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Abstract

This work presents the use of local fuzzy
prototypes as a first approximation to ob-
tain accurate local semantics-based Takagi-
Sugeno-Kang rules. A two-stage evolu-
tionary algorithm considering the interac-
tion between input and output variables has
been developed. Firstly, it performs a lo-
cal identification of prototypes, and then, a
post-processing stage is considered to refine
them. The proposal has been tested with a
real-world problem achieving good results.

Keywords: TSK fuzzy models, fuzzy pro-
totypes, genetic fuzzy rule-based systems.

1 Introduction

In Takagi-Sugeno-Kang (TSK) Fuzzy Rule-Based
Systems (FRBSs) [10], the learning of the premises
and consequents is usually performed separately, ob-
taining the optimum consequents for a previously
learned premise set without considering the interac-
tion between input and output variables.

Fuzzy clustering is one of the most useful tech-
niques, detecting the possible groupings and estab-
lishing some hypothesis about the structure present in
the data. However, some authors state several draw-
backs: they are very sensitive to the presence of out-
liers and the cluster centers or estimates for the pa-
rameters are poor [8].

Recently, these kinds of learning techniques have been
taken into account as prototype-identification algo-
rithms, summarizing a dataset by a number of repre-
sentative prototypes. However, they still comes with

the same drawbacks. In this way, fuzzy rule gener-
ation methods also can be seen as identification al-
gorithms of fuzzy rule prototypes, i.e., fuzzy model
builders whose main purpose is to extract the most
suitable set of fuzzy rules from an object (input-output
data) according to an optimization measure. Addition-
ally, they organize results and summarize them by in-
terest criteria, in order to provide a more compact and
useful representation of the resulting structures.

Two main approaches can be considered to obtain
FRBSs. Aglobal semantics-based approachwhere
a global collection of fuzzy sets is considered by all
the fuzzy rules and, alocal semantics-based approach
where each fuzzy rule has associated its own local
fuzzy sets.

Our main objective in this paper is to obtain highly
accurate fuzzy models although it involves to loss
interpretability to some degree. Therefore, we pro-
pose the use of local semantics-based Mamdani fuzzy
rules as local fuzzy prototypes to obtain accurate lo-
cal semantics-based TSK rules, considering the inter-
action between input and output variables and tak-
ing into account the fuzzy nature of these kinds of
rules. To do so, we present a two-stage Genetic
FRBS (GFRBS) following the MOGUL paradigm [4],
a methodology to obtain GFRBSs under the Iterative
Rule Learning (IRL) approach.

The paper is organized as follows. Next section
describes the general TSK fuzzy model structure.
Section 3 discusses the main differences between
the global and the local fuzzy prototype identifica-
tion. Section 4 presents the structure of the proposed
GFRBS. Experimental results are shown in Section 5.
Finally, some concluding remarks are pointed out in
Section 6.



2 Preliminaries: TSK FRBS Architecture
and Main Features

In [10], Takagi, Sugeno and Kang presented a math-
ematical tool to procure a fuzzy model of a system.
The fuzzy model is based on rules usually presenting
the following structure:

Ri : I f X1 is Ai1 and . . . and Xn is Ain

Then Y= pi1 ·X1 + . . .+ pin ·Xn + pi0
,

whereXi are the system input variables andY is the
system output variable that determines a local linear
input-output relation by means of the real-valued co-
efficientspi j . The output of an FRBS considering a
knowledge base composed ofm TSK rules is com-
puted as the weighted average of the individual rule
outputs,yi —i = 1, . . . ,m—:

∑m
i=1hi ·yi

∑m
i=1hi

,

with hi = T(A1(x1), . . . ,An(xn)) being the matching
degree between the antecedent part of thei-th rule and
the current system inputs —x1, . . . ,xn—, and withT
being a t-norm.

As seen, these partial relations are combined by ag-
gregation, taking into account their dominance in their
respective area of application and the conflict existing
in the overlapped areas [10]. In this way, TSK fuzzy
systems present the following interesting features:lo-
cality, smooth switchingandexistence of mathemati-
cal tools for system design.

