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Abstract— The issue of finding fuzzy models with an inter-
pretability as good as possible without decreasing the accuracy
is one of the main research topics on genetic fuzzy systems. When
they are used to perform on-line reinforcement learning by means
of Michigan-style fuzzy classifier systems, this issue becomes even
more difficult.

Indeed, rule generalization (description of state-action relation-
ships with rules as compact as possible) has received a great deal
of attention in the discrete-valued learning classifier system field
(e.g., XCS is the subject of extensive ongoing research). However,
the same issue does not appear to have received a similar level
of attention in the case of Michigan-style fuzzy classifier system.
This may be due to the difficulty in extending the discrete-valued
system operation to the continuous case. The intention of this
contribution is to propose an approach to properly develop a
fuzzy XCS system for immediate-reward problems.

I. INTRODUCTION

The Michigan-style fuzzy classifier system is a machine
learning system which employs linguistic rules and fuzzy sets
in its representation and an evolutionary algorithm (EA) for
rule discovery. It therefore combines an easily understood
representation (as opposed to, for example, neural network
approaches) with a general purpose search method. These
systems are very useful to perform on-line learning, i.e.,
to automatically learn fuzzy rules at the same time that
data or stimulus (or reward or payoff) from the environment
are received. This fact makes Michigan-style fuzzy classifier
systems ideal for adaptive systems, control, simulation of
animal behavior and, in addition, data mining and knowledge
discovery applications.

In order to exploit the fuzzy represention to the full, i.e. to
achieve high interpretability, the ability to learn generalization
is of great importance. With generalization we understand
capability to express the state-action (antecedent-consequent)
relationships as compact as possible. Generalized rules allow
more compact rule bases, scalability to higher dimensional
spaces, faster inference, and better linguistic interpretability.
The issue of rule generalization, and the interplay between
general and specific rules in the same evolving population, has
received a great deal attention in the learning classifier systems
(i.e., discrete-valued ones) research community (e.g. [1]). The
same issue does not appear to have received a similar level
of attention in the case of Michigan-style fuzzy classifier
systems [2]–[8].

Traditional (non-fuzzy) classifier systems have been
“strength-based” in the sense that a classifier accrues strength
during interaction with the environment (through rewards
and/or penalties). This strength can then be used for two
purposes: resolving conflicts between simultaneously matched
classifiers during learning episodes; and as the basis of fitness
for the EA. A completely different approach can be taken in
which a classifier’s fitness, from the point of view of the EA,
is based on its “accuracy,” i.e. how well a classifier predicts
payoff whenever it fires. Note that the concept of accuracy
used here is different from the traditionally used in fuzzy
modeling (i.e., capability of the fuzzy model to faithfully
represent the modeled system). This accuracy-based approach
offers a number of advantages such as avoiding over-general
classifiers, obtaining optimally general classifiers, and learning
of a complete “covering map.” This accuracy-based classifier
system, called XCS, was proposed in [1] and it is currently of
major interest to the research community in this field.

This work aims at proposing a new approach to achieve
accuracy-based Michigan-style fuzzy classifier systems. The
proposal, Fuzzy-XCS, is based on XCS but properly adapted
to fuzzy systems. The fuzzy inference and the reinforcement
component are changed to consider a different, competitive
interaction among rules that allow an accuracy-based opera-
tion. An accuracy-based fuzzy classifier system is proposed
in [9]. However, it presents a number of important limitations
(mainly the lack of the generalization capability and the use
of integer-valued output) that are solved by our method.

The paper is organized as follows. Section II introduces
some difficulties in developing an accuracy-based fuzzy clas-
sifier system. Section III describes the competitive inference
approach. Section IV introduces the Fuzzy-XCS system. Sec-
tion V shows some experimental results. Section VI concludes.

