a natural consequence of this evolution. However, problems

inherent to the technologies have raised important issues of how to apply

adequate statistical tests. As a consequence, statistical approaches to

microarray research are not yet as routine as they are in other sciences.

Statistical methods, tailored to microarrays, continue to be adapted and

developed. We present an overview of these methods and of outstanding

issues in their use and validation.

Statistical issues with microarrays:

processing and analysis
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controlled experimentally as far as possible, although

additional statistical correction is invariably

necessary with current microarray technology.

A partial list of extraneous factors that contribute

to random error and/or to bias of microarray

expression values includes: the time of day that

arrays are processed [13]; target accessibility, which

is affected by variations in the absorbency of discrete

nylon membranes [14]; target fixation to glass slides

[2]; and variations in washing procedures [15].

Random error
Random error is a measure of uncertainty in the

measurement and is therefore central to statistical

inference. Random errors are not ‘mistakes’ in the

colloquial sense. Rather, they reflect inevitable

uncertainties in all scientific measurements, making

statistical procedures necessary. Random error

cannot be eliminated, but instead is estimated from

observed data.

For example, consider the case of a probe that is

not differentially expressed. Because of random

measurement error, its measured differential

expression ratio will deviate from its true value of 1:1.

Deviations from this 1:1 ratio (or, more typically, 

from the log ratio) are due to ‘chance’, reflecting a

STOCHASTIC model (Boxes 1,3).

Depending on the purpose of the experiment,

replicates can be obtained from the same or different

cell lines, patients, and so on. Random error across

replicates obtained from aliquots of the same RNA

sample restricts sources of error to technical aspects 

of the process. Obtaining replicates from different

biological samples (e.g. patients) increases random

error [16] but produces results that have better external

validity and broader applicability (wider inference). 

A minimum of three or four replicates per group or

experimental condition has been recommended to

account for random variation and to provide good

sensitivity (R. Nadon, unpublished; Refs [17,18]).

Review

Coefficient of variation: Standard deviation divided by the mean.
Confounded: Experimental factors are confounded when their potential effects
cannot be distinguished. For example, if control and experimental measurements
are obtained on different days, treatment and day effects are confounded.
Efficiency: A statistical test or measure is efficient when its sampling distribution
has smaller variance (i.e. is more reliable) than other similar tests or measures. For
example, in estimating the mean of a normal population, the sample mean is more
efficient than the sample median. There is often a tradeoff, however, between
efficiency and robustness. The sample mean is less robust than the sample median.
Extraneous factor: A characteristic of an experiment that is not of interest but that
might influence the outcome (also called a ‘nuisance parameter’).
P-value: The probability of observing a statistical result at least as discrepant as the
one actually observed, assuming that the null hypothesis is true. The smaller the
P-value, the less probable the statistical result is due to ‘chance’.
Parametric versus nonparametric statistical tests: Parameters are quantities that are
constant for particular distributions but that take on different values for different
members of families of the same kind of distribution. For example, the population
mean and variance are parameters of the normal distribution. One or more population
parameters are estimated when using a parametric test. Nonparametric tests
(sometimes called ‘distribution-free’ tests) have weaker distributional assumptions and
do not involve parameter estimation. When parametric assumptions are reasonable (or
when the parametric statistic is robust with respect to their violation), parametric tests
are generally statistically more powerful than their nonparametric counterparts.
Population: The (hypothetical) universe of numbers of interest. For example, the
expression intensities of replicate measurements of cancerous tissue for a
particular gene come from the same statistical population as intensities from non-
cancerous tissue if the two expression intensity distributions are identical, despite
the fact that measurements come from different physical populations.
Resampling procedures: Computer-intensive procedures that sample repeatedly
from observed data to generate empirical estimates of results that would be
expected by ‘chance’. Bootstrapping and permutation tests are examples. 
Replicate: A repeated measurement of an attribute (or process) of interest. Ideally,
replicates should be obtained in a manner that provides broad inference, which is
determined by experimental design and statistical sampling factors. Consider an
experiment with spotted arrays of cDNA. To examine whether gene expression is