3 Local vs Global Fuzzy Rule Prototype
Identification

In this work, we propose the use of Mamdani fuzzy
rules as fuzzy prototypes to identify a set of fuzzy
subspaces grouping data with similar behavior. As
we have seen, two different approaches can be con-
sidered to obtain these kinds of rules, those based on
global and local semantics, obtaining global or local
fuzzy prototypes respectively. Each of them presents
different advantages and drawbacks in terms of accu-
racy and interpretability.

The approaches based on global semantics, as a con-
sequence of the inflexibility of the concept of linguis-
tic variable, present the following drawbacks: there

is a lack of flexibility because of the rigid partition-
ing of the spaces; the fuzzy partition input spaces is
hard when the input variables are dependent them-
selves; the partitioning of the spaces is inefficient and
does not scale when the input-output mapping varies
in complexity within the space; the size of the fuzzy
rule base directly depends on the number of variables
and linguistic terms in the system.

These drawbacks are solved by local semantics-based
approaches presenting interesting advantages:the ex-
pressive power of the rulesthat present their own
specificity in terms of the fuzzy sets involved in them
and,the number of rules is adapted to the complexity
of the problem. However, an important drawback of
this local approach is that these kinds of systems are
less interpretable than the global ones.

In this paper we will focus on developing more ac-
curate fuzzy models, so we propose the use of local
semantics-based Mamdani rules as local fuzzy proto-
types for local identification of TSK fuzzy rules. The
local fuzzy prototypes are based on rules presenting
the following structure, whereAi andB are fuzzy sets
specific to each fuzzy rule:

Ri : I f X1 is Ai1 and . . . and Xn is Ain Then Y is B

4 Structure of the Proposed GFRBS

In this section, we present a two-stage GFRBS to gen-
erate local semantics-based TSK FRBSs. It is based
on the existence of a set of input-output training data
EN = {e1, . . . ,el , . . . ,eN} with el = (exl

1, . . . ,exl
n,eyl ),

N being the data set size, andn being the number of
input variables.

The local identification of prototypes induces compe-
tition among rules by only considering the quality of
the approximation performed by each rule. To do so,
the proposed method has been integrated in MOGUL
[4] by using an IRL-based approach. However, the
global cooperation among rules should be considered
in order to increase the generalization power of the
system modeled. Following the MOGUL approach, a
post-processing stage is considered for this purpose.
In this way, the learning method substantially reduces
the search space size by dividing the genetic learning
process into two stages.



4.1 Local Process for Identifying Prototypes

To obtain the set of local semantics-based Mamdani
fuzzy rules (fuzzy prototypes) we have used a method
described in [2]. Since this method is based on lo-
cal covering measures to induce competition among
rules, considering thecompletenessand consistency
properties [4] is recommendable to improve the be-
havior of the generated fuzzy rule bases. In our case,
completeness is verified demanding that each example
is covered to a degreeε∈ℜ. On the other hand, to ver-
ify the consistency, thepositiveandnegative example
concepts [4] are considered. Thereby, the accuracy of
a simple fuzzy rule1, Ri , on the set of examples,EN, is
measured by using a multicriteria fitness function:

F(Ri) = ΨEN(Ri) ·Gω(Ri) ·gn(R−i ),

designed to take into account three different criteria
[4]: high frequency value(ΨEN(Ri)), high average
covering degree over positive examples(Gω(Ri)) and
small negative example set(gn(R−i )). This method
may be briefly summarized in the following steps:

a) Perform a strong fuzzy partition for each variable
(uniform triangular-shaped membership functions).

b) Generate for eachel the global fuzzy rule best
covering it. Then, evaluate all the global fuzzy rules
and select the rule with the highest value in the fitness
function (F(Ri)).

c) The most promising global fuzzy rule is locally
tuned to identify the local fuzzy prototype best group-
ing the data located in the corresponding subspace.
This process is computed by means of the (1+1)-
Evolution Strategy ((1+1)-ES) described in [2] con-
sidering as fitness functionF ′(Ri) = F(Ri) ·LNIR(Ri)
whereLNIR(Ri) is a penalty function to avoid exces-
sive proximity among prototypes.

d) Finally, the obtained prototype is added to the final
set of fuzzy prototypes. The data covered by this set
to a certain degree are removed and not considered for
future iterations. The iterative process ends up when
no more uncovered training data remains.