II. DIFFICULTIES IN REAL-VALUED OUTPUT

ACCURACY-BASED FUZZY CLASSIFIER SYSTEMS

Most of the difficulty in accuracy-based fuzzy classifier
systems is the fuzzy inference process; therefore, this issue
is briefly discussed in the next subsection. Following this
discussion, the problems when using strength-based fuzzy
classifier systems, the advantages of considering accuracy-
based fitness, and the difficulties in doing that are introduced.

44 I Workshop on Genetic Fuzzy Systems



A. Cooperation-Based Fuzzy Inference

Linguistic (or Mamdani-type) fuzzy rule-based systems are
formed by linguistic fuzzy rules with the following structure:

...
also
Rr−1: IF X1 is A

r−1
1 and . . . and Xn is Ar−1

n

THEN Y1 is B
r−1
1 and . . . and Ym is Br−1

m ,
also
Rr: IF X1 is Ar

1 and . . . and Xn is Ar
n

THEN Y1 is Br
1 and . . . and Ym is Br

m ,
also
...

with Xi and Yj being input and output linguistic variables
respectively, and with Ai and Bj being linguistic labels with
associated fuzzy sets defining their meaning. These linguistic
labels use a global semantic defining the set of possible fuzzy
sets used for each variable. This allows this kind of fuzzy sys-
tem to potentially demonstrate a high level of interpretability.

The most widely used inference scheme in these types of
systems is that proposed by Mamdani and Assilian in the first
fuzzy controller of 1975. It is called Max-Min and involves the
combination of minimum for implication (then) and maximum
for aggregation (also).

The use of Max-Min inference (broadly, t-conorm/t-norm)
leads fuzzy rules to “cooperate” to generate the output, in the
sense that an interpolative reasoning is performed to define
the output in the zones where several rules work to a medium
matching degree. Indeed, the fact of using a t-conorm to
aggregate the information involves a union and, therefore, the
effect of each rule is added to the final consensual output.

B. Problems with “Strength-Based” Michigan Fuzzy Classi-
fier Systems

As mentioned in the introduction, the strength-based fuzzy
classifier system is characterized by using the same parameter
(i.e. strength) to resolve conflicts between matched classifiers
and to compute their fitness. A number of problems arise from
this dual use of classifier strength. These include:

1) The cooperation/competition problem. High-strength,
potentially cooperative classifiers go on to compete
under the action of the EA.

2) Over-general rules with relatively high (but inconsistent)
payoff can come to dominate the population.

3) In some environmental states, the maximum payoff
achievable (by performing the best possible action for
that state) may be relatively low. Although a classifier
might be the best that can exist for that state, it can be
eradicated from the population by other classifiers that
achieve higher rewards in other states. This results in
gaps in the system’s “covering map.”

C. Advantages of Using “Accuracy-Based” Fitness

A completely different approach can be taken in which
a classifier’s fitness, from the point of view of the EA, is

based on its “accuracy,” i.e. how well a classifier predicts
payoff whenever it fires. Such an accuracy-based approach
offers a number of advantages. Firstly, it can distinguish
between accurate and over-general classifiers: an over-general
classifier will have relatively low accuracy since payoff will
vary according to the input states covered by the classifier.
Indeed, it has been shown (in the discrete valued case)
that the accuracy-based approach can lead to evolution of
optimally general classifiers. Additionally it can maintain both
consistently correct and consistently incorrect classifiers which
allows learning of a complete “covering map.” A potential
drawback of the accuracy-based approach is that it is likely to
require larger populations of classifiers.

D. Difficulties in Moving to “Accuracy-Based” Fuzzy Classi-
fier Systems

Firstly, in a traditional fuzzy classifier system several rules
fire in parallel (this is how the system achieves interpolation);
credit assignment is much more difficult in the fuzzy case
and it may well be that apportioning credit in proportion to a
fuzzy classifier’s activation level is not appropriate. A further
difficulty is measuring the accuracy of a rule’s predicted payoff
since (particularly early in the search) a fuzzy rule will fire
with many different other fuzzy rules at different time-steps,
giving very different payoffs. Yet another difficulty is that the
payoff a fuzzy rule receives depends on the input vector —
an active fuzzy rule will receive different payoffs for different
inputs. This further complicates payoff predictions used as the
basis for accuracy-based fitness.

