
E. Corchado, A. Abraham, and W. Pedrycz (Eds.): HAIS 2008, LNAI 5271, pp. 722–729, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Approximate Versus Linguistic Representation
in Fuzzy-UCS

Albert Orriols-Puig1, Jorge Casillas2, and Ester Bernadó-Mansilla1

1 Grup de Recerca en Sistemes Intel·ligents, Enginyeria i Arquitectura La Salle,
Universitat Ramon Llull, 08022 Barcelona (Spain)
{aorriols,esterb}@salle.url.edu

2 Dept. Computer Science and Artificial Intelligence
University of Granada, 18071, Granada (Spain)

casillas@ugr.es

Abstract. This paper introduces an approximate fuzzy representation to Fuzzy-
UCS, a Michigan-style Learning Fuzzy-Classifier System that evolves linguistic
fuzzy rules, and studies whether the flexibility provided by the approximate
representation results in a significant improvement of the accuracy of the mod-
els evolved by the system. We test Fuzzy-UCS with both approximate and lin-
guistic representation on a large collection of real-life problems and compare
the results in terms of training and test accuracy and interpretability of the
evolved rule sets.

Keywords: Genetic algorithms, learning classifier systems, genetic fuzzy sys-
tems, supervised learning.

1 Introduction

Fuzzy-UCS [1] is a Michigan-style learning fuzzy-classifier system that evolves a
fuzzy rule set with descriptive or linguistic representation. One of the main novelties
of Fuzzy-UCS with respect to other genetic fuzzy systems is that it evolves the rule set
on-line from a stream of examples. Fuzzy-UCS represents the knowledge with lin-
guistic fuzzy rules, which are highly interpretable since they share a common seman-
tic. However, as this representation implies the discretization of the feature space, a
single rule may not have the granularity required to define the class boundary of a
given domain accurately. Thus, Fuzzy-UCS creates a set of overlapping fuzzy-rules
around the decision boundaries which match examples of different classes, and the
output depends on how the reasoning mechanism combines the knowledge of all these
overlapping rules. Fuzzy-UCS proposed three inference schemes which led to a tra-
deoff between the amount of information used for the inference process and the size
of the rule set.

To achieve better accuracy rates in fuzzy modeling, several authors have introduced
the so-called approximate rule representation (also known as non-grid-oriented fuzzy
systems, prototype-based representation, or fuzzy graphs), which proposes that the
variables of fuzzy rules define their own fuzzy sets instead of representing linguistic

 Approximate Versus Linguistic Representation in Fuzzy-UCS 723

variables [2]. In this way, approximate fuzzy rules are semantic free, being able to tune
the fuzzy sets of any variable of each rule independently. However, this also results in
a degradation of interpretability of the rule set, since the fuzzy variables no longer
share a unique linguistic interpretation. In this paper, we analyze whether the flexibility
provided by the approximate representation allows the system to achieve higher per-
formance and how this affects the interpretability of the evolved rule sets. That is, the
approximate representation is more powerful than the linguistic one since it enables
fuzzy systems to evolve independent fuzzy sets for each attribute that fit the class
boundaries of each particular problem accurately. Nonetheless, the search space also
increases since the semantics is evolved together with the fuzzy rules, posing more dif-
ficulties to the learner. Moreover, this flexibility could also result in overfitting the
training instances in complex, noisy environments. Therefore, the aim of the present
work is to study the frontier in the accuracy-interpretability tradeoff, clearly identifying
the advantages and disadvantages—in terms of accuracy and readability of the rule
sets—of having a more flexible knowledge representation in the field of on-line learn-
ing. For this purpose, we include the approximate representation to Fuzzy-UCS and
adapt several mechanisms to deal with it. This new algorithm is addressed as Fuzzy-
UCS with Approximate representation, i.e., Fuzzy-UCSa. We compare the behavior of
Fuzzy-UCS and Fuzzy-UCSa in a large collection of real-life problems.

The remainder of this paper is organized as follows. Section 2 describes Fuzzy-
UCSa focusing on the new fuzzy representation. Section 3 explains the analysis me-
thodology and presents the results. Finally, Section 4 concludes the work.