To obtain the TSK consequents, once the set of local
fuzzy prototypes is obtained and considering the same
antecedents, the existing partial linear input-output re-
lation is computed using the data located in each input

1With global or local nature.

subspace by means of the (µ,λ)-ES presented in [1] to
minimize the Mean Square Error (MSE).

4.2 Post-Processing Stage

Two different processes are considered at this stage
to minimize the final MSE, thegenetic simplification
processand thegenetic tuning process:

a)Genetic Simplification Process.

This process, described in [2], is based on a stan-
dard binary-coded Genetic Algorithm (GA). It has the
aim of selecting the subset of rules best cooperating
among the rules generated in the previous stage.

b) Genetic Tuning Process.

This method is an adaptation of that proposed in [1]
to tune TSK FRBSs based on global semantics. It is
based on a hybrid GA-ES algorithm in which each in-
dividual represents a complete knowledge base. An
(1+1)-ES is considered as a genetic operator to locally
tune a percentageδ of the best individuals in each gen-
eration. Deal with local semantics, the variation inter-
val for each fuzzy set is himself for each individual.

5 Experimental Results in the Estimating
the Length of Low Voltage Lines

To analyze the behavior of the proposed TSK GFRBS
(M→TSK) we have chosen the problem of estimating
the length of low voltage lines for an electric com-
pany [3]. Several methods are considered for com-
parison, two local and five global semantics based
methods. The local semantics-based methods are: the
Gustafson-Kessel fuzzy clustering method (FMID ) [5]
and a method to perform function approximation with
a generalized regression neural network (GRNN) [11].
On other hand, the global semantics-based methods
are: the first approach to learn global semantics-based
TSK FRBSs (TS) [10], a single-stage GFRBS (LT)
[7], a neural FRBS (ANFIS) [6], a two-stage GFRBS
(M-TSK) [1] and Fuzzy C-Means combined with a
validation index (SY-FCM) [9].

The initial linguistic partitions are comprised byfive
linguistic terms with triangular-shaped fuzzy sets.
The same values for all the related parameters have
been considered (i.e., 0.6 as crossover probability in
all the genetic approaches). The values of the param-
eters considered for M→TSK are the following:Local



process for identifying prototypes: ε = 1.5, ω = 0.05
andk = 0.1 in the fitness function;c = 0.9 and 100
iterations for the (1+1)-ES;µ = 15, λ = 100, γ =
0.2 ·µ = 3, θ = 0.7, q = 5,~r = (r~x, r~σ, r~α) = (2,0,0),
~ζ = (ζ~x,ζ~σ,ζ~α) = (µ,µ,1), (nσ,nα) = (0,0) and 500
iterations for the (µ,λ)-ES;Genetic simplification pro-
cess: N = 61,Pc = 0.6, Pm = 0.1 and 500 generations;
Genetic tuning process: N = 61, Pc = 0.6, Pm = 0.1,
a = 0.35, b = 5, d = 0.001, 1000 generations, 25
(1+1)-ES iterations,α = 0 andc = 0.9 (the updating
amount of the Rechenberg’s 1/5-success rule in the
(1+1)-ES [?]). The results obtained by the methods
analyzed are shown in Table 1.

Table 1: Results obtained in the electrical problem
Method #R/Complex. MSEtra MSEtst

TS 4 170644 158949
LT 4 169761 160110

M-TSK 20 132917 167826
ANFIS 20 108279 923650

SY-FCM 5 508426 464130
FMID 5 181040 164670

GRNN (396× 2) neur. 170460 198140
M→TSK 26 124022 137752

In view of these results, the proposed method ob-
tained the best results, with improvements of about
a 13.34% in test and a 27.32% in training over TS.
Moreover, M→TSK present a good balance between
approximation and generalization, even considering a
higher number of rules. This fact denotes the good
fuzzy partitioning that this method achieves.

6 Concluding Remarks

Our proposal shown the most accurate results in
approximation and specially in generalization when
solving a real-world problem. The obtained model
presented a moderate number of rules and can be in-
terpreted from a local point of view. Moreover, this
method presents an appropriate convergence.
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