III. COMPETITIVE FUZZY INFERENCE

The problems explained in the previous section are mainly
due to the fact that, usually, all the matched rules cooperate to
define the final solution in a interpolative behavior as explained
in Section II-A. If it is the problem, why not to change our
approach and look for competitive interaction? This section
introduces such an approach.

A. Why Use Competitive Inference?

Michigan-style learning classifier systems in general, and
XCS in particular, do not consider the interaction of the
different rules as a cooperative action, instead they consider
that each rule competes with the rest to be the best one for
a particular input vector. This involves that the action is only
due to a set of rules that were the winners among the rules
composing the match set. Extending this approach to fuzzy
modeling, it makes sense to deal with competitive fuzzy rules,
in which case, we need to know how to work with such rules.

In off-line fuzzy system learning, it seems that cooperative
(i.e., Max-Min-style) inference has some clear advantages that
make it be more suitable for this problem. In this case, we
know the whole data set a priori and our objective is to build
a landscape of the output data. To do that, it seems a good
approach to fill the gaps between data with interpolation, and
this is the reason why cooperative inference is successful.
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However, in on-line fuzzy system learning, why is it nec-
essary to interpolate the actions of the rules? The objective
in this problem should not be to define a landscape of the
output, but a landscape of the reward. This means taking the
best action in each state. For this purpose, a competitive action
makes more sense since our objective is to optimize the rules
individually to have the best reward.

With competitive fuzzy inference we propose a decision
making process where the matched rules compete among
themselves, and only one is the winner. The output finally
obtained is mainly due to the winner rule. That is, loser rules
do not have an important influence on the output. Nevertheless,
competition does not involve a loss of interaction. There
is an interaction, but with a selfish objective. To perform
competitive inference we only need to change the roles of
the inference operators.

B. Fuzzy Operators for Competitive Inference

First of all, since each rule competes with the rest, we
should use an intersection (t-norm) as also operator, instead of
the union approach followed by the cooperative inference. We
use the minimum in this paper. Then, the implication should
follow the classical Boolean view (p ⇒ q ≡ ¬p∨ q) assuming
that each rule holds all the information about the relationship
between fact and consequence. Thus, the belief develops sep-
arately for each rule. Therefore, we can use S-implications—
defined from the t-conorm S as IS(x, y) = S(N(x), y)—like
Łukasiewicz (IS

Λ∗ = min{1, 1−µA(x) + µB(y)}) or Kleene-
Dienes (IS

Max = max{1 − µA(x), µB(y)}).
To understand better the different behavior between cooper-

ative (or Max-Min-based) and competitive (or S-implication-
based) inference, Figure 1 shows the output generated by two
fuzzy systems that only differ in the inference mechanism.
In the cooperative inference, minimum, minimum, and max-
imum are used as conjunction, implication, and aggregation
operators, respectively. In the competitive inference, minimum,
Łukasiewicz, and minimum are used as conjunction, impli-
cation, and aggregation operators, respectively. The center
of gravity is used as defuzzification process in both cases.
Both systems consist of two input variables and one output
variable, with 5 triangular fuzzy sets uniformly distributed in
the universe of discourse [0,1] for each variable. Among the
25 fuzzy rules considered, only 7 have a consequent different
from the medium linguistic term (with vertex at 0.5). As
we can see, both approaches generate a smooth output but,
while cooperative inference fills the gaps by interpolating,
competitive inference isolates the effect of each rule.

