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Abstract

Within the field of linguistic fuzzy
modeling with fuzzy rule-based sys-
tems, the automatic derivation of
the knowledge base from numerical
data is an important task. In this
contribution, we propose a new ap-
proach to automatically learn the
whole knowledge base, combining
two different strategies for rules
derivation and fuzzy partitions defi-
nition, working cooperatively in or-
der to obtain accurate and inter-
pretable models.

Keywords: linguistic fuzzy model-
ing, fuzzy rule-based systems, learn-
ing, genetic algorithms, ant colony
optimization.

1 Introduction

An important application of Fuzzy Rule-
Based Systems (FRBSs) is the linguistic fuzzy
modeling, where the interpretability of the
obtained model is the main requirement, to-
gether with its accuracy. This task is devel-
oped by means of linguistic FRBSs, which use
fuzzy rules composed of linguistic variables
that take values in a term set with a real-
world meaning.

The Knowledge Base (KB) of a linguistic
FRBS presents two main components: 1) the

1This research has been supported by CICYT un-
der project TIC2002-04036-C05-01.

Rule Base (RB), constituted by the collection
of fuzzy rules, and 2) the Data Base (DB),
that contains the membership functions of the
fuzzy partitions associated to the linguistic
variables. The composition of the KB of an
FRBS directly depends on the problem being
solved. The task of automatically defining the
KB for a concrete application is considered as
a hard problem. In the last few years, a large
number of methods has been proposed to gen-
erate the involved rules (RB) making use of
different techniques. Most of them need of
the existence of a previous definition for the
DB. This operation mode makes the DB have
a significant influence on the FRBS perfor-
mance [7]. For this reason, some approaches
try to improve the preliminary DB definition
considered once the RB has been derived by
means of a tuning process to adjust the mem-
bership function parameters. In these cases,
the obtained RB remains fixed.

Therefore, it would be desirable a greater de-
gree of cooperation between these two task
(RB and DB learning) in order to obtain
models with a good interpretability-accuracy
trade-off. With this aim, we propose a KB
learning approach that evolves DB definitions
and looks for compact RBs, working coop-
eratively to generate linguistic models with
good behaviour. To do so, we consider a RB
learning method based on the COR method-
ology together with an specific ant colony
optimization-based algorithm, the best-worst
ant system. For the DB derivation, we use
a genetic algorithm that includes its three
usual components: number of labels per vari-
able, membership function definitions (ob-



tained from a non-linear scaling function) and
scaling factors.

This paper is organized as follows. Section 2
presents the COR-BWAS method. The GA
that performs the proposed KB learning pro-
cess is described in Section 3. Finally, in Sec-
tion 4, some experimental results are shown
and some conclusions are pointed out.

2 COR-BWAS learning process

COR-BWAS is an approach to the RB learn-
ing problem based on the Cooperative Rules
(COR) methodology [3] and making use of
ant colony optimization (ACO) algorithms to
find a RB with good balance between its two
main requirements: interpretability (less num-
ber of rules) and accuracy (better coopera-
tion among rules). The two next subsections
present the COR methodology and its inte-
gration with the specific ACO algorithm.

2.1 COR: Cooperative Rules
Methodology

A family of efficient and simple methods to
derive fuzzy rules guided by covering criteria
of the data in the example set, called ad hoc
data-driven methods, has been proposed in the
literature in the last few years [3]. Their high
performance, in addition to their quickness
and easy understanding, make them very suit-
able for fuzzy rule learning tasks. However,
ad hoc data-driven methods usually look for
the fuzzy rules with the best individual per-
formance (e.g. [14]) and therefore the global
interaction among the rules is not consid-
ered. This sometimes causes fuzzy rule sets
to be obtained with bad cooperation among
the rules composing them, making the fuzzy
model not as accurate as desired.

With the aim of addressing these drawbacks,
keeping the interesting advantages of ad hoc
data-driven methods, a new methodology to
improve the accuracy obtaining better coop-
eration among the rules is proposed in [3]: the
COR methodology. Instead of selecting the
consequent with the highest performance in
each subspace like ad hoc data-driven meth-

ods usually do, the COR methodology con-
siders the possibility of using another conse-
quent, different from the best one, when it
allows the FRBS to be more accurate thanks
to having a fuzzy rule set with better cooper-
ation.

