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Abstract

The issue of rule generalization has received a
great deal of attention in the discrete-valued
learning classifier system field. In particular,
the accuracy based XCS is the subject of ex-
tensive ongoing research.

However, the same issue does not appear to
have received a similar level of attention in
the case of the fuzzy classifier system. This
may be due to the difficulty in extending the
discrete-valued system operation to the con-
tinuous case.

The intention of this contribution is to pro-
pose an approach to properly develop a fuzzy
XCS system.

Keywords: learning classifier systems,
XCS, evolutionary algorithm, Michigan-style
learning fuzzy systems, fuzzy implications.

1 Introduction

The fuzzy classifier system is a machine learning sys-
tem which employs linguistic rules and fuzzy sets in
its representation and an evolutionary algorithm (EA)
for rule discovery. It therefore combines an easily un-
derstood representation (as opposed to, for example,
neural networks approaches) with a general purpose
search method. In order to exploit the fuzzy repre-
senting to the full, the ability to learn generalization
is of great importance.

Generalized rules allow more compact rule bases, scal-
ability to higher dimensional spaces, faster inference,
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and better linguistic interpretability. The issue of rule
generalization, and the interplay between general and
specific rules in the same evolving population, has re-
ceived a great deal attention in the discrete-valued
classifier system research community (e.g. [8]). The
same issue does not appear to have received a similar
level of attention in the case of fuzzy classifier sys-
tems [1, 2, 3, 4, 5, 6, 7].

Traditional Michigan-style classifier systems have been
“strength-based” in the sense that a classifier ac-
crues strength during interaction with the environment
(through rewards and/or penalties). This strength can
then be used for two purposes: resolving conflicts be-
tween simultaneously matched classifiers during learn-
ing episodes; and as the basis of fitness for the EA. A
completely different approach can be taken in which a
classifier’s fitness, from the point of view of the EA, is
based on its “accuracy,” i.e. how well a classifier pre-
dicts payoff whenever it fires. Such an accuracy-based
approach offers a number of advantages such as avoid-
ing over-general classifiers, obtaining optimally general
classifiers, and learning of a complete “covering map.”
This accuracy-based classifier system, called XCS, was
proposed in [8] and it is currently of major interest to
the research community in this field.

This work aims at proposing a new approach to achieve
accuracy-based Michigan-style fuzzy classifier systems.
The proposal, Fuzzy-XCS, is based on XCS but prop-
erly adapted to fuzzy systems. The fuzzy inference
and the reinforcement component are changed to con-
sider a different, competitive interaction among rules
that allow an accuracy-based operation.

The paper is organized as follows. Section 2 intro-
duces some difficulties to develop an accuracy-based
fuzzy classifier system. Section 3 describes a compet-
itive inference mechanism. Section 4 introduces the
proposed Fuzzy-XCS system. Section 5 shows some
experimental results. Section 6 concludes.
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2 Difficulties in Accuracy-Based
Fuzzy Classifier Systems

Most of the difficulty in accuracy-based fuzzy clas-
sifier system is the fuzzy inference process, there-
fore, it is briefly explained in the next subsection.
Then, the problems when using strength-based Michi-
gan fuzzy classifier systems, the advantages of con-
sidering accuracy-based fitness, and the difficulties in
doing that are introduced.

2.1 Cooperation-Based Fuzzy Inference

This is the most commonly used fuzzy inference
method. Linguistic (or Mamdani-type) fuzzy rule-
based systems are formed by linguistic fuzzy rules with
the following structure:

...
also
Rr−1: IF X1 is Ar−1

1 and . . . and Xn is Ar−1
n

THEN Y1 is Br−1
1 and . . . and Ym is Br−1

m ,
also
Rr: IF X1 is Ar

1 and . . . and Xn is Ar
n

THEN Y1 is Br
1 and . . . and Ym is Br

m ,
also
...

with Xi and Yj being input and output linguistic vari-
ables respectively, and with Ai and Bj being linguistic
labels with associated fuzzy sets defining their mean-
ing. These linguistic labels use a global semantic defin-
ing the set of possible fuzzy sets used for each variable.