On the other hand, Figure 2 illustrates an example of
competitive inference using the Łukasiewicz’s S-implication.
The minimum aggregation operator is used. We can see how
the action strength of the winner rule R1 (the one with the
highest matching degree) not only depends on its matching
degree but also on the difference in the matching degree with
respect to fuzzy rules with different actions (consequents), i.e.,
rival fuzzy rules. The more different these matching degrees,
the higher the action strength of the selected rule. This involves
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Fig. 1. Output generated by cooperative (top) and competitive (bottom)
inferences
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Fig. 2. Results of the Łukasiewicz’s fuzzy implication using minimum as also
operator. Matching degrees: µAR1

= 0.9, µAR2
= 0.7, and µAR3

= 0.6

that actually, the competition is performed among different
linguistic actions, i.e., consequents. Therefore, we should say
that competitive inference leads to competitive actions, but not
necessarily competitive rules.

The competition among rules with the same action is only
performed when using the minimum operator as aggregation,
since in this case only the best rule of that action is considered
in the inference. The use of other aggregation operators, such
as the product, will lead the inference to a cooperation among
rules with the same actions. According to XCS, this approach
is not desired since it aims at obtaining the X ×A ⇒ P map
with the best classifier for each state-action combination [1].

Finally, we should say that the consideration of competitive
actions seems to fit properly with the XCS aim. Other fuzzy
learning classifier systems, like Bonarini et al.’s works [2], [3],
focus on the interaction among rules in the antecedent (state)
instead of the consequent (action). They propose a competition
among rules with the same antecedent but a cooperation
among rules with different ones. Besides, the implication and
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aggregation considered in their proposal leads implicitly to a
cooperation between the consequents. Therefore, these authors
propose a competition/cooperation scheme for state/action,
while we come up with a competition/competition scheme.

IV. FUZZY-XCS

This section shows the Fuzzy-XCS’s operation mode with
a competitive inference based on S-implications.

A. Generalization Representation

First of all, a representation of fuzzy classifiers to allow
proper generalization must be done. We propose the use of
disjunctive normal form (DNF) fuzzy rules with the following
structure:

IF X1 is Ã1 and . . . and Xn is Ãn THEN Y is B

where each input variable Xi takes as a value a set of
linguistic terms Ãi = {Ai1 ∨ . . . ∨Aili}, whose members are
joined by a disjunctive (t-conorm) operator, whilst the output
variable remains a usual linguistic variable with a single label
associated. We use the bounded sum (min{1, a + b}) as t-
conorm.

This structure uses a more compact description that al-
lows rules with different generalization degrees. Moreover,
the structure naturally supports the absence of some input
variables in each rule (simply making Ãi be the whole set
of linguistic terms).

In order to use this representation in Fuzzy-XCS, we pro-
pose a binary coding scheme for the antecedent of the fuzzy
rule with size equal to the sum of the number of linguistic
terms used in each input variable. The allele ‘1’ means that
the corresponding linguistic term is used in the corresponding
variable. For the consequent of the rule, an integer coding
scheme is used where each gene contains the index of the
linguistic terms used for the corresponding output variable.
For example, assuming we have three linguistic terms (S, M,
and L) for each input/output variable, the fuzzy rule [IF X1 is
S and X2 is {M or L} THEN Y1 is M and Y2 is L] is encoded
as [100|011||23].

B. Performance Component

In XCS [1], the performance component consists of three
stages: match set construction, prediction array computation,
and action set selection. This process has the final objective
of inferring a specific action from the set of classifiers that
matches the current state. In Fuzzy-XCS the process is differ-
ent, as described as follows:

• Match set ([M]): To avoid an excessive number of
matched rules, only those rules with a matching degree
greater or equal to a specific value (θM ) are included in
the match set.