2 The Approximate Fuzzy-UCS Classifier System

Fuzzy-UCSa is a system that extends Fuzzy-UCS [1] by introducing an approximate
fuzzy representation. Fuzzy-UCSa works in two different models: exploration or
training and exploitation or test. As follows, we describe the system focusing on the
changes introduced with respect to Fuzzy-UCS. For further details, the reader is re-
ferred to [1].

2.1 Knowledge Representation

Fuzzy-UCS evolves a population [P] of classifiers which consist of a fuzzy rule and a
set of parameters. The fuzzy rule follows the structure

IF x1 is FSk
1 and . . . and xn is FSk

n THEN ck WITH wk , (1)

where each input variable xi is represented by a fuzzy set FSi. In our experiments, we
used triangular fuzzy sets; so, each FSi is defined by the left vertex a, the middle ver-
tex b, and the right vertex c of the triangle, i.e., FSi = (a, b, c). The consequent of the
rule indicates the class ck which the rule predicts. wk is a weight (0 ≤ wk ≤ 1) that de-
notes the soundness with which the rule predicts class ck. The matching degree µA

k(e)
of an example e with a classifier k is computed as the T-norm (we use the product) of
the membership degree of each input attribute ei with the corresponding fuzzy set FSi.
We enable the system to deal with missing values by considering that µA

k(e) = 1 if ei
is not known.

724 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

Each classifier has four main parameters: 1) the fitness F, which estimates the ac-
curacy of the rule; 2) the correct set size cs, which averages the sizes of the correct
sets in which the classifier has participated (see Sect. 2.2); 3) the experience exp,
which computes the contributions of the rule to classify the input instances; and 4) the
numerosity n, which counts the number of copies of the rule in the population.

2.2 Learning Interaction

At each learning iteration, the system receives an input example e that belongs to
class c. Then, it creates the match set [M] with all the classifiers in [P] that have a
matching degree µA

k(e) greater than zero. Next, in exploration mode, the classifiers in
[M] that advocate class c form the correct set [C]. In exploitation mode, the system re-
turns the class of the rule that maximizes Fk · µA

k(e) and no further action is taken. If
none of the classifiers in [C] match e with µA

k(e) > 0.5, the covering operator is trig-
gered, which creates the classifier that maximally matches the input example. The
covering operator creates an independent triangular-shape fuzzy set for each input va-
riable with the following supports

(rand(mini – (maxi-mini)/2, ei), ei , rand(ei, maxi+(maxi-mini)/2)) , (2)

where mini and maxi are the minimum and maximum value that the attribute i can
take, ei is the attribute i of the example e for which covering has been fired, and rand
generates a random number between both arguments. The parameters F, n, and exp of
the new classifiers are set to 1. The new classifier is inserted into the population, de-
leting another one if there is not room for it.

2.3 Parameters Update

In the end of each learning iteration, Fuzzy-UCSa updates the parameters of the rules
in [M]. First, the experience of the rule is incremented according to the current
matching degree: expk

t+1 = expk
t + µA

k(e). Next, the fitness is updated. For this pur-
pose, each classifier internally maintains a vector of classes {c1, ..., cm} and a vector
of associated weights {vk

1, . . . , v
k

m}. Each weight vk
j indicates the soundness with

which rule k predicts class j for an example that fully matches this rule. The class ck
advocated by the rule is the class with the maximum weight vk

j . Thus, given that
the weights may change due to successive updates, the class that a rule predicts may
also vary.

To update the weights, we first compute the sum of correct matchings cmk for each
class j: cmk

jt+1 = cmk
jt+m(k, j), where m(k, j) = µA

k(e) if the class predicted by the
classifier equals the class of the input example and zero otherwise. Then, cmk

jt+1 is
used to calculate the weights vk

jt+1: v
k

jt+1 = cmk
jt+1/expk

t+1. Note that the sum of all the
weights is 1.

The fitness is computed from the weights with the aim of favoring classifiers that
match examples of a single class. We use Fk

t+1=vk maxt+1−Σj|j≠max v
k
jt+1, where we sub-

tract the values of the other weights from the weight with maximum value vk max.
The fitness Fk is the value used as the weight wk of the rule (see Equation 1). Next, the
correct set size of all the classifiers in [C] is calculated as the arithmetic average of
the sizes of all the correct sets in which the classifier has participated.