The inference process, which obtains an output as re-
sponse to a specific input, consists basically of the fol-
lowing steps: for each fired (or matched) fuzzy rule,
firstly the conjunction (and) operator is used to ob-
tain the matching degree of the rule; secondly, the im-
plication (then) operator is applied to scale the out-
put fuzzy set to a degree according to the matching;
finally, the last step is to apply the aggregation (also)
operator to reduce the combined output of all the rules
acting together to a single fuzzy set.

If we need a real-valued output, a last stage (defuzzi-
fication), converts the output fuzzy set to a number.
Center of gravity, center of sums, or mean of maxima
are some possibilities to do that.

The most widely inference scheme used in linguistic
fuzzy systems is that proposed by Mamdani and Assil-
ian in the first fuzzy controller of 1975. It involves the
combination of operators (min,min,max ), i.e., mini-
mum for conjunction, minimum for implication, and
maximum for aggregation. This inference is usually
named Max-Min. Alternatively, sometimes it uses an-

other t-norm (e.g. product) to play the role of con-
junction and/or implication, or another t-conorm (e.g.
bounded sum) to the also operator.

This is the most commonly used approach (we could
say even the only one) followed in engineering prob-
lems such as fuzzy control and fuzzy modeling. It is
because of, with these operators, the fuzzy rules “co-
operate” to generate the output, in the sense that an
Interpolative Reasoning is performed to define the out-
put in the zones where several rules work to a medium
matching degree. Indeed, the fact of using a t-conorm
to aggregate the information involves that we are us-
ing a union and, therefore, the effect of each rule is
added to the final consensual output.

2.2 Problems with “Strength-Based”
Michigan Fuzzy Classifier Systems

As mentioned in the introduction, the strength-based
fuzzy classifier system is characterized by using the
same parameter (i.e. strength) to resolve conflicts be-
tween matched classifiers and to compute their fitness.
A number of problems arise from this dual use of clas-
sifier strength. These include:

1. The cooperation/competition problem. High-
strength, potentially cooperative classifiers go on to
compete under the action of the EA.

2. Over-general rules with relatively high (but incon-
sistent) payoff can come to dominate the population.

3. In some environmental states, the maximum payoff
achievable (by performing the best possible action for
that state) may be relatively low. Although a classifier
might be the best that can exist for that state, it can be
eradicated from the population by other classifiers that
achieve higher rewards in other states. This results in
gaps in the system’s “covering map.”

2.3 Advantages of using “Accuracy-Based”
Fitness

A completely different approach can be taken in which
a classifier’s fitness, from the point of view of the EA,
is based on its “accuracy,” i.e. how well a classifier pre-
dicts payoff whenever it fires. Such an accuracy-based
approach offers a number of advantages. Firstly, it can
distinguish between accurate and over-general classi-
fiers: an over-general classifier will have relatively low
accuracy since payoff will vary according to the input
states covered by the classifier. Indeed, it has been
shown (in the discrete valued case) that the accuracy-
based approach can lead to evolution of optimally gen-
eral classifiers. Additionally it can maintain both con-
sistently correct and consistently incorrect classifiers
which allows learning of a complete “covering map.”
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A potential drawback of the accuracy-based approach
is that it is likely to require larger populations of clas-
sifiers.

2.4 Difficulties in Moving to
“Accuracy-Based” Fuzzy Classifier
Systems

Firstly, in a traditional fuzzy classifier system several
rules fire in parallel (this is how the system achieves
interpolation); credit assignment is much more diffi-
cult in the fuzzy case and it may well be that ap-
portioning credit in proportion to a fuzzy classifier’s
activation level is not appropriate. A further difficulty
is measuring the accuracy of a rule’s predicted payoff
since (particularly early in the search) a fuzzy rule will
fire with many different other fuzzy rules at different
time-steps, giving very different payoffs. Yet another
difficulty is that the payoff a fuzzy rule receives de-
pends on the input vector — an active fuzzy rule will
receive different payoffs for different inputs. This fur-
ther complicates payoff predictions used as the basis
for accuracy-based fitness.