• Computation of candidate subsets: This stage could be
equivalent to the prediction array computation. XCS
partitions [M] into a number of mutually exclusive sets

according to the action of each rule. However, in real-
valued output systems like Fuzzy-XCS, several “lin-
guistic actions” (consequents) could/should be consid-
ered together. Thus, Fuzzy-XCS redefines the concept
of prediction array computation. We can assume that
what should not be accepted in our case is to have an
action set with inconsistent or redundant rules, i.e. rules
with the same antecedent and different (inconsistent) or
equal (redundant) consequent. In DNF-type fuzzy rules,
to have the same antecedent also involves rules where the
antecedent of some of them are contained in others.
Therefore, different groups of consistent and non-
redundant fuzzy rules (Si) with the maximum number of
rules in each group are formed. To do that we consider a
simple greedy algorithm (though an implicit enumeration
algorithm could be used) as follows:
Let R = {Ri / Ri ∈ [M]}
Shuffle R {to avoid order-biasing}
for i = 1 to |R| do
Si ← {Ri}
for j = 1 to |R| (j �= i) do
if (Si ∪ {Rj} is consistent and
non-redundant) then
Si ← Si ∪ {Rj}

Remove repeated Si

We perform an exploration/exploitation scheme with
probability 0.5. On each exploitation step, only those
fuzzy classifiers sufficiently experienced (they have been
updated—see Sect. IV-C.2—a threshold θexploit number
of times) are considered. The most experienced classifier
is considered when any one holds this condition. On
exploration step, the whole match set is considered.
Using only experienced rules during exploitation steps
allows the system to give the best action according to
the available knowledge, while on exploration steps the
system is able to learn or corroborate classifiers. Notice
that though this is a new interpretation of Wilson’s
XCS scheme, we are addressing the fuzzy context where
we should not decide between one action or another—
all fuzzy rules should act together in order to give a
sound real-valued output. So, in Fuzzy-XCS the ex-
ploration/exploitation concept is moved from the action
selection framework to the rule selection one.

• Action set selection: The action set selection chooses the
consistent and non-redundant classifier subset (Si) with
the highest mean prediction.

C. Reinforcement Component

The pj (prediction), εj (prediction error), and Fj (fitness)
values are adjusted by the reinforcement learning standard
techniques used in XCS for each fuzzy classifier Cj . (We
are applying Fuzzy-XCS to a single-step problem where
immediate reward is returned by the environment; therefore,
any form of Q-learning is used.)

However, an important difference is considered in Fuzzy-
XCS: the distribution among the classifiers must be made
proportionally to the degree of contribution of each classifier
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to the obtained output. This is a crucial issue because the
interaction among the classifiers (with competition actions in
our case) is developed here.

The reinforcement performed in Fuzzy-XCS acts on the
action set [A] when an exploration step is performed. The
following subsections detail the reinforcement distribution
process and the adjustment of the parameters.

1) Distribution of the reinforcement: The reinforcement
distribution among the classifiers of the action set [A] is made
by analyzing the contribution of each classifier to generate the
aggregated output fuzzy set. Let B′

j be the scaled output fuzzy
set generated by the fuzzy rule Rj :

B′
j = IS(µARj

(x), Bj), (1)

where µARj
(x) is the matching degree of the rule Rj , IS is the

used S-implication, and Bj the fuzzy set of the consequent of
the rule Rj . Let R1 ∈ [A] be the winner rule, i.e., µAR1

(x) ≥
µARj

(x),∀Rj ∈ [A] − {R1}.
The process involves analyzing the area that the rival fuzzy

rules (rules with lower matching degrees than R1) “bite” into
the area generated by the winner rule.