COR consists of two stages:search space con-
struction, where a set of candidate rules is
obtained for each fuzzy input subspace and
selection of the most cooperative fuzzy rule
set, where a combinatorial search is performed
among these sets looking for the combination
of rules with the best global accuracy.

In this contribution, we will also include an
enhance to the original proposal [3] to al-
low it to eliminate badly defined and con-
flicting rules with the aim of improving the
interpretability and the accuracy [2]. This
approach, the fuzzy rule set reduction, is a
regular practice in fuzzy modeling usually
achieved by genetic algorithms. These pro-
posals generally perform the reduction with
a postprocessing stage, once the rule set has
been derived. Our proposal will achieve the
reduction process at the same time that the
learning one to address the existing interde-
pendence between both processes.

To do so, the special element R∅ (which means
“don’t care”) is added to the candidate rule
set corresponding to each subspace. In this
way, if such an element is selected for a specific
subspace, this will mean that no rule belong-
ing to this subspace will take part in the fuzzy
rule set finally learned. This slight change in
the COR methodology evidently involves in-
creasing the search space with the known pros
and cons: more accurate and interpretable so-
lutions can be obtained but the difficulty to
find good solutions increases.

2.2 Best-Worst Ant System to Learn
Linguistic Fuzzy Rules

ACO algorithms [9] constitute a new family
of global search bio-inspired algorithms that
has been recently proposed. ACO algorithms
draw inspiration from the social behavior of
ants to provide food to the colony. In the
food search process, consisting of the food



finding and the return to the nest, ants de-
posit a substance called pheromone. Ants
have the ability of smelling the pheromone
and pheromone trails guide the colony dur-
ing the search. When an ant is located at
a branch, it decides to take the path accord-
ing to a probability defined by the amount
of pheromone existing in each trail. In this
way, the depositions of pheromone terminate
in constructing a path between the nest and
the food that can be followed by new ants.
The progressive action of the colony mem-
bers makes the length of the path reduced
step by step. The shortest paths are finally
the more frequently visited ones and, there-
fore, the pheromone concentration is higher
on them. On the contrary, the longest paths
are less visited and the associated pheromone
trails are evaporated.

The basic operation mode of ACO algorithms
is as follows: at each iteration, a population
of a specific number of ants progressively con-
struct different tracks on a graph representing
the problem instance (i.e., solutions to the
problem) according to a probabilistic transi-
tion rule that depends on the available infor-
mation (heuristic information and pheromone
trails). After that, the pheromone trails are
updated. This is done by first decreasing
them by some constant factor (correspond-
ing to the evaporation of the pheromone)
and then reinforcing the attributes of the
constructed solutions considering their qual-
ity. This task is developed by the global
pheromone trail update rule.

One of these successful approaches is the Best-
Worst Ant System (BWAS) model [4]. It tries
to improve the performance of ACO models
using evolutionary algorithm concepts like the
update rule based on that of the Population-
Based Incremental Learning (considering the
global-best and the worst current solutions)
or the pheromone trail mutation to introduce
diversity in the search.

There are five steps to solve a specific problem
by ACO algorithms:

1. Problem representation: Interpret the
problem to be solved as a graph or a sim-

ilar structure easily traveled by ants.

2. Heuristic information: Define the way of
assigning a heuristic preference to each
choice that the ant has to take in each
step to generate the solution.

3. Pheromone initialization: Establish an
appropriate way of initializing the
pheromone.

4. Fitness function: Define a fitness func-
tion to be optimized.

5. ACO scheme: Select an ACO algorithm
and apply it to the problem.

COR is characterized by its flexibility to be
used with different metaheuristics. In [3], suc-
cessful linguistic models were obtained using
simulated annealing. Nevertheless, these re-
sults could be improved incorporating heuris-
tic information to the learning process. This
consideration would guide the algorithm in
the search, making it more efficient and effec-
tive at finding good solutions. ACO is a good
support for such intention thanks to the inher-
ent use of heuristic information. Therefore,
we will describe the BWAS model in the COR
methodology, presenting the different compo-
nents of the algorithm according to the five
steps previously commented (for a further de-
scription, refer to [2]):