3 Competitive Fuzzy Inference

The problems explained in the previous section are
mainly due to the fact that, usually, all the matched
rules cooperate to define the final solution in a inter-
polative behavior as explained in Section 2.1. If it is
the problem, why not to change our approach and look
for competitive interaction? This section introduces
such an approach.

3.1 Why Use Competitive Inference?

Michigan-style learning classifier systems in general,
and XCS in particular, do not consider the interaction
of the different rules as a cooperative action, instead
they consider that each rule competes with the rest
to be the best one for a particular input vector. This
involves that the action is only due to a set of rules
that were the winners among the rules composing the
match set. Extending this approach to fuzzy modeling,
it makes sense to deal with competitive fuzzy rules, in
which case, we need to know how to work with such
rules.

In off-line fuzzy system learning, it seems that coop-
erative inference has some clear advantages that make
it be more suitable for this problem. In this case, we
known the whole data set a priori and our objective is
to build a landscape of the output data. To do that,
it seems a good approach to fill the gaps between data
with interpolation, and this is the reason why cooper-
ative inference is successful.

However, in on-line fuzzy system learning, why is it
necessary to interpolate the actions of the rules? The
objective in this problem should not be to define a
landscape of the output, but a landscape of the reward.
This means taking the best action in each state. For
this purpose, a competitive action makes more sense
since our objective is to optimize the rules individually
to have the best reward.

With competitive fuzzy inference we propose a deci-
sion making process where the matched rules compete
among themselves, and only one is the winner. The
output finally obtained is mainly due to the winner
rule. That is, loser rules do not have an important in-
fluence on the output. Nevertheless, competition does
not involve a loss of interaction. There is an interac-
tion, but with a selfish objective. To perform compet-
itive inference we only need to change the roles of the
inference operators.

3.2 Fuzzy Operators for Competitive
Inference

First of all, since each rule competes with the rest, we
should use an intersection (t-norm) as also operator,
instead of the union approach followed by the cooper-
ative inference. We use the minimum in this paper.
However, this change does not allow us to use the same
kind of implication operator.

Analyzing the classical Boolean implication p ⇒ q,
equivalent to ¬p ∨ q, it is true when p is false. That
is, when we have not information about the certainty
of the fact (antecedent), we assume the “optimistic”
view of thinking that the implication is true.

However, in cooperative inference, a t-norm (intersec-
tion) is used as implication. It is a “pessimistic” view
that assumes the falseness of the implication when the
fact is false. It works if we use a union (t-conorm)
to aggregate the effect of the different rules. This be-
havior could be interpreted that the belief of the rules
resides in the set of them, instead of in each of them.

To develop a competitive inference where a inter-
section is considered as aggregation, the implication
should follow the classical Boolean if-then view assum-
ing that each rule has all the information about the
relationship between fact and consequence. Thus, the
belief develops separately for each rule. This family of
implications are known as logical fuzzy implications,
instead of the engineering fuzzy implications based on
the t-norm. Table 1 includes some of the best known
logical fuzzy implications.