Thus, the weight of the winner rule is:

w1 =

∫ ∧|[A]|
j=1 µB′

j
(y) dy∫

µB′
1
(y) dy

, (2)

with |[A]| being the action set size and ∧ the t-norm used
as aggregation operator (the minimum in our case), while the
weights of the rival rules are computed as follows:

wj =
(1 − w1) ·

(∫
µB′

1
(y) dy − ∫

µB′
1
(y) ∧ µB′

j
(y) dy

)
∑|[A]|

i=2

(∫
µB′

1
(y) dy − ∫

µB′
1
(y) ∧ µB′

i
(y) dy

)
(3)

This distribution is designed to take into account that
competitive inference is being considered. To illustrate this
behavior, we can see that, from the example shown in Figure 2,
the competitive inference generates the weights w1 = 0.711,
w2 = 0.289, and w3 = 0, while a cooperative-based dis-
tribution proportional to the matching degrees generates the
weights w1 = 0.409, w2 = 0.318, and w3 = 0.273. Indeed,
the selection pressure in the competitive inference is higher,
thus allowing to discriminate between good and bad rules.

2) Parameter updates: To adjust the parameters of each
classifier, firstly the P (payoff) value is computed directly from
the immediate reward r received from the environment, P ←
r, since we are considering single-step problems.

Then, the following adjustment process is performed for
each fuzzy classifier belonging to the action set:

1) Increase its experience, expj ← expj + 1.
2) Adjust the error values εj using the standard Widrow-

Hoff delta rule with learning rate parameter β (0 < β ≤
1) toward |P −pj | considering the weights wj computed
in eqs. (2) and (3) to distribute the adjustment, i.e.

εj ← εj + β · wj · (|P − pj | − εj). (4)

The MAM (modified adaptive method) technique is
used by adjusting εj to the average of the |P − pj |
values, instead of the above equation, during the first
1/β times that the corresponding classifier is adjusted,
i.e., if expj < 1/β.

3) Then, adjust prediction values

pj ← pj + β · wj · (P − pj). (5)

Again, weights are considered to distribute the reinforce-
ment. MAM technique is also used here during the 1/β

first adjustments.
4) Finally, recalculate the fitness values Fj from the up-

dated values of εj , i.e.

Fj ← Fj + β · (k′
j − Fj), (6)

with

k′
j =

kj∑
Ri∈[A] ki

, kj =
{

(εj/ε0)−ν εj > ε0
1 otherwise.

(7)
No weights wj are considered to update the fitness since
it depends on the prediction error instead of the received
payoff. Again, MAM technique is used.

D. Discovery Component

The EA for Fuzzy-XCS acts only on the action set [A]
when an exploration step is performed. In order to apply an
EA, the average time period since the last EA application in
the action set must be greater than the threshold θGA. When
applied, it selects two classifiers by roulette-wheel selection
based on fitness, applies crossover and mutation operators with
probabilities χ and µchom (per chromosome), respectively,
and inserts the offspring in the population. If the population
contains the maximum number of fuzzy classifiers allowed,
two individuals are deleted to make room. They are randomly
selected proportionally to the prediction error.

A simple two-point crossover operator that only acts on the
antecedent part of the chromosomes (binary coding scheme)
is considered. Prediction, prediction error, and fitness values
of offspring are initialized to the mean values of the parents.

The mutation randomly selects an input/output variable of
the rule. If an input variable is selected, one of the three
following possibilities is applied: expansion, which flips to
1 a gene of the selected variable; contraction, which flips to
0 a gene of the selected variable; or shift, which flips to 0 a
gene of the variable and flips to 1 the gene immediately before
or after it. The selection of one of these mechanisms is made
randomly among the available choices (e.g., contraction can
not be applied if only a gene of the selected variable has the
allele 1). If an output variable is selected, the mutation operator
simply increases or decreases the integer value. Prediction,
prediction error, and fitness values of mutated classifiers are
not changed.

An EA subsumption is performed. Thus, if the offspring is
logically contained by either of its parents and this parent is
sufficiently experienced (it has been updated a threshold θGA
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number of times), the offspring is not added to the pool but
the parent’s numerosity is incremented.

When no fuzzy rules cover the state with the highest
matching degree, a covering mechanism is used to include
a fuzzy classifier with the input linguistic term set that best
matches the state and a random action. The population is left
empty at the beginning of the algorithm.