related to a certain tumor type, tumor and normal tissue replicates might be obtained
from: (1) different patients; (2) different RNA samples from one patient; or (3) different
aliquots of the same RNA sample from one patient. In the case of (3), a gene’s
differential expression might be due to specifics of the patient, to the way the RNA
was extracted, to the tumor, or to some combination of these factors. Interpretation in
(2) is less ambiguous because specifics of RNA preparation are less likely to underlie
the differential expression, although patient or patient–tumor combination effects
might still be the underlying causes. Interpretation is clearest and results generalize
most broadly in (1) because the replicates are sampled from a more representative set
of observations. Additional issues arise when multiple oligonucleotides are used to
characterize specific genes. Affymetrix chips, for example, provide varying numbers
of oligonucleotide probes (e.g. 16, 20) for each gene. Expression values associated
with these probes from the same chip can be considered replicates in that they are
intended to represent the expression values of the same gene. In practice, however,
oligonucleotide-specific expression effects reveal that the multiple oligonucleotides
are being sampled from different statistical populations, preventing the expression
values from being used as replicates. Fortunately, treatment:control ratios (or log
ratios) of the various oligonucleotides for the same gene can be considered replicates
because treatment effects are generally not oligonucleotide-specific. In this sense, the
current Affymetrix chips provide a large number of replicated treatment:control
ratios. Because these ratios are obtained from the same RNA sample, however, the
generalizability of single chip studies is limited. 
Robustness: A statistical test or measure is robust either when violation of
assumptions has little effect on the distribution of the statistic (and consequently on
the false-positive and false-negative rates) or when it is based on weaker
assumptions. For example, the sample median is more robust than the sample
mean. There is often a tradeoff, however, between robustness and efficiency. The
sample median is less efficient than the sample mean.
Sensitivity: An inferential procedure that produces few false negatives has high
sensitivity.
Specificity: An inferential procedure that produces few false positives has high
specificity.
Stochastic model: A description of an event or process within a probabilistic framework
that includes ‘chance’ events in the form of random measurement error. It is contrasted
by a deterministic model in which random error is inconsequential or nonexistent.

Glossary
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Fig. 1. Data analysis workflow.
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Random variation across replicates can be

estimated on a probe-by-probe basis, assuming that

the true random error associated with each replicate

is the same. The problem with this approach is the

small number of replicates per gene that is typical of

array studies. Random error estimates with small

sample sizes have large random error. This results in

poor outlier detection (which in turn produces 

biased expression estimates) and low sensitivity 

for statistical tests. More accurate random error

estimates can be obtained by pooling (averaging)

error variances across all probes, thereby

circumventing problems inherent to small sample

sizes [19–21]. However, this latter approach requires

the assumption that one random error is common to

all probes, which is not always reasonable, especially

at low intensity levels. This is because random error

associated with background correction can be large

relative to low expression values (see the section on

systematic error, below). Methods for addressing this

issue include using ROBUST methods for pooling error

estimates locally according to expression intensities

(T.B. Kepler, unpublished [see Box 2]; Refs [7,20,22])

and modeling the random error associated with

background correction directly [23,24]. However

obtained, estimates of random error can be used to

conduct statistical tests of differential expression for

individual probes (see the section on statistical tests

of differential expression, below) and to assess the

reliability of data mining results [24–26]. 

Systematic error
Systematic errors are biases; they result in a constant

tendency to over- or underestimate true values,

thereby decreasing accuracy. Biasing factors come in

many forms and are partially dependent on spotting,

scanning and labeling technologies. Bias can affect 

all expression values on an array equally or depend 

on other factors (e.g. spatial location, spotting pins,

signal intensity) [2,27]. The ubiquitous potential for

inaccurate expression values is a major impediment

to creating public expression databases derived from

different laboratories [28]. Indeed, without stringent

controls, the accuracy of intra-laboratory

comparisons is often questionable.

Sources of bias are in theory identifiable by quality

control studies. However, biasing effects from various

sources can be nonorthogonal and are often nonlinear.