To understand better the different behavior between
cooperative and competitive inference, Figure 1 shows
the output generated by two fuzzy systems that only
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Table 1: Some logical fuzzy implications
Operator µR(x, y)

Kleene-Dienes max{1− µA(x), µB(y)}
Zadeh max{min{µA(x), µB(y)}, 1− µA(x)}
ÃLukasiewicz min{1, 1− µA(x) + µB(y)}

Dubois-Prade

{
1− µA(x) if µB(x) = 0
µB(x) if µA(x) = 1
1 otherwise

Gödel

{
1 if µA(x) ≤ µB(x)
µB(x) otherwise

Goguen min{µB(y)/max{µA(y), µB(y)}}

differ in the inference mechanism. In the cooper-
ative inference, minimum, minimum, and maximum
are used as conjunction, implication, and aggregation
operators, respectively. In the competitive inference,
minimum, ÃLukasiewicz, and minimum are used as con-
junction, implication, and aggregation operators, re-
spectively. The center of gravity is used as defuzzifi-
cation process in both cases. Both systems consist of
two input variables and one output variable, with 5
triangular fuzzy sets uniformly distributed in the uni-
verse of discourse [0,1] for each variable. Among the
25 fuzzy rules considered, only 7 have a consequent
different from the medium linguistic term (with ver-
tex at 0.5). As we can see, both approaches generate
a smooth output but, while cooperative inference fills
the gaps by interpolating, competitive inference iso-
lates the effect of each rule.
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Figure 1: Output generated by cooperative (top) and
competitive (bottom) inferences

On the other hand, Figure 2 illustrates some examples
of competitive inference depending on the used impli-
cation operator. The minimum aggregation operator
is used in all the cases. We can see how the action
strength of the winner rule (the one with the highest
matching degree) not only depends on its matching
degree but also on the difference in the matching de-
gree with respect to fuzzy rules with different actions
(consequents), i.e., rival fuzzy rules. The more dif-
ferent these matching degrees, the higher the action
strength of the selected rule. This involves that ac-
tually, the competition is performed among different
linguistic actions. Therefore, we should say that com-
petitive inference leads to competitive actions, but not
necessarily competitive rules.

The competition among rules with the same action is
only performed when using the minimum operator as
aggregation, since in this case only the best rule of
that action is considered in the inference. The use of
other aggregation operators, such as the product, will
lead the inference to a cooperation among rules with
the same actions. According to XCS, this approach is
not desired since it aims at obtaining the X ×A ⇒ P
map with the best classifier for each situation-action
combination [8].

We can characterize slightly different interactions ap-
proaches among rules with different actions (i.e. rival
rules) depending on the logical fuzzy implication op-
erator used; these are shown in Table 2.

Table 2: Type of competition among rules with differ-
ent actions depending on the used implication operator
(a t-norm is used as also operator)
Implication Type of competition

Kleene-Dienes Rival rules reduce the importance of the
winner rule in non-overlapped areas

Zadeh Like Kleene-Dienes. No interaction
among rules if the winner rule has a
matching degree lower than 0.5

ÃLukasiewicz Like Kleene-Dienes, but with higher
preservation of overlapped areas than it

Dubois-Prade Like Kleene-Dienes, but with the high-
est preservation of overlapped areas

Gödel Output always in the overlapped area.
No output with more than two differ-
ent actions. If matchings greater than
cross-point, output in the center of the
overlapped area

Goguen Like Gödel. Better with mean of maxi-
mum defuzzification

Finally, we should say that the consideration of com-
petitive actions seems to fit properly with the XCS
aim. Other fuzzy learning classifier systems, like
Bonarini’s work [1, 2], focus on the interaction among
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Figure 2: Results of four different fuzzy implications using minimum as also operator. Matching degrees: µAR1
=

0.9, µAR2
= 0.6, and µAR3

= 0.7

rules in the antecedent (state) instead of the conse-
quent (action). He proposes a competition among
rules with the same antecedent but a cooperation
among rules with different ones. Besides, the implica-
tion and aggregation considered in his proposal leads
implicitly to a cooperation between the consequents.

4 Fuzzy-XCS

The use of competitive fuzzy rules seems to solve the
problems shown by the cooperative approach (Sec-
tion 2.4). Let us now see how Fuzzy-XCS works.