V. EXPERIMENTAL RESULTS

Experiments have been performed to test the behavior of
Fuzzy-XCS. We have developed a laboratory problem to play
a similar role as the multiplexer problem for discrete-valued
classifier systems. Thus, we have generated an example data
set from a previously defined rule base with different degrees
of generalization. Two input variables and one output variable
are considered. A total of 576 examples uniformly distributed
in the input space (24 × 24) were generated. Five linguistic
terms are considered for each variable. Uniformly distributed
triangular-shaped membership functions are used. The fuzzy
rule base considered to generate the data set is shown in
Table I. The reward depends inversely on the difference
between the inferred and the desired output in a non-linear
way, i.e, r = (1−|y−ŷ|)/(1+|y−ŷ|/δ), with δ = 0.3, y being
the output obtained by the fuzzy classifier system, and ŷ the
expected output according to the data set for the current state.
The objective is to obtain the set of rules that best approximate
the data with the highest degree of generalization, i.e., a rule
base as accurate and compact as possible.

TABLE I

RULE BASE USED TO GENERATE THE DATA SET

X1 X2 Y
VS S M L VL VS S M L VL VS S M L VL

R1 x x x x x
R2 x x x x x x
R3 x x x x x
R4 x x x x x
R5 x x x x x x x

The used parameter values are the following: maximum
number of classifiers = 200, β = 0.2, ν = 3, ε0 = 0.05,
α = 0.1, θexploit = θdel = θGA = 30, χ = 0.7, µchrom =
0.1, θM = 0.3, also operator = min, and then operator =
Łukasiewicz. Notice that standard parameter values are used.

Figure 3 shows the average behavior of 10 runs of Fuzzy-
XCS with competitive inference and reinforcement during
30,000 exploit steps (60,000 trials in total). The upper figure
depicts the relative numerosity (number of copies of the
classifier divided by the population size) of the five optimal
fuzzy classifiers. It shows the capability of the algorithm to
find and keep the optimal solution. The bottom figure depicts
the mean approximation error (|y − ŷ|) of the last 50 exploit
steps. It shows the capability of the algorithm to provide the
appropriate action (output) to the corresponding state (input).
Note that a pseudo-optimal solution is found.

On the other hand, Fig. 4 shows the average behavior of
an algorithm following a cooperative inference and reinforce-
ment. To do that, the only changes made to the algorithm
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Fig. 3. Results of Fuzzy-XCS with competitive inference and reinforcement
approach

proposed in this paper are the use of minimum as implication
and maximum as aggregation in the inference engine, and a
distribution of the reward proportional to the matching degrees
in the reinforcement component. This algorithm is tested with
a data set generated with the same cooperative inference
(Max-Min) to avoid biasing the experiment. Notice that the
cooperative approach is unable to find a good solution.
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Fig. 4. Results of Fuzzy-XCS with cooperative inference and reinforcement
approach

In order to test the performance of our on-line learning
process by a Michigan-style approach, we have also applied
off-line learning using a simple Pittsburgh-style genetic fuzzy
system to the same problem. Briefly, this algorithm con-
sists of the following components. A generational approach
with direct replacement (offspring replace the corresponding
parents) is considered. An elitism component that ensures
the best chromosome survival of the previous generation is
applied. The fitness is the mean square error (MSE), f(S) =∑N