 Approximate Versus Linguistic Representation in Fuzzy-UCS 725

2.4 Discovery Component

Fuzzy-UCSa uses a steady-state genetic algorithm (GA) [3] to discover new promis-
ing rules. The GA is triggered in [C] when the average time since its last application
upon the classifiers in [C] exceeds a certain threshold θGA. It selects two parents p1
and p2 from [C] using proportionate selection [3], where the probability of selecting a
classifier k is proportional to (Fk)ν · µA

k(e), in which ν>0 is a constant that fixes the
pressure toward maximally accurate rules (in our experiments, we set ν=10). Rules
with negative fitness are not considered for selection. The two parents are copied into
offspring ch1 and ch2, which undergo crossover and mutation with probabilities χ and
μ respectively. The crossover operator generates the fuzzy sets for each variable of the
offspring as

bch1 = bp1 α + bp2 (1-α) and bch2 = bp1 (1-α) + bp2 α (3)

where 0 ≤ α ≤ 1 is a configuration parameter. As we wanted to generate offspring
whose middle vertex b was close to the middle vertex of one of his parents, we set
α=0.005 in our experiments. Next, for both offspring, the procedure to cross the most-
left and most-right vertices is the following. First, the two most-left and two most-
right vertices are chosen

minleft = min(ap1, ap2, bch) and midleft = middle(ap1, ap2, bch) , (4)

midright = middle(cp1, cp2, bch) and maxright = max(cp1, cp2, bch) , (5)

And then, these two values are used to generate the vertices a and c.

ach = rand(minleft,midleft) and cch = rand(midright,maxright) , (6)

where the functions min, middle, and max return respectively the minimum, the mid-
dle, and the maximum value among their arguments.

The mutation operator decides randomly if each vertex of a variable has to be mu-
tated. The central vertex is mutated as follows:

b = rand(b − (b − a) ·m0, b + (c − b) ·m0) , (7)

where m0 (0<m0≤1) defines the strength of the mutation. The left-most vertex is mu-
tated as

 a = rand (a – m0(b-a)/2, a) if F>F0 & no crossover, (8)

a = rand (a – m0(b-a)/2, a + m0(b-a)/2) otherwise. (9)

And the right-most vertex

 c = rand(c, c + m0(c-b)/2) if F>F0 & no crossover, (10)

c = rand(c – m0(c-b)/2, c + m0(c-b)/2) otherwise. (11)

That is, if the rule is accurate enough (F>F0) and has not been generated through cros-
sover, mutation forces to generalize it. Otherwise, it can be either generalized or spe-
cified. In this way we increase the pressure toward maximum general and accurate
rule sets.

726 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

The new offspring are introduced into the population. First, we check whether
there exists a classifier in [C] that subsumes the new offspring. If it exists, the nu-
merosity of the subsumer is increased. Otherwise, the new classifier is inserted into
the population. We consider that a classifier k1, which is experienced (expk1 > θsub)
and accurate enough (Fk1 > F0), can subsume another classifier k2 if for each variable
i, ai

k1 ≤ ai
k2, c

i
k1 ≥ ci

k2, and bi
k1 − (bi

k1 − ai
k1)δ ≤ bi

k2 ≤bi
k1 + (ci

k1 − bi
k1)δ, where δ is a

discount parameter (in our experiments we set δ=0.001). Thus, a rule condition sub-
sumes another if the supports of the subsumed rule are enclosed in the supports of the
subsumer rule and the middle vertices of their triangular-shaped fuzzy sets are close
in the feature space.

If the population is full, excess classifiers are deleted from [P] with probability
proportional to their correct set size estimate csk and their fitness Fk [1].

3 Experiments

In this section, we analyze if the approximate representation a) permits to fit the
training instances more accurately, b) whether this improvement is also present in the
prediction of previously unseen instances, and c) the impact on the interpretability of
the evolved rule set. As follows we explain the methodology and present the obtained
results.