4.1 Generalization Representation

First of all, a representation of fuzzy classifiers to allow
proper generalization must be done. We propose the
use of disjunctive normal form (DNF) fuzzy rules with
the following structure:

IF X1 is Ã1 and . . . and Xn is Ãn THEN Y is B

where each input variable Xi takes as a value a set of
linguistic terms Ãi = {Ai1∨. . .∨Aili}, whose members
are joined by a disjunctive (t-conorm) operator, whilst
the output variable remains a usual linguistic variable
with a single label associated. We use the bounded sum
(min{1, a + b}) as t-conorm.

This structure uses a more compact description that
allows rules with different generalization degrees.
Moreover, the structure naturally supports the ab-
sence of some input variables in each rule (simply mak-
ing Ãi be the whole set of linguistic terms).

In order to use this representation in Fuzzy-XCS, we
propose a binary coding scheme for the antecedent of
the fuzzy rule with size equal to the sum of the num-
ber of linguistic terms used in each input variable. The
allele ‘1’ means that the corresponding linguistic term
is used in the corresponding variable. For the con-
sequent of the rule, an integer coding scheme is used
where each gene contains the index of the linguistic
terms used for the corresponding output variable. For
example, assuming we have three linguistic terms (S,
M, and L) for each input/output variable, the fuzzy
rule [IF X1 is S and X2 is {M or L} THEN Y1 is M
and Y2 is L] is encoded as [100|011||23].

4.2 Performance Component

In XCS [8], the performance component consists of
three stages: match set construction, prediction array
computation, and action set selection. This process
has the final objective of inferring an specific action
from the set of classifiers that matches the current
state. In Fuzzy-XCS the process is different, as de-
scribed as follows:
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•Match set : To avoid an excessive number of matched
rules, only those rules with a matching degree greater
or equal to a specific value (θM ) are included in the
match set.

• Computation of candidate subsets: This stage could
be equivalent to the prediction array computation. It
is necessary in discrete output systems like XCS to
groups the matched classifiers according to the differ-
ent actions, since it is not possible to select several
actions. However, in real-valued output systems like
Fuzzy-XCS, several “linguistic actions” (consequents)
could be considered together. Thus, Fuzzy-XCS re-
defines the concept of prediction array computation.
We can assume that what should not be accepted in
our case is to have an action set with inconsistent
rules, i.e. rules with the same antecedent and differ-
ent consequent. Since DNF-type rules are considered,
to have the same antecedent also involves rules where
the antecedent of some of them are contained in oth-
ers. Therefore, different groups of consistent fuzzy rule
set (with the maximum number of rules in each group)
are formed.

• Action set selection: The action set selection chooses
the consistent classifier set with the highest mean pre-
diction. In learning classifier systems the criterion
used to select the action set alternately varies between
exploration and exploitation approaches. According to
this, our deterministic selection could be considered as
a purely exploitation approach. Although we have ex-
perimented with several possibilities, the best results
were obtained with this procedure.

4.3 Reinforcement Component

The pj (prediction), εj (prediction error), and Fj (fit-
ness) values are adjusted by the reinforcement learn-
ing standard techniques used in XCS (Q-learning,
Widrow-Hoff, and MAM) for each fuzzy classifier Cj .

However, an important difference is considered in
Fuzzy-XCS: the distribution among the classifiers
must be made proportionally to the degree of contri-
bution of each classifier to the obtained output. This
is a crucial issue because the interaction among the
classifiers (with competition actions in our case) is de-
veloped here.

The reinforcement performed in Fuzzy-XCS acts on
the action set AS. The following subsections detail the
reinforcement distribution process and the adjustment
of the parameters.

4.3.1 Distribution of the Reinforcement

The reinforcement distribution among the classifiers
of the action set AS is made by analyzing the con-

tribution of each classifier to generate the aggregated
output fuzzy set. Let B′

j be the scaled output fuzzy
set generated by the fuzzy rule Rj :

B′
j = I(µARj

(x), Bj), (1)

where µARj
(x) is the matching degree of the rule Rj ,

I is the used logical fuzzy implication operator (see
Table 1), and Bj the fuzzy set of the consequent of
the rule Rj . Let R1 ∈ AS be the winner rule, i.e.,
µAR1

(x) ≥ µARj
(x), ∀Rj ∈ AS − {R1}.