i=1 (S(xi) − yi)2/N , with S being the evaluated fuzzy
system, N the data set size (576 in our experiment), and
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(xi, yi) the ith input-output pair of the data set. The same
coding scheme than the proposed Fuzzy-XCS (Sect. IV-A) for
each fuzzy rule is used, but taking into account that now a
chromosome is composed of a set of rules. Variable-length
chromosome size is considered. The population is randomly
initialized. Binary tournament selection is used. The crossover
operator randomly chooses a cross point between two fuzzy
rules at each chromosome, and exchanges the right string of
them. Therefore, the crossover only exchanges complete rules,
but it does not create new ones since it respects rule boundaries
on chromosomes representing the individual rule base. In the
case that inconsistent rules appear after crossover, the ones
whose antecedent is logically subsumed by the antecedent of
a more general rule are removed. Redundant rules are also
removed. The mutation operator works in a similar way to
the one proposed for our Fuzzy-XCS algorithm in Sect. IV-D.
In the same way, specific rules appeared after mutation are
subsumed by the most general ones and redundant rules are
removed. The parameter values used in the experiments were
as follows: population size = 50, number of generations = 200,
χ = 0.7, and µchrom = 0.1. We have considered Max-Min
fuzzy inference and the example data set is generated with the
same inference to avoid biasing the experiment.

Table II summarizes the results obtained by the analyzed
method. The final fuzzy rule set returned by Fuzzy-XCS is
composed of such classifiers of the final pool with experience
and prediction error values holding the following condition:
(expj ≥ θdel) ∧ (εj ≤ ε0); with θdel = 30 and ε0 = 0.05 in
our experiment. In the Pittsburgh-style genetic fuzzy system,
the returned fuzzy rule set is the one with the best fitness in the
last population that, due to the considered elitism, coincides
with the best solution found during all the process.

That table shows the mean number of times (over the
10 runs performed for each algorithm) that each of the five
optimal rules (according to Table I) appear in the returned
fuzzy rule set. It also shows the mean number of other
suboptimal rules (i.e., those whose antecedent is subsumed
by and the consequent is equal to an optimal rule) and non-
suboptimal rules included in the returned fuzzy rule set. We
have also included the mean MSE values of the fuzzy rule sets
returned by both Fuzzy-XCS (with competitive approach) and
Pittsburgh-style algorithms.

We can see that our competitive-based Fuzzy-XCS al-
gorithm always find the five optimal rules (excepting one
run where only four of them are found). On the contrary,
the cooperative approach is unable to properly find neither
optimal nor suboptimal rules. Finally, regarding Pittsburgh-
style genetic fuzzy system, it has serious difficulties to find
optimal solutions and, moreover, the knowledge resource used
to do that (respecting the number of analyzed examples) is
tremendously higher than the Michigan-style approach.

In this respect, it is interesting to highlight that the pro-
posed Fuzzy-XCS finds a pseudo-optimal solution after around
20,000 analyzed examples (10,000 exploit ones according to
Fig. 3), which is equivalent to 35 evaluated chromosomes,
i.e, less than the number of evaluations needed for the initial

population of the Pittsburgh-style genetic fuzzy system.

TABLE II

RESULTS OBTAINED BY THE ANALYZED METHODS

Fuzzy-XCS Fuzzy-XCS Pittsburgh-style
(competitive) (cooperative) genetic fuzzy system

R1 0.9 0.0 0.1
R2 1.0 0.1 0.2
R3 1.0 0.0 0.0
R4 1.0 0.0 0.2
R5 1.0 0.0 0.1

suboptimal rules 0.8 1.1 7.6
non-suboptimal rules 1.1 0.0 2.0

MSE 0.000302 — 0.001892
analyzed examples 60,000 60,000 4,212,864

VI. CONCLUDING REMARKS

The paper has presented a proposal to properly develop
an accuracy-based Michigan-style fuzzy classifier system for
real-valued input and output. It is mainly based on a different
inference approach that considers the interaction among fuzzy
classifiers (rules) from a competitive point of view. The
reinforcement component, based on XCS, is adapted to allow
this behavior. The approach has the advantage of performing a
higher selection pressure that results in a proper discrimination
between good and bad fuzzy classifiers.

Promising results of the proposal have been obtained in a
simple laboratory problem. Current and future work involves
investigating the behavior of the proposal in multi-step (with
delayed-reinforcement) and real-world problems.
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