Problem Representation for Learn-
ing Cooperative Fuzzy Rules: To apply
ACO in the COR methodology, it is conve-
nient to see it as a combinatorial optimiza-
tion problem with the capability of being rep-
resented on a weighted graph. In this way, we
can face the problem considering a fixed num-
ber of subspaces and interpreting the learning
process as the way of assigning consequents—
i.e., labels of the output fuzzy partition—to
these subspaces with respect to an optimality
criterion (i.e., following the COR methodol-
ogy). Hence, we are in fact dealing with an
assignment problem and the problem repre-
sentation can be similar to the one used to
solve the QAP [11], but with some peculiari-
ties. We may draw an analogy between sub-
spaces and locations and between consequents



and facilities. However, unlike the QAP, the
set of possible consequents for each subspace
may be different and it is possible to assign
a consequent to more than one subspace (two
rules may have the same consequent). We can
draw from these characteristics that the or-
der of selecting each subspace to be assigned
a consequent is not determinant since one as-
signment does not restrict the remaining ones,
i.e., the assignment order is irrelevant.

Heuristic Information: The heuristic in-
formation on the potential preference of se-
lecting a specific consequent, in each an-
tecedent combination (subspace) can be found
in [2].

Pheromone Initialization: The initial
pheromone will be the mean value of the
path constructed taking the best consequent
in each rule according to the heuristic infor-
mation (a greedy assignment).

Fitness Function: The fitness function
will be the Mean Square Error (MSE) over
the training data set.

ACO Scheme: BWAS algorithm.

3 Learning process of the FRBS
knowledge base

In this Section, we propose a new process to
automatically generate the KB of a FRBS
based on a learning approach composed of two
methods:

• A genetic learning process for the DB
that allows us to define:

– The number of labels for each lin-
guistic variable.

– The variable domain (working
range).

– The form of each fuzzy membership
function in non-uniform fuzzy par-
titions, using a non-linear scaling
function that defines different areas
in the variable working range where
the FRBS has a higher or a lower
relative sensibility.

• The COR-BWAS learning method that
derives the RB considering the DB previ-
ously obtained. This method is run from
each DB definition generated by the GA,
thus allowing the proposed hybrid learn-
ing process to finally obtain the whole
definition of the KB (DB and RB) by
means of the cooperative action of both
methods.

All the components of the DB will be adapted
throughout a genetic process. Since it is
interesting to reduce the dimensionality of
the search space for that process, the use of
non-linear scaling functions is conditioned by
the necessity of using parameterized functions
with a reduced number of parameters. We
consider the scaling funtion proposed in [10],
that has a single sensibility parameter called
a (a ∈ IR). The function used is f : [−1, 1] →
[−1, 1]

f(x) = sign(x) · |x|a , with a > 0

The final result is a value in [−1, 1] where
the parameter a produces uniform sensibility
(a = 1), higher sensibility for center values
(a > 1), or higher sensibility for extreme val-
ues (a < 1). The range considered for the
parameter a is the interval (0, 10]. In this pa-
per, triangular membership functions are con-
sidered due to their simplicity. So, the non-
linear scaling function will only be applied on
the three definition points of the membership
function. We should note that the previous
scaling function is recommended to be used
with symmetrical variables since it causes sy-
metrical effects around the center point of the
interval. It can be desirable the possibility
of producing higher sensibility in only one of
the working range extents. Figure 1 shows
a graphical representation of these five shape
possibilities. For more details about the fuzzy
partition building, refer to [5].

The evolutionary process that guides our ap-
proach for automatic learning of the whole KB
of an FRBS is presented next:

Genetic Algoritmhs (GAs) [12] are search and
optimization techniques that are based on a
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Figure 1: Fuzzy partitions shapes

formalization of natural genetics. The genetic
process starts with a population of solutions
called chromosomes, that constitutes the first
generation (G(0)), and undergoes evolution
over it. While a certain termination condi-
tion is not met, each chromosome is evalu-
ated by means of an evaluation function (a
fitness value is assigned to the chromosome)
and a new population is created (G(t + 1)),
by applying a set of genetic operators to the
individuals of generation G(t).