This, and the typically few replicates available for

estimation, complicate quantifying the specific

sources of bias. None the less, experimental design

and robust statistical approaches have contributed

extensively to correcting biases in array data

(T.B. Kepler, unpublished; M. Sapir and G.A. Churchill,

unpublished [see Box 2]; Refs [2,19,27]).

Background on the substrate presents a special case

of bias. On the assumption of additive error, an estimate

of background is usually subtracted from the measured

expression value before log transformation and before

correcting other systematic errors. Proportional error

models have also been proposed [29]. Estimates of

background intensity can be obtained from low pixel

intensities within spots [30], from areas outside the

spots [7], or from negative controls that contain either

no DNA or nonspecific DNA [29].

Other sources of systematic error are considered

proportional to signal intensity and are often

Review

Ratios of raw expression values outputted by image quantification software 
are usually not appropriate for statistical analysis. As described below,
log-transformed data are generally preferred to ratios of raw signal values. Note,
however, that an alternative transformation has recently been proposed, which
takes into account different error characteristics of low and high signals to produce
a common error variance across the entire data range [a].

Why not use ratios of raw expression values?

Random error of replicate raw expression values is approximately proportional 
to signal intensity; hence, equivalent-fold changes are not equally reproducible. 
For example, a twofold change derived from large expression values is less
reproducible than a twofold change derived from average expression values,
producing lower confidence in the former. Moreover, most parametric statistical
tests assume an additive rather than a proportional error model.

Distributions of replicated raw expression values (and consequently of differential
expression ratios) tend to be asymmetric (skewed). This violates the normality
assumption of many statistical tests. The central limit theorem affords little protection
for most microarray studies because of the typically small sample sizes, which
produce incorrect P-values associated with parametric tests like the t-test and ANOVA.

Summary statistics of replicated ratios yield different quantities, depending 
on the numerator/denominator assignment. Consider a single treatment:control
ratio of 2:1. Because its inverse is 1:2, the same quantitative conclusion is reached
whether we divide treatment by control or vice versa. This is not the case when
using multiple ratios. Now, consider the following treatment:control ratios obtained
from three replicates: 2:1.1, 5:1.4, and 15:5 (mean = 2.80, standard deviation = 0.89,
COEFFICIENT OF VARIATION = 0.32). Now consider the inverted (control:treatment) ratios:
1.1:2, 1.4:5 and 5:15 (mean = 0.39, standard deviation = 0.14, coefficient of variation =
0.37). These quantities are different and, unlike the single ratio case, the inverse of
the averaged treatment:control ratio is not equal to the inverse of the averaged
control:treatment ratios (1 ÷ 2.80 ≠ 0.39). Also, using the standard deviation as an
index of reproducibility, it appears that greater confidence should be placed in the
control:treatment ratios (smaller standard deviation); using the coefficient of
variation, the reverse is true. Because the numerator/denominator assignment is
arbitrary, these quantification differences are scientifically unacceptable. 

Why use log transformed expression values?

Transforming expression data to a log scale (any base) removes much of the
proportional relationship between random error and signal intensity. (As discussed in
the main body of the text, low signals are often an exception. Random error of log-
transformed data is often inversely proportional to signal in the low signal range
because of the proportionally nontrivial error associated with background correction.)
Moreover, log transformation has the advantage of transforming the error model from
a proportional to an additive one because log(a/b) = log(a) – log(b), although non-
logged (raw) difference scores (a–b) have also been recommended for low signals [b].

Distributions of replicated logged expression values (and consequently of log
ratios) tend to be normal.

Summary statistics of log ratios yield the same quantities, regardless of the
numerator/denominator assignment. Consider the following treatment:control
log10 ratios obtained from the same three replicates above: log (2:1.1), log (5:1.4),
and log (15:5) (mean = 0.43, standard deviation = 0.15). Now consider the inverted
(control:treatment) ratios: log (1.1:2), log (1.4:5) and log (5:15) (mean = −0.43,
standard deviation = 0.15). The difference in sign for the means reflects whether on
average the numerator is larger (+) or smaller (−) than the denominator. Also, taking
the antilog of the average log ratios returns the data to a fold-metric. For example,
100.43 yields the geometric mean of the raw values (2.69), which can be interpreted
as an average-fold change. Note that the geometric mean is always less than the
arithmetic mean, except when all numbers are equal, when identity holds.