The process involves analyzing the area that the rival
fuzzy rules (rules with lower matching degrees than
R1) “bite” into the area generated by the winner rule.

Thus, the weight of the winner rule is:

w1 =

∫ ∧|AS|
j=1 µB′

j
(y) dy∫

µB′1(y) dy
, (2)

with |AS| being the action set size and ∧ the t-norm
used as aggregation operator (the minimum in our
case), while the weights of the rival rules are computed
as follows:

wj =
(1− w1) ·

(∫
µB′1(y) dy − ∫

µB′1(y) ∧ µB′
j
(y) dy

)

∑|AS|
i=2

(∫
µB′1(y) dy − ∫

µB′1(y) ∧ µB′
i
(y) dy

)

(3)

This distribution is designed to take into account that
competitive inference is being considered. To illustrate
this behavior, we can see that, from the example shown
in Figure 2(a), the competitive inference generates the
weights w1 = 0.711, w2 = 0.289, and w3 = 0, while
a cooperative-based distribution proportional to the
matching degrees generates the weights w1 = 0.409,
w2 = 0.318, and w3 = 0.273. Indeed, the selection
pressure in the competitive inference is higher, thus
allowing to discriminate between good and bad rules.

4.3.2 Adjustment of the Parameters

To adjust the parameters of each classifier, firstly the
P (payoff) value is computed with the Q-learning tech-
nique as follows: P = r + (γ · µAR1

(x)), with r being
the external reward from the previous time-step, and
γ ∈ [0, 1] a constant decreasing factor.

Then, the following adjustment process is performed
for each fuzzy classifier belonging to the action set:

1. Firstly, adjust the error values εj using the standard
Widrow-Hoff delta rule with learning rate parameter
β (0 < β ≤ 1) toward |P − pj | considering the weights
wj computed in eqs. (2) and (3) to distribute the ad-
justment, i.e.

εj ← εj + β · wj · (|P − pj | − εj). (4)
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The MAM (moyenne adaptive modifiee) technique is
used by adjusting εj to the average of the |P − pj |
values, instead of the above equation, during the first
1/β times that the corresponding classifier is adjusted.

2. Then, adjust prediction values

pj ← pj + β · wj · (P − pj). (5)

Again, weights are considered to distribute the rein-
forcement. MAM technique is also used here during
the 1/β first adjustments.

3. Finally, recalculate the fitness values Fj from the
updated values of εj , i.e.

Fj ← Fj + β · (k′j − Fj), (6)

with

k′j =
kj∑

Ri∈AS ki
, kj =

{
(εj/ε0)−ν εj > ε0
1 otherwise.

(7)

No weights wj are considered to update the fitness
since it depends on the prediction error instead of the
received payoff. Again, MAM technique is used.

4.4 Discovery Component

The EA for Fuzzy-XCS acts only on the action set. It
selects two classifiers with probabilities proportional to
their fitness, applies crossover and mutation operators
with probabilities χ and µchom (per chromosome), re-
spectively, and inserts the offspring in the population.
If the population contains the maximum number of
fuzzy classifiers allowed, two individuals are deleted to
make room. They are randomly selected proportion-
ally to the prediction error weighted by the mean ac-
tion set sizes where each fuzzy classifier was involved.

A simple two-point crossover operator that only acts
on the antecedent part of the chromosomes (binary
coding scheme) is considered. Prediction, prediction
error, and fitness values of offspring are initialized to
the mean values of the parents.