3.1 Methodology

We compare Fuzzy-UCSa as defined in the previous section with Fuzzy-UCS with
the three types of reasoning schemes defined in [1], that is, weighted average (wavg),
in which all matching rules emit a vote for the class they predict; action winner
(awin), in which the class of the rule that maximizes Fk · µA

k(e) is chosen as output;
and most numerous and fit rules (nfit), in which only the most numerous and fit rules
are kept in the final population and all the matching rules emit a vote for the class
they predict. Moreover, we also included C4.5 in the comparison to analyze how
Fuzzy-UCS performs with respect to one of the most influential learners. We em-
ployed the same collection of twenty real-life problems used in [1] for the analysis.

We used the accuracy, i.e., the proportion of correct predictions, and the number of
rules in the population to compare the performance and interpretability of the
different approaches. To obtain reliable estimates of these metrics, we employed a
ten-fold cross validation procedure. The results were statistically analyzed following
the recommendations pointed out in [4]. We applied the multiple-comparison test of
Friedman to contrast the null hypothesis that all the learning algorithms performed
equivalently on average. If Friedman’s test rejected the null hypothesis, we used the
non-parametric Nemenyi test to compare all learners with each other. We comple-
mented the statistical analysis by comparing the performance of each pair of learners
by means of the non-parametric Wilcoxon signed-ranks test. For further information
about the statistical tests see [4].

We configured both systems as (see [1] for notation details): N=6,400, F0 = 0.99,
ν = 10, {θGA, θdel, θsub} = 50, χ = 0.8, μ = 0.04, δ=0.1 and P # = 0.6. Moreover, for
Fuzzy-UCS, we set the number of linguistic terms to 5.

 Approximate Versus Linguistic Representation in Fuzzy-UCS 727

3.2 Results

Our first concern was to compare the precision in fitting the training instances of
Fuzzy-UCSa with respect to Fuzzy-UCS and show how both systems perform with
respect to C4.5. Thus, we computed the training accuracy obtained with the five ap-
proaches. Table 1 summarizes the average rank of each algorithm (the detailed results
are not included due to space limitations). As a case study, Fig. 1(a) shows the do-
main of one of the tested problems, tao, Figs. 1(b) and 1(c) plot the decision bounda-
ries learned by Fuzzy-UCS awin with 5 and 15 linguistic terms per variable—the grid
in the two figures indicates the partitions in the feature space made by the cross-points
of the triangular membership functions associated to the different fuzzy sets—, and
Fig. 1(d) shows the decision boundaries learned by Fuzzy-UCSa. The results clearly
show that the flexibility provided by the approximate representation enabled Fuzzy-
UCSa to fit the training instances more accurately.

The multi-comparison test permitted to reject the null hypothesis that all the learn-
ers were equally accurate at α=0.001. The post-hoc Nemenyi test, at α=0.1, indicated
that Fuzzy-UCSa achieved significantly better training performance than Fuzzy-UCS
with any inference type and equivalent results to C4.5. Moreover, Fuzzy-UCS awin
significantly degraded the training performance achieved with Fuzzy-UCS nfit. The
pairwise comparisons by means of the non-parametric Wilcoxon signed-ranks test at
α=0.05 confirmed the conclusions extracted by the Nemenyi test.

Fig. 1. Tao domain (a) and decision boundaries obtained by Fuzzy-UCS awin with 5 (b) and 15
(c) linguistic terms per variable and Fuzzy-UCSa (d). The training accuracy achieved in each
case is 83.24%, 94.74%, and 96.94% respectively.

As expected, the approximate representation enabled Fuzzy-UCSa to fit the
training examples more accurately; since there was no semantic shared among all
variables, each variable could define its own fuzzy sets. Next, we analyzed if this
improvement was also present in the test performance. Table 1 shows the average
rank of test performance. The multi-comparison test rejected the hypothesis that all
the learners performed the same on average at α = 0.001. The Nemenyi procedure, at
α=0.1, identified two groups of techniques that performed equivalently. The first
group included Fuzzy-UCS wavg, Fuzzy-UCSa, and C4.5. The second group com-
prised Fuzzy-UCSa, Fuzzy-UCS awin, and Fuzzy-UCS nfit. The same significant dif-
ferences were found by the pairwise comparisons.