References

a Durbin, B. et al. (2002) A variance-stabilizing transformation for gene-expression

microarray data (www.cipic.ucdavis.edu/~dmrocke/preprints.html)

b Rocke, D.M. and Durbin, B. (2001) A model for measurement error for gene expression

arrays. J. Comput. Biol. 8, 557–569

Box 1. Ratios and log transformation
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corrected by dividing the raw expression value by an

estimate of the systematic error, although a preferred

method is to log-transform both the error estimate

and the expression value and to correct the values by

subtraction. Either way, corrected expression values

are said to be ‘normalized’.

Various normalization methods have been

proposed. Global methods divide expression values by

an estimate of systematic error (mean, quantile) for

each array, controlling for proportional differences

across slides (membranes or chips). To be effective,

most probes must not be affected by the treatment

[31], or the normalization procedure confounds error

and treatment effect, potentially masking the effect 

of differentially expressed probes or creating

differential effects where none exist.

Reference standards that are unaffected by

treatment are needed to circumvent this problem.

Housekeeping genes, which in theory should 

show little treatment effect, have largely been

unsatisfactory [32,33] and heterologous synthetic

DNA has been advanced as a possible alternative

[34]. As with the global methods, however, this type 

of systematic error correction assumes that bias is

constant across the entire range of the data.

As a step towards resolving these issues, titration

series of spiked heterologous DNA look promising.

However, calibrating to spiked standards is difficult,

partly because label intensities might not reflect

absolute message levels [31] and partly because

uncertainties in fluid-handling and RNA

preparations could bias the standards [35]. As a

result, even calibrated expression arrays provide only

relative measurements (e.g. this spot is 50% brighter

than that one, instead of specifying 150 labeled

molecules versus 100).

This problem is most marked when two fluors are

used to construct ratios. The magnitude of the ratio will

be biased by what is usually a fluor-specific relation

between intensity and hybridization, although this

might be partially gene specific [16,36]. Compounding

the difficulties in two-color arrays, fluorescent dyes

differ in mean brightness and background noise [37]. 

A standard design to control for these effects is to use

the same reference sample for various experimental

conditions. For example, three different tissues could

be compared with the same reference sample. The

same goal can sometimes be achieved more efficiently

with known experimental designs [38,39].

Two-color arrays present an additional

normalization problem. The extent of systematic

error caused by differences in fluorescent dyes

typically depends on expression level. Nonlinear

statistical regression procedures have been developed

to address this problem (T.M. Houts, unpublished;

Ref. [27]), although replicate experiments that

alternate the dyes across the treatment and the

reference samples can sometimes make nonlinear

normalization unnecessary [40].

Outliers
Outliers are extreme values in a distribution of

replicates. Poor reproducibility can be caused by

uncorrected image artifacts (e.g. dust on fluorescent

arrays or ‘blooming’of adjoining spots on radioisotopic

arrays). They can also be caused by factors that are

undetectable by image analysis, such as cross-

hybridization or failure of one probe to hybridize

adequately. Outliers can number as high as 15% in

typical microarray studies [17] and are revealed only

by the extreme deviance of their expression values

relative to other replicates. Undetected outliers bias

the estimation of both the expression value and its

associated random error, reducing both SPECIFICITY

and sensitivity. They thus compromise individual

tests of differential expression and data mining

classification (R. Nadon, unpublished).

Although numerous methods are available for

statistical outlier detection [41], they are generally

inadequate given the small number of replicates

typical of microarray studies. Because they estimate

random error on a probe-by-probe basis, these

methods often falsely identify replicates as outliers

and fail to detect true outliers. For example, given the

large number of probes in an array, it is not unusual

for the expression level for two of three replicates for 

a particular probe to be very close together because 

of random sampling error. In this circumstance, the

third seemingly extreme value is incorrectly identified

as an outlier. By contrast, because random error

estimation based on small sample sizes is imprecise,

many true outliers go undetected. Larger sample 

sizes are needed to detect outliers more accurately 

and precisely. One method is to pool standardized

residuals for all probes [20]. Alternatively, standard

errors can be estimated from a training set of

numerous arrays and applied to the data at hand [42].

