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Abstract

This contribution faces an hybridiza-
tion study of soft computing toch-
niques within the penetic fuegy sys-
tem field. It is performed by combin-
ing soweral accuracy Improvements
to the linguistic fuwsy modoling with
hasic genetic algorithms and coop-
crative cocvolutionary algorithms.
Thus, five learning methods that
generate linpguistic models with good
accuracy degrees prescrving the in-
terpretahbility are proposcd.
Keywaordsa: fuwey modcling, inter-
pretability and accuracy, soft com-
puting, cooperative cocvolution.

1 TInirodoction

Fusey rule-hascd systems (FRBSs) constitite
an extension of classical rule-bascd gystems,
heoeanse they deal with IF-THEN rules where
anteecdonts and for conserquents are composed
of fuzzy logic statements, instead of classi-
cal logic rules. The most usual application
of FRBSs is system moedeling, which in this
ficld may be considered as an approach used
to model a system making usc of a deserip-
tive language hascd on fuzzgy logic with fuzey
proedicates. Fueey modeling (FM) (Le., ays-
tem modeling with FRBSs) usually comces
with two contradictory requirements to the
obtained modcl:

» interpretebility, capability to cxpress the
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hehavior of the real system in an uneer-
standable way, and

v aocuracy, capabllity to faithfully ropro-
gent the real systom.

While lingnistic FM (LFM) — mainly de-
veloped by linguistic (Mamdani-type) FRBSs
— i8 focuscd on the intcrpretability, procisc
FM (PFM) — mainly devcloped by Takagi-
Sugeno-Kang FRBSs — is focuscd on the ac-
curacy. Sinec both criteria are of vital im-
portance in system modeling, the balanee be-
tween them has started to reecive attention in
the fuzgy cornmunity in the last fow years [4)].

Roughly speaking, the halance is usually at-
taind from two different perspectives: coi-
ther the LFM is cxtended to obtain more
accurate models or the PFM is Improved to
obtain more interpretable model.  The for-
mer approach 8 usually deweloped by ime
proving the fumgy rule sct derivation [10],
automatically defining the membership fune-
tions [12, 13, 14], or cxtending the model
gtructure [8, 15, 16]. The latter approach is
usnally developod by reducing the fiuezy rule
sct [22], reducing the numbor of fusey scts
{with the subsequent merging of rules) [19,
20], or cxploiting the local description of the
rules [1].

This paper is focuscd on the LFM side ap-
proach to find the balance hoetween inter-
pretability and accuracy. Thus, three differ-
ent mechanisms to improve the accuracy of
LFM arc jointly considered:

o Improving the fuzay rule sel learning —



It s performed by inducing cooperation
among the consoquents composing the
fuzzy ruleg of the model.

o Learning the linguistic term meanings —
It is performed by considering two dif
forent ways of lcarning the shapes of the
membership functions with lincar and
non lincar cffects.

s Eriending the fuzzy rule structure — It
i8 porformed by using a more fleible rule
structure that includes lingnistic hedges.

To perform these tasks, different combinato-
rial or optimizgation tools such as cvolution-
ary algorithms (EAs) or ncural networks arc
usually employed. In fact, these two arcas
topether with fuzey logic constitute the most
important partnerships of the seft compuding
ficld. Among the different posaible hybridiza-
tions of these partnerships (ncuro-genetic sys-
tems, fuzey neural networks, fuzey genctic al-
gorithma, neuro-fuzzy systems. . .}, this con-
tribution focus on analyzing the integration of
EAs with the aforementioned LFM accuracy
improvement mechanisms to develop genetic

fuzzy systems [7).

When this task is facod, we should keep In
mind that, ag David Goldherg stated, the in-
tegration of single methods into hyhrid in-
telligent systems goes beyond simple combi-
nations. For him, the fiture of computa-
tional intelligenee “Hes in the careful indegre-
tion of the best constétuent technologics™ and
gubtle integration of the abstraction power of
Tuwey gystems and the innovating power of go-
nctic gystems roquires a design sophistication
that gocs further than putting everything to-
gether [9].