The mutation randomly selects an input/output vari-
able of the rule. If an input variable is selected, one of
the three following possibilities is applied: expansion,
which flips to 1 a gene of the selected variable; contrac-
tion, which flips to 0 a gene of the selected variable; or
shift, which flips to 0 a gene of the variable and flips
to 1 the gene immediately before or after it. The se-
lection of one of these mechanisms is made randomly
among the available choices (e.g., contraction can not
be applied if only a gene of the selected variable has the
allele 1). If an output variable is selected, the muta-
tion operator simply increases or decreases the integer

value. Prediction, prediction error, and fitness values
of mutated classifiers are not changed.

An EA subsumption is performed. Thus, if the off-
spring is logically contained by either of its parents and
this parent is sufficiently experienced (it has been up-
dated a threshold θGA number of times), the offspring
is not added to the pool but the parent’s numerosity
is incremented.

When no fuzzy rules cover the state with the highest
matching degree, a covering mechanism is used to in-
clude a fuzzy classifier with the input linguistic term
set that best matches the state and a random action.

5 Experimental Results

Experiments have been performed to test the behavior
of Fuzzy-XCS. We have developed a laboratory prob-
lem to play a similar role as the multiplexer problem
for discrete-valued classifier systems. Thus, we have
generated a example data set from a previously defined
rule base with different degrees of generalization. Two
input variables and one output variable are considered.
A total of 576 examples uniformly distributed in the
input space (24 × 24) were generated. Five linguistic
terms are considered for each variable. Uniformly dis-
tributed triangular-shaped membership functions are
used. The rule base considered to generate the data
set is shown in Table 3. The reward depends inversely
on the difference between the inferred and the desired
output in a non-linear way. The objective is to obtain
the set of rules that best approximate the data with
the highest degree of generalization, i.e., a rule base as
accurate and compact as possible.

Table 3: Rule base used to generate the data set
X1 X2 Y

VS S M L VL VS S M L VL VS S M L VL
R1 x x x x x
R2 x x x x x x
R3 x x x x x
R4 x x x x x
R5 x x x x x x x

The used parameter values are the following: maxi-
mum number of classifiers = 200, β = 0.2, ν = 3,
ε0 = 0.05, α = 0.1, θDel = 30, θGA = 30, χ = 0.8,
µchrom = 0.1, θtimestep = 20, θM = 0.3, also operator
= min, and then operator = ÃLukasiewicz. γ parameter
is not considered since it is a simple-step problem.

Figure 3 shows the average behavior of 10 runs of
Fuzzy-XCS with competitive inference and reinforce-
ment. The upper figure depicts the relative numeros-
ity of the five optimum fuzzy classifiers. It shows the
capability of the algorithm to find and keep the op-
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timum solution. The bottom figure depicts the mean
approximation error of the last 50 iterations. It shows
the capability of the algorithm to provide the appropri-
ate action (output) to the corresponding state (input).
Note that the optimum solution is properly found.
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Figure 3: Results of Fuzzy-XCS with competitive in-
ference and reinforcement approach

On the other hand, Figure 4 shows the behavior of
an algorithm following a cooperative inference and re-
inforcement. To do that, the only changes made to
the algorithm proposed in this paper are the use of
minimum as implication and maximum as aggrega-
tion in the inference engine, and a distribution of the
reward proportional to the matching degrees in the re-
inforcement component. This algorithm is tested with
a data set generated with the same cooperative in-
ference (Max-Min) to avoid biasing the experiment.
Notice that the cooperative approach is unable to find
the solution.
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Figure 4: Results of Fuzzy-XCS with cooperative in-
ference and reinforcement approach

6 Concluding Remarks

The paper has presented a proposal to properly de-
velop an accuracy-based fuzzy classifier system. It is
mainly based on a different inference approach that
considers the interaction among fuzzy classifiers (rules)
from a competitive point of view. The reinforcement
component, based on XCS, is adapted to allow this be-
havior. The approach has the advantage of performing
a higher selection pressure that results in a proper dis-
crimination between good and bad fuzzy classifiers.

Promising results of the proposal have been obtained
in a simple laboratory problem. Current and future
work involves investigating the behavior of the pro-
posal in multi-step and real-world problems.
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