Errors of inference

All statistical inferences have a probability of being

incorrect. False positives (Type I errors) are incorrect

inferences of differential expression; false negatives

(Type II errors) are failures to detect true differential

expressions. In standard practice, the false-positive

rate (α) is set in advance. The false-negative rate (β) is

a function of various parameters, including α, and can

Review

Some of the unpublished data are from conference and technical papers that are
available on the authors’ websites.

• Dudoit, S. et al. (2000) Statistical Methods for Identifying Differentially Expressed
Genes in Replicated cDNA Microarray Experiments.
(stat-www.berkeley.edu/users/terry/zarray/html/papersindex.html)

• Kepler, T.B. et al. (2000) Normalization and analysis of DNA microarray data by self-
consistency and local regression. (www.santafe.edu/sfi/publications/00wplist.html)

• Sapir, M. and Churchill, G.A. (2000) Estimating the posterior probability of
differential gene expression from microarray data.
(www.jax.org/research/churchill/pubs/index.html)

• Storey, J.D. (2001) A New Approach to False Discovery Rates and Multiple
Hypothesis Testing. Technical Report No. 18. (www-stat.stanford.edu/research/)

Box 2. Data from unpublished work
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be estimated by statistical power analysis (Box 4).

Given the large number of probes in array studies,

failure to consider the false-positive rate can lead to

hundreds of false leads relative to a small number 

of true effects (low specificity:sensitivity ratio).

Alternatively, imposing conservative requirements

for judging a probe to be differentially expressed

increases the false-negative rate, typically producing

a low sensitivity:specificity ratio.

To set the false-positive rate for one statistical test,

an acceptable α must be chosen in advance (e.g. the

familiar P-VALUE < 0.05 criterion). However, it

becomes more complicated when large numbers of

tests are conducted, as is the case with microarrays. If

none of the probes are differentially expressed, 5% are

expected to reach ‘statistical significance’with the

0.05 criterion. In instances where few probes are

expected to show differential effects, the number of

false positives overwhelms the correct differential

expression inferences. Discussions of false-positive

control in microarray studies are available (S. Dudoit

et al., unpublished [see Box 2]; Refs [20,43–45]).

The single-step Bonferroni correction is the best-

known procedure for controlling the false-positive rate

when multiple tests are conducted [46]. The nominal

false-positive rate is divided by the number of tests to

yield the effective rate. For example, in the case of

10 000 probes, a nominal rate of 0.05 is divided by

10 000 to yield a new false-positive threshold of

0.000005 to be used with each statistical test. This

procedure ensures that the probability of making at

least one false-positive error among the entire set of

statistical tests is no more than 0.05. This is a stringent

control that drastically increases the false-negative

rate. Other procedures involve multiple steps and offer

improvements over the single-step procedure [46,47].

Methods that address some of the problems with the

Bonferroni procedures include the false discovery rate

(FDR) [48] and positive false discovery rate (pFDR)

(J.D. Storey, unpublished [see Box 2]), which have more

statistical power than the Bonferroni procedures and

so provide a better sensitivity:specificity ratio. Still

other methods are based on RESAMPLING PROCEDURES

(S. Dudoit et al., unpublished [see Box 2]; Refs [44,49]).

All procedures that correct for multiple tests lower

sensitivity to improve specificity. The key is achieving

the right balance. In early screening phases it might

be more important to cast the net widely and

minimize false negatives at the expense of a large

number of false positives. In later phases, when 

more intensive follow-ups of individual genes are

contemplated, minimizing false positives could

become more important. Either way, a little

forethought can provide substantial gains in

sensitivity. For example, it is not necessary to control

the false-positive rate in the same way for all probes

in a study. There could be a subset of probes that is

thought (before examining the data) to be especially

important. The subset can be tested first, reducing

the number of tests and lessening the stringency of

the correction among the more promising probes [50].