Further analysis pointed out that Fuzzy-UCSa was overfitting the training data
in some of the domains. To contrast this hypothesis, we monitored the evolution of
the training and test performance of the problems in which Fuzzy-UCSa degraded the

728 A. Orriols-Puig, J. Casillas, and E. Bernadó-Mansilla

Table 1. Comparison of the average rank of train accuracy, test accuracy, and rule set size of
linguistic Fuzzy-UCS with weighted average (wavg), action winner (awin), and most numerous
and fitted rules inference (nfit), and Fuzzy-UCSa on a set of twenty real-world problems. The
training and test accuracy of C4.5 is also included.

 Fuzzy-UCS Fuzzy-UCSa C4.5
Rank 3.35 4.20 3.10 1.75 2.60

tr
ai

n

Pos 4 5 3 1 2

Rank 2.05 3.25 3.80 2.95 2.95

te
st

Pos 1 4 5 2.5 2.5

Rank 3.95 2.05 1.00 3.00 -

si
ze

Pos 4 2 1 3 -

Fig. 2. Evolution of the training and test accuracies obtained with Fuzzy-UCS wavg and Fuzzy-
UCSa in the bal problem

results obtained by Fuzzy-UCS with any inference type. Figure 2 plots the evolution
of the training and test performance in the bal problem for Fuzzy-UCS wavg and
Fuzzy-UCSa. During the first 5,000 learning iterations, both training and test per-
formances of Fuzzy-UCSa rapidly increased, achieving about 90% and 84% accuracy
rate respectively. After that, the training performance continued increasing while the
test performance slightly decreased. After 100,000 iterations, the training perform-
ance reached 98%; nonetheless, the test performance decreased to 82%. Thus, at a
certain point of the learning, the flexibility of the approximate representation led
Fuzzy-UCSa to overfit the training instances in order to create more accurate classifi-
ers, which went in detriment of the test performance. On the other hand, the training
and test performance of Fuzzy-UCS wavg continuously increased, showing no signs
of overfiting.

Finally, Table 1 also shows the average rank of the number of rules evolved
for Fuzzy-UCS and Fuzzy-UCSa. The Friedman test rejected the hypothesis that the
population sizes were equivalent on average at α=0.001. The post-hoc Nemenyi test
supported the hypothesis that the four learners evolved populations with significantly
different sizes. Fuzzy-UCS wavg created the biggest populations, closely followed by
Fuzzy-UCSa. Nonetheless, Fuzzy-UCSa uses an approximate representation, in which

 Approximate Versus Linguistic Representation in Fuzzy-UCS 729

rules do not share the same semantic, thus, impairing the readability of the rule sets.
Fuzzy-UCS awin and, specially, Fuzzy-UCS nfit resulted in the smallest populations.

4 Conclusions

This paper analyzed the advantages and disadvantages provided by the flexibility of
the approximate representation in detail. We showed that the approximate representa-
tion enabled Fuzzy-UCSa to fit the training data more accurately. Nonetheless, there
was no statistical evidence of this improvement in the test performance and it was
identified that Fuzzy-UCSa may overfit the training instances in complex domains;
furthermore, the approximate representation degraded the readability of the final rule
sets. Therefore, the analysis served to identify that the flexibility provided by the ap-
proximate representation does not produce any relevant improvement to Fuzzy-UCS,
strengthening the use of a linguistic, more readable representation.

Acknowledgments

The authors thank the support of Ministerio de Educación y Ciencia under projects
TIN2005-08386-C05-01 and TIN2005-08386-C05-04 and Generalitat de Catalunya
under grants 2005FI-00252 and 2005SGR-00302.

References

1. Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Fuzzy-UCS: a Michigan-style learning
fuzzy-classifier system for supervised learning. IEEE Transactions on Evolutionary Compu-
tation (in press)

2. Alcalá, R., Casillas, J., Cordón, O., Herrera, F.: Building fuzzy graphs: features and taxon-
omy of learning for non-grid-oriented fuzzy rule-based systems. Journal of Intelligent and
Fuzzy Systems 11(3-4), 99–119 (2001)

3. Goldberg, D.E.: Genetic algorithms in search, optimization & machine learning, 1st edn.
Addison-Wesley, Reading (1989)

4. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7, 1–30 (2006)

	Approximate Versus Linguistic Representation in Fuzzy-UCS
	Introduction
	The Approximate Fuzzy-UCS Classifier System
	Knowledge Representation
	Learning Interaction
	Parameters Update
	Discovery Component

	Experiments
	Methodology
	Results

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