This view cncourages 18 to make a deeper
gtudy of the hybridization of componcents
to Improve the accuracy by properly oo
pliting the cdsting interdependencics. To
do that, scquential and simultancous learn-
ing process together with genctie algorithms
{GAs) and cooperative cocvwolutionary algo-
rithms arc considerad and analywcd.

The paper 18 organized as follows: Scection 2
cxplaing the three LFM accuracy improve-

ments considered, Scetion 3 shows different
proposals to hybridize the components, Soc-
tion 4 performs an cxperimental study over
four different modeling applications, and fi-
nally, Scction § points out some conclusions
and future work

2 Accuracy Improvements to
Linguistic Fuzzy Maodeling

This scction describes the different LEM ac-
curacy Improvements considered in the paper.

2.1 Improvement C: Rule Base
Learning with COR

This improvement arises as an offort to cx-
ploit the accuracy ability of linguistic FRBSs
by cxclusively focusing on the fuzey rule sct
design [3, 10]. In this case, the membership
functions and the modcl structure keep in-
variable, thus resulting in the highest inter-
protability.

The method COR (cooperative riules) pro-
poscd in [3] follows the primary ohjective of
indueing a better cooperation among the lin-
guistie rules. To do that, the rule base degign
is made using global eriteria that consider the
action of the different rules jointly. It is at-
taincd by means of a strong, smart reduction
of the scarch space. The main advantages of
the COR methodology arc its capability to
include heuristic information, its Acxibility to
he used with different metahcuristics, and its
casy ntcgration within other derivation pro-
COSSCS.

Let E be the input-output data sct, g =
{(#,... 2, 4") one of its clements {cxample),
and n be the number of mput wariables. Let
Aq be the set of linguistic terms of the é-th in-
put variable and B the set of linguistic terms
of the output variable. The operation mode
of COR is as follows:

1. Dcfine a sct of fueegy Input sub-
spaces, {8, | s€ {1,...,Ng}}, with the
anteeedent combinations containing at
least a positive cxample, e, S, =

(Af,... AL ... ,Al e Ay x...x Ag such



that B! £ B (with A? being a label of the
i-th input variable, B! being the set of
poditive cxamples of the subspace 85, and
Ng the mumber of subspaces with posi-
tive examples).

In this contribution, we will define the sct
of positive cxamples for the subspace 5,
as follows:

B ={gcE | ¥ie{l,. ., n}
\"_“‘Aij € Ay, bz {mi) > PA.:_-,'{‘("::I)} ?
with Ay being a label of the i-th input

variable and gy the membership function
of the lahel T.

2. For cach subspace Sy, obtain a sct of can-
didate conscquents (i.e., linguistic terms
of the output variable) Bf to build the
correspanding fueey rule.

In this contribution, we will define the sct
of candidate conscequents for the subspace
8, as follows:

B = {B; € B | dep € B} where
¥Bi € B, pu, (") 2 u (")}
with B heing a label of the output vari-

able.

3. Perform a combinateriel search among
these sets looking for the combination of
conscguents {one for cach subapace) with

the best glohal accuracy.
For  cxample, from  the  subspacc
S: = (high,low) and the ecandidate

conscepuent &t in such  a
B = {small, medivm,lorge},
obtain the fueey rule:

R, = IF X, is high and X, is low

THEN Y is B,,

with B, € B® being the label aclected by the
combinatorial scarch to represent to the sub-
spacc ;.

subspacc
we  will

2.2 Improvement M: Learning of
Membership Function Parameters
and Non-Linear Scaling Factors

Basic LFM mecthods arce exelusively focused
on determining the sct of fuzey rules compos-
ing the RB of the model. In these cases, the

membership functions are usually obtained
from cxpert information (if available) or by
a normalization proecss and it remains fixed
during the rule base derivation prooess.

However, the automatic design of the mem-
hership funetions has shown to he a very suit-
able mechanism to increase the approxima-
tion capability of the linguistic modcals. Gen-
crally speaking, the procedure involves cither
defining the most appropriate shapes for the
membership functions that give meaning to
the fuzzy scts assoclated to the considered
linguistic terms or determining the optinim
mimber of linguistic terms uscd in the variable
fuezy partitions, l.c., the granularity.

In this contribution, we will focus on learning
the membership functions by defining their
paramcters and using non-lincar scaling fac-
tora to vary their shapes (these shapes will
have a high influence in the FRBS porfor
manece):

s Learning/tuning the membership fune-
tion poremeiers — The most common
way to derive the membership functions
is to change thelr definition parame-
ters [12, 13]. For example, if the following
triangular-shape membership funetion is

congiderod:
=, fa<m<h
P{m)= H? fhb<a<e ,
0, otherwisce

changing the hasic paramcters — @, b,
and ¢ — will vary the shape of the
Tuwey sct associatod to the mombership
function, thus influeneing the FRBS por-
formanee.  The same yiclds for other
shapes of membership functions (trape-
goidal, panssian, sipmoid, ete.).

o Using non-lincar sculing fectors — An-
other way to define the membership fune-
tion shapes of the DB is to usc more flex-
ible alternative cxpressions for the mem-
hership funetions to vary the compatibil-
ity degrees to the fuzey scts [5, 14]. For
example, a new memberghip finction can



he obtained raiging the membership valuc
to the power of @, 1o,

g'{z) = plz)®, 0<a

By changing the & walue we may define
different membership funetion shapes.

2.3 Improvement L: Fuzzy Rules with
Linguistic Hedges

A third possibility to increase the accuracy in
LFM is to rclax the rule structure by includ-
ing certain operators that sliphtly change the
meaning of the linguistic labels involved in the
systcm when necessary [5, 11]. As Zadch high-
lighted, a way to do so without losing an ene-
eessive deseription is to use linguistic hedges.

A linguistic hodpe 18 an oporator that al-
ters the membership funetions for the fuzey
gets associated to the linguistic labels, giv-
ing a more or less preeise definition as a ro-
gult depending on the casc. For example,
the linguistic hedpes ‘very’ and ‘meore-or-less’
porforms as follows: s ¥{(x) = u{x)? and
Pmnm—nr—.!eaa(m} _ "’FE-’H}- An mcampl(: of a
rule with this structure is the following:

IF X is very high and X5 is low
THEN Y is more-or-less large .

Actually, the consideration of linguistic modi-
ficrs docs not define a new meaning to the so-
called préimary terms — high, low, and large
in our example — but they arc uscd as gen-
crators whose meaning 18 defined in the con-
text. Coertainly, the fact of using fuzey rules
with linguistic modificrs will have a significa-
tive influenoe in the behavior of the linguistic
FRBS beeause the matching degree of the rule
anteocdent as well as the output fuzezy sct ob-
tained when applicd the implication oporator
in the inferenec proecess arc changed.

3 Hybridizing Accuracy
Improvements to the Linguistic
Fuzzy Madeling

This section proposcs different ways of hy-
bridizing the three mentioned LEFM accn-
racy improvements: démprovement £ (linguis-
tic rule sct learning with CQR), émprove-

ment M (learning of the membership func-
tion paramcters and non-lincar scaling fac-
tors), and émprovement I (learning of the lin-
guistic hedges uscd for cach linguistic variable
in cach linguistic rule). To develop these hy-
hridizations, two main mechanisms are con-
sidered in this contribution.

On the one hand, we may distinguish between
seruential or sinuiltancons learning. When
several components of the FRBS arc designed,
we may opt to make a sequentiel leerning by
dividing it in two or more stages, cach of them
performing a partial or complete derivation of
the linguistic modcls. Other possibility is to
congider a simultancous learning that dircetly
obtain the whole model With the simulta-
neons learning, the strong dependency of the
components 18 properly addressed. Howcever,
the dorivation process hecomes significantly
mare complex because the search space grows.

On the other hand, we can consider the use
of coopcrative cocvolution.  Indeed, from
a different point of view, the combinations
of the components can be made by a ba-
sie GA or using a moare sophisticated evo-
lutionary approach such as the cocvolution-
ary algorithms [17]. They involwe two or
more specics {populations) that permanently
interact among them by a coupled fitness.
Therchy, in apite of cach specics has its own
coding acheme and reproduction operators,
when an individual must be cvaluated, its
pgoodness will be caleulated considering some
individuals of the other specics.

Within cocvolutionary algorithms, we can
mainly distinguish between two interaction
schemes, depending on if the specics compete
with the remainder {competitive approach) or
cooperate to build the problem salution {eo-
operative or symbiotic approach). The latter
intcraction 8 usually rceommendable when
the following issues arise [18]: the scarch space
is huge, the problem may be decomposable in
subecomponcents, different coding schemes arc
1u8cxl, and there is strong interdependencics
amaong the suboomponents.  Therefore, the
cooperative cocvolution scems to be vory ade-
quate to hyhridize the different LEM aceuracy
Improvements.



3.1 Hybridizations

Different combinations are regarded by differ-
cntiating botwoeen soquential or simultancous
learning and between hasic GAs or coopera-
tive cocvolution. Among all the possible com-
hinations we will exclusively consider thosc
socming to be more coherent. Thus, a good
approach to perform the sequential learning
wolld be to firstly achieve the fuzegy rule sct
learning {(with macroscopic cffects) and then
adjust this rule sct and the initial member-
ghip functions (with microscopic cffects). As
regards the cooperative cocvolution, we will
contemplate two criteria to decide how di-
viding the subcomponents into two groups:
on the once hand, we will distinguigh hetween
macroseopic {C) and miecroscopie (ML) of-
feets, and on the other hand, hetween learning
of the rile set (CL) and of the memhbership
functions (M).

Thercefore, the following five learning methods

arc proposcd as a represcentation of the possi-
hle hybridizations:

1. Method C+ML — Scquential learning
with GAs. It is compriacd of a first stage
for learning the fuzgy rule set {C) and a

subscquent tuning of the fueey rule sct
and membership functions (ML) with a
GA.

2. Method C+M-L — Scquential learn-
ing with cooperative cocvolution. It is
comprisced of a first stage for learning
the firzey rule sct (C) and a subscquent
tuning with coopcrative cocvolution, a
specics for the membership functions (M)
and anothcr one for the linguistic hedges
of the fuzey rules (L).

3. Method CML — Bimultancous learn-
ing with GAs. It Involves a proecess to
learn both fuzey rules and membership
functions by including in a unique chro-
mosome the throe Improvement mecha-
nisms.

4, Method C-MIL — Simmltancous learn-

ing with coopcorative cocvolution. The
fuzey riules are learnt in a species {(C)

while the membership functions aned lin-
giistic hedges (ML) are learnt in another
one.

5. Method CL-M — Simultancous learn-
ing with coopcrative cocvolution. The
fuuzey rules and their associatod linguistic
hedges arc learnt in a species (CL) while
the membership functions are learnt in
anather one (M).

3.2 Description of the Evolutionary
Algorithms

This scction shows some detalls related with
the developed cwvolutionary methods. All of
them have some common aspects that are de-
geribed in the following.

A penerational scheme s followed.  Baker's
gtochastic universal sampling procodure to-
gether with an elitist mechaniam {that ensures
to sclect the hest individual of the previous
generation) are used.

The fitness function will be to minimize the
well-known mean square ervor (MSE):

1 X ,
MSE = ﬁE{F(ml]—'.?JF}

with & being the data sct size, F{#!) being
the output obtained fram the desipned FRBS
when the I-th example is considered, and
boing the known desired output.

The following subscctions deseribe the spe-
cific coding scheme and cvolutionary opera-
tors uscd in the different learning methods.
They are grouped according to the accuracy
improvement where they are used. The in-
teraction scheme followed in the cooperative
cocvolutionary algorithms is also cxplained.

3.2.1 Subcomponent C

An integer-valued wector of size cqual to the
mimber of subspaces with positive cxamples is
employed as coding scheme, Each ecll of the
veetor represents the index of the consequent
uged to build the rule in the corrcaponding
sihepace:

¥s e{1,...,Ng}, els] = k, s.t. By, € B



The standard two-point crossover operatar is
uscd.  The mutation operator randomly sc-
lects a speeifie s € {1,..., Ng} where |B*| >
2, and changes at random ¢fs] = &* by ofs] =
k' such that B, € B® and k¥ £ k%

3.2.2 Subcomponent M

This component is encoded with two strings,
one for the parameters of the membership
functions, an other for their sealing factors.

» The former onc is a J-tuple of real values
for cach triangular membership function,
thus being the membership functions en-
coded into a real-codod chromosome built
by joining the membership functions in-
volvedd in cach variable fuzey partition. A
variation interval to every gone is associ-
ateed to prescrve meaningfil fuezy scts.

o The latter string consists of a real-coded
chromosome that cncodes the value of
the non-lincar scaling factor assoeciatod
to cach membership function. BEach genc
can take any value in the interval [—1,1]
with the following mapping hetween
alleles and actual waluce:

Ly € [—1?0]
ey € [0,1]

— a € [0,1],
+— a € |[1,5]

with ¢;; being the gene associated to the
membership function for the §-th linguis
tic term of the ¢-th variable

The max-min-arithmetical crossover [6] is
considered. With reapeet to the mutation op-
crator, it simply involves changing the waluc
of the sclected pene by other value obtained
at random within the corresponding variation
interval,

3.2.3 Subcomponent L

The coding scheme of this subcomponent
generates  integer-coded  strings of length
m - (n+ 1) {with m being the number of rules
and n being the number of input variables).
Each grne can take any wvalue in the sct

{0,1, 2} with the following correspondence to
the linguistic hedge uscd:

e; =0 +— “vary”,
e =1 +— no linguistic hedge,
e =2 +— “morc-or-less”.

with ¢;; being the gene associated to the lin-
puistic term uscd in the f-th variable of the
i-th rule.

The standard two-point crossover is used.
The mutation opcrator changes the gene to
the allele 1 when a gene with alleles § or 2
must be mutated, and randomly to 0 or 2
when a gene with allele 1 must be mutated.

3.2.4 Cooperative Interaction Scheme
for the Cooperative
Coevolutionary Algorithms

Each individual of species 1 ar 2 18 cvaluated
with the corrcsponding fitness function f; or
Jz, which are defined as follows:

fi(é) = i MSB;
f2(i) =

_min MSEg

iERIUM
with 4 and § being individuals of specics 1 and
2 respectively, Ry and R being the set of the
fittest individuals in the previous gencration
of the specics 1 and 2 respectively, and Py and
P heing individual acts sclected at random
from the previons generation of the specics 1
and 2 respectively.

Whilst the scts Ryjo allow the best individuals
to influenee in the process guiding the scarch
towards good solutions, the scts FPyp intro-
duece diversity in the scarch. The combined
18¢ of both kinds of scts makes the algorithm
have a trade-off between cxploitation (Rypo)
and exploration {(F,}. The cardinalitics of
the scts Ryp and Pyp are previously defined
by the desipner.

4 Experimental Study

The experimental study will be devoted to
analyze the behavior of the different pro-
posced hybridizations.  With this aim, we
have chosen two laboratory problems (two-
dimensional functions F; and Fa [6]) and
two realworld applications {the rice taste
cvaluation problem [15] and the maintenance



cost cstimating of an clectrical network in a
town [8]). Boven lingnistic terms for cach vari-
able arc used for problems F, and Fs, two 1a-
hels for the rice problem, and five labels for
the clectrical problem.

Morcover, we will compare the results of our
methods with three GA-hased learning meth-
adls proposcd in the literature: the method
proposcd by Thrift [21], the method proposcd
in [6] to generate linguistic models following
the MOGUL methodology, and the P-FCS1
method proposed in [2] that gencrates fuzey
models with local scmantics {approxdmative
FRBSa). Although the latter method devel-
ops PFM instcad LFM sainec it considers a
maore flexible model structure that allows it to
use different membership functions for cach
fuzry rule, it 8 intcresting to include it in
the comparative study to analyze the porfor-
manoe of our methods.

Tahle 1 collects the results obtained hy the
cight analywcd methods. In that table, #BR
stands for the number of fueey rules, and
M&8E;,, and MSE:; the crror ohtained over
the training and test data acts, respoctively.

From the obtaincd results, we can obscrve
the good behavior of the proposced hybridiza-
tions and the high accuracy of the pener-
atod linguistic models. Ewen the worst re-
sults obtainced by our methods outperform to
the results obtained by the comparative meth-
ods. Morcover of improving the accuracy,
the interprotability of the generated models
is significantly highcr because a lesser mim-
her of rules is used {compared to the MOGUL
method and the Thrift and P-FCS1 methods
in the electrical problem) and a global aeman-
tic is considered {eompared to the P-FCS1
method).

Focusing on the five proposcd methods, we
may obscrve that, usually, the simultancous
learning (methods CML, C-ML, and CL-M)
attains alightly hetter accuracy degrees than
the soquential learning (methods C+ML and
C+M-L). It is because the strong dependency
cxisting among the different components is
properly eonsidered. Only in the problem Fo
the behavior is reversed. This fact scems to

be related with the problem nature. Onec the
discontinuitics cdsting in this problem are ad-
dregsed, the lcarning of the fuzey rules with
the hest cooperation is as simple that the
two-stage scquential approach performs bet-
ter. Thus, the sceond phase deals with a re-
dhiced search space that allows the method to
obtain good solutions.

As regards the usced learning tochnique (ha-
gic GAs or cooperative cocvolution), the ob-
taincd results are contradictory.  OQnly in
the problem Fip the cooperative cocwvolution
is morc appropriate, while in the remaining
cases the basic GAs shows a similar or cven
hetter behavior.

Finally, analyzing the linguistic models gener-
ated by our methods we may ohscrve that the
excellent accuracy degrees are obtained with-
ot loging an cxoessive interpretability. For
example, Figure 1 depiets the model obtained
by the CL-M mcthod in the problem Fp. As
may be notiee, the semantics and linguistie
hadges uscd prescrve an interesting symmetry
that allow 18 to casily interpret the behavior
of the model.

5 Concluding Remarks and
Further Work

This paper has broachad an analysis that
currently is nercasing in importance:  the
hybridization of components hased on fuegy
logic with the cvolutionary computation. To
do that, throe mechanisms to improve the ac-
curacy in LFM have been proposcd and five
different combinations have been raised.

From the performed cxperimental study we
can obtain some interesting conclusions. Gen-
crally, the fact of simultancously perform the
different Improwements inercases the accuracy
degree sinee their strong interdependencics
arc properly considered. Furthermore, the usc
of more adwanced scarch tochniques such as
the eooperative cocvolution to treat the hy-
hridization docs not show significative results.
Although they scems to be appropriate tools
for such purposes, their design becomes wery
complex. Finally, wo have vorified that if the
hybridization of the accuracy improvements is



Table 1: Results obtained by the analyzed methods in the four considercd applications

F 2 Fy
Method | #R MBSE,., MSE..; #R MSE... MSE,..