Statistical tests of differential expression

The first formal statistical model for assessing

significance of differential expression ratios did not use

replicates [51]. The central idea is that most probes 

in a study will not express differentially and that the

average treatment:reference ratio of all the probes will

be approximately 1; probes with differential expression

that deviates substantially from this average are

considered significantly differentially expressed.

Alternatively, a reference subset of probes that, by

definition, do not show differential expression

(e.g. housekeeping genes) can be used to generate the

distribution of ratios under the null hypothesis and 

the probes of interest are compared with this.

Disadvantages of studies without replicates include:

(1) the inability to distinguish between large ratios

Review

Statistical hypothesis testing provides a benchmark (probability of a false positive)
against which to assess observed effects. A research hypothesis is usually stated 
in positive terms (e.g. a particular gene or group of genes is related to a disease
state). By contrast, the statistical null hypothesis is stated in negative terms 
(e.g. a particular gene or group of genes is not related to a disease state).

Under a stochastic model, observed data will deviate somewhat from the null
hypothesis simply by chance. Observed values must exceed a predefined chance
threshold (α level) for the null hypothesis to be regarded as improbable, in which
case the null hypothesis is rejected in favor of the alternative (research) hypothesis.
The probability framework of statistical null hypotheses is particularly useful in
exploratory research because, without it, chance results of analyses with many
variables are readily and erroneously interpreted as meaningful [a].

The null hypothesis for a difference between two conditions and its mutually
exclusive alternative hypothesis can be stated as follows:

H0: µDISEASE − µCONTROL = 0

H1: µDISEASE − µCONTROL ≠ 0

The symbol µ represents the POPULATION expression value for the particular probe of
interest. A zero difference is usually hypothesized, although a non-zero value can be
used also. The hypotheses can also be directional, in which case the = sign in the
null hypothesis is replaced by ≥ or by ≤ and the ≠ sign in the alternative hypothesis
is replaced by < or >, respectively.

Reference

a Armstrong, J.S. (1967) Derivation of theory by means of factor analysis or Tom Swift and

his electric factor analysis machine. Am. Statistician 21, 17–21

Box 3. Hypothesis testing

Statistical power analysis provides a benchmark (probability of a false negative)
against which to assess the lack of observed effects. High power is desirable and it
implies a low probability of a false negative.

Power analysis can be used to estimate how many replicates are needed to have
a specified probability of finding a minimum effect size. A researcher can estimate,
for example, how many replicates are needed to detect geometric means of twofold
or greater with a 0.80 probability. By the same token, improvements in sensitivity
gained by adding replicates can be estimated. A law of diminishing returns usually
applies. In microarrays, substantial gains in sensitivity are almost always achieved
by adding one replicate when sample sizes are small (e.g. increasing sample size
from two to three). Adding one replicate tends to provide lower gains in sensitivity
when sample sizes are larger (e.g. increasing sample size from five to six).

Statistical power is a function of four parameters: α level, number of replicates,
random measurement error, and population effect size (e.g. µDISEASE − µCONTROL). All
things being equal, power increases as α, replicates, and effect size increase and as
random error decreases.

Box 4. Power analysis
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caused by real effects and large ratios caused by

outliers; (2) reliance on the assumption of no differential

expression among most probes; (3) lower sensitivity;

and (4) the exclusion of biological variability across

different samples. These disadvantages have led to 

calls for the routine use of replicates (J. Woodgett,

unpublished, Refs [17,18,20,52]).

Specific choices depend on assumptions about the

data. If a sufficient number of replicates is available,

and if expression values are assumed to be normally

distributed with few outliers, then the well-known

t-tests can readily be calculated with spreadsheet

software. Nonparametric alternatives (e.g. the

Mann–Whitney U test, Wilcoxon’s matched pairs

signed rank test) are available but are generally too

insensitive to detect moderate-to-small differential

effects. Other issues, such as false-positive control

and modified random error estimation, require

rudimentary programming or specialized software

(S. Dudoit et al., unpublished [see Box 2]; Refs [24,44]).

The underpinning of these approaches, and that of

the analysis-of-variance model proposed by Wolfinger

et al. [39] is that true random error across replicates is

probe-specific and consequently should be estimated

separately for each probe.