The important questions when using GAs are:
how to code each solution (in this case, the
DB of an FRBS), how to evaluate these so-
lutions and how to create new solutions from
existing ones. Next, we will briefly describe
these aspects.

Encoding the DB. Each chromosome will
be composed of four parts:

• Number of labels (C1): For a system
with N variables (including input and
output variables), the number of labels
per variable is encoded into an integer
array of length N. In this contribution,
the possible values considered are the set

{2, . . . , 7}.
• Shape parameters: (C2): An integer ar-

ray of length N, where the shape of the
fuzzy partition S for each variable is
stored. The five possible shapes previ-
ously commented are codified with a dif-
ferent number ({0,1,2,3,4})

• Sensibility parameters (C3): A real array
of length N, where the sensibility param-
eter (a) for each variable is stored. In our
case, the range considered for this param-
eter is the interval (0, 10).

• Working ranges (C4): An array of N × 2
real values stores the variable working
range ([vmin, vmax]). If the initial domain
of a variable is [vi

min, vi
max], and d is the

interval dimension (d = vi
max − vi

min),
the range considered for the variable do-
main lower limit is [vi

min−(1/4∗d), vi
min],

and the range for the upper limit is
[vi

max, vi
max + (1/4 ∗ d)].

A graphical representation of the chromosome
is shown next:

C1 = (l1, . . . , lN )

C2 = (S1, . . . , SN )

C3 = (a1, . . . , aN )

C4 = (rinf
1 , rsup

1 , . . . , rinf
N , rsup

N )

C = C1C2C3C4

Evaluating the DB. There are three steps
that must be done to evaluate each chromo-
some:

• Generate the fuzzy partitions for all the
linguistic variables using the information
contained in the chromosome. First, each
variable is linearly mapped from its work-
ing range [rinf

i , rsup
i ], i = 1, . . . , N (fourth

part of the chromosome) to [−1, 1]. Next,
uniform fuzzy partitions for all the vari-
ables are created considering the num-
ber of labels per variable (li). Finally,
the non-linear scaling function with its
shape (Si) and its sensibility parameter



(ai) is applied to the definition points of
the membership functions, obtaining the
fuzzy partition.

• Generate the RB, by running the COR-
BWAS learning method considering the
DB obtained in the previous step.

• Calculate the Mean Square Error over
the training set using the KB obtained
(DB + RB). In order to avoid the possi-
ble overfitting, thus improving the gener-
alization capability of the final FRBS, we
will lightly penalize FRBSs with a high
number of rules (#R) to obtain more
compact linguistic models. Therefore,
once the RB has been generated and its
MSE over the training set has been cal-
culated, the fitness function is calculated
as follows:

FC = ω1 · MSE + ω2 · #R

with ω1 and ω2 being weighting percent-
ages (ω1 + ω2 = 1). In this contribution
we have considered that ω1 = 0.9.

Genetic operators. A set of genetic oper-
ators is applied to the genetic code of the DB
contained in G(t), to obtain G(t + 1). Due
to the special nature of the chromosomes in-
volved in this DB definition process, the de-
sign of genetic operators able to deal with
it becomes a main task. Since there is a
strong relationship among the four chromo-
some parts, operators working cooperatively
in C1, C2, C3 and C4 are required in order to
make best use of the representation used. The
reproduction operator is the Baker’s stochas-
tic universal sampling [1].

Two different mutation operators are used,
each one of them acting on different chromo-
some parts. The mutation operator selected
for C1 and C2 is similar to the one proposed
by Thrift in [13]. Since C3 and C4 are based
on a real-coding scheme, Michalewicz’s non-
uniform mutation operator is employed [12].

As regards the recombination process, two dif-
ferent crossover operators are considered de-
pending on the two parents’ scope. When

both parents have the same values in C1 and
C2 (each variable has the same shape and
equal number of labels in the two parents),
then the genetic search has located a promis-
ing space zone that has to be adequatelly ex-
ploitated. This task is developed by apply-
ing the Parent-Centric crossover operator[8]
in C3 and C4 and obviously by maintaining
the parent C1 and C2 values in the offspring.
If the two parents encode different partition
shapes or granularity levels, it is interesting
the use of the information encoded by the par-
ents for explorating the search space in order
to discover new promising zones. In this way,
an standard crossover operator is applied over
the four parts of the chromosomes. This op-
erator performs as follows: a crossover point
p is randomly generated in C1 and the two
parents are crossed at the p-th variable in
the four chromosome parts, C1, C2, C3, and
C4, thereby producing two meaningful descen-
dents.

4 Experimental study

The proposed method have been applied to
one real-world problem. A 5-fold cross vali-
dation is performed. Thus, each data set is
divided into five subsets of (approximately)
equal size. Each algorithm is applied five
times for each problem, each time leaving
out one of the subsets from training, but us-
ing only the omitted subset to compute the
test error1. In the GA, six runs with differ-
ent seeds for the pseudo-random sequence are
made for each data partition.

A problem with estimations of minimum
maintenance costs which are based on a model
of the optimal electrical network for a span-
ish town [6] will be considered to validate the
KB learning process proposed. The problem
has four input variables: Sum of the lengths
of all streets in the town, Total area of the
town, Area that is occupied by buildings and
Energy supply to the town and one output
variable: Maintenance costs of medium volt-
age line. These values are somewhat lower

1The data sets used in these experiments are avail-
able at http://decsai.ugr.es/∼casillas/FMLib/



than the real ones, but companies are inter-
ested in an estimation of the minimum costs.
Of course, real maintenance costs are exactly
accounted but a model that relates these costs
to any characteristic of simulated towns with
the optimal installation is important for the
electrical companies. We were provided with
data concerning four different characteristics
of the towns and their minimum maintenance
costs in a sample of 1059 simulated towns. In
this case, our objective was to relate the last
variable (maintenance costs) with the other
four ones.

The results obtained for our process
(GA+COR-BWAS) will be compared with
other two methods: the same process but
considering the Wang and Mendel RB gen-
eration method[14] instead of COR-BWAS
(GA+WM) and the original COR-BWAS
learning process.

Table 1 shows the results. The columns
named 1 to 5 of the first row represent the five
subsets of the 5 fold cross validation. For each
column four values are shown, corresponding
to the average values of the six runs performed
with different seeds. The last three columns
show the arithmetic mean (x̄) over the 30 runs
performed (in bold type); the standard devi-
ation over the five mean values (σx̄i), one per
data partition; and the arithmetic mean of the
standard deviation values over the six runs for
each data partition (σ̄xi) are included. While
σx̄i stands for the differences existing among
the data partitions, σ̄xi stands for the differ-
ences existing among the runs for each data
partition. Therefore, the former value shows
the robustness of the learning method to ob-
tain similar results regardless the data parti-
tion, while the latter value shows the robust-
ness of the metaheuristic to obtain similar re-
sults regardless the followed pseudo-random
sequence.

The four average values of each column for
the three methods are:

• MSEtra: MSE over the training set.

• MSEtst: MSE over the test set.

• #R: The number of rules of the RB.

• #L: The sum of the number of labels
considered in the DB for all the variables.

Since the best result with the original COR-
BWAS for the problem were obtained con-
sidering five labels for each variable, the row
#L is the sum of these labels (25) in all the
columns.

As can be observed in Table 1, the proposed
KB learning process obtains a significative
improvement with respect to the other two
methods, presenting more accurate prediction
levels with lesser values for the MSE in train-
ing and test data set and more interpretable
models with a smaller fuzzy rule set and a
lesser number of linguistic terms. On the
other hand, GA+COR-BWAS and GA+WM
are slightly less sensitive to the data partition
(σx̄i) than the original COR-BWAS while the
former ones are more sensitive to the pseudo-
random sequence (σ̄xi) than the latter one.

The main drawback of GA+COR-BWAS is
the long time required by the GA. Each time
a new cromosome is evaluated, a complete run
of COR-BWAS is performed. Our future work
will be focused on adjusting the GA structure
and parameters of the KB learning process
proposed in order to reduce its high compu-
tational time keeping its good performance.
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