A more general approach assumes that the same

true random error applies to all probes within a

specific study, or to probes of similar intensities. This

approach pools error estimates across probes and

permits the use of the z-test, a statistical test similar

to the t-test but that requires fewer replicates to

achieve the same sensitivity by virtue of more precise

error estimation (T.B. Kepler, unpublished [see Box 2];

Ref. [20]). In a variation of this approach, Kerr et al.

have used a bootstrapping procedure that assumes a

common random error across all probes but that does

not assume the normal distribution [19]. In all cases, 

if the underlying assumptions are warranted, the

probability of detecting small expression changes can

be an order of magnitude (or more) larger than the

t-test, especially with small numbers of replicates [20].

A conceptual combination of the two approaches

assumes that random error is probe-specific but the

same across experiments. One approach obtains

random-error estimates based on a modification of

Chen et al. [51] and/or from replicates [23]. Another

approach, designed for Affymetrix data, provides

statistical tests based on weighted averages of

oligonucleotide-specific random-error estimates [26].

Both approaches require relatively large training 

sets to generate the error estimates, which can then

be applied to new, smaller, sample data sets.

Variations of the above methods are possible. For

example, the t-test can be used with pooled error

estimates. The pooling can vary (e.g. across probes or

treatments) and permutations within probes can be

used (S. Dudoit et al., unpublished [see Box 2]; Ref. [18]).

Pooled error estimates can also be generated 

with training sets and applied to new datasets.

Gene-specific error estimates can be generated for

unreliable low-expression probes, whereas error for

other probes is based on pooled or training estimates.

Throughout, this review has focused on classical

(frequentist) statistical methods; however, Bayesian

methods, or methods that include a Bayesian

component, are also being developed [22,53–56].

Bayesian approaches have been used to study many

problems in genetics and molecular biology [57] 

and are well suited to the field of gene expression.

Specifically with respect to testing for differential

expression, a Bayesian model of the distribution of

differences uses a combination of a prior distribution

and the data. Because a fully Bayesian method is

computationally intensive, shortcuts can be taken.

Thus, both measurement error and error due to gene

spotting can be described using an empirical Bayes

model [54]. Using simulations, a Bayesian analog to

the t-test worked better than the t-test when the

number of replicates was low; when it increased, the

t-test and the Bayesian analog worked equally well

[55]. Bayesian methods are a standard way of

analyzing differential expression using serial

analysis of gene expression (SAGE) data [53,58,59].

Validation

Most microarray studies are more or less exploratory

(hypothesis-generating). Exploration is an important

part of the scientific process because it forms the basis

for new directions and future experiments. Well-defined

questions are important (because they minimize

statistical uncertainties caused by unconstrained

exploration), as is validation (because it places

conclusions on firmer ground). Molecular ‘gold-standard’

techniques such as RT–PCR or northern blots are often

used to validate the results in cases where the primary

interest is in which genes are differentially expressed

[60–62]. This approach is useful for determining the

specificity of microarray analysis but provides no

information about the equally critical issue of sensitivity;

this is especially important because differential effects

are often larger with RT–PCR and northern blots

[36,63,64]. Ideally, some nondifferentially expressed

probes should also be validated.

Findings can also be validated using various

statistical approaches. A subset of probes in the

original experiment can be tested in another sample.

Alternatively, the study can be repeated to determine

whether differential effects are reproducible. One way

to do this is to determine whether the same probes are

found to be statistically significant in each study. For

a two-condition comparison, a better way would be to

conduct a two-way (condition × study) factorial

analysis of variance; failure to cross-validate the

initial results would be evidenced by a statistical

interaction between the factors.

Putting it all together

Although microarray technology itself is now well

established, statistical analysis of microarrays is still in

its infancy, and methods are not yet in place to allow

Review
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automated high-throughput analysis without human

intervention. Data processing and analysis remain the

bottlenecks. Although these problems will be eased by

new software tools that implement some of the methods

discussed here, scientists and statisticians will need to

be familiar with each other’s areas of expertise at all

stages of microarray analysis (experimental design,

analysis, and interpretation) for optimal collaboration.

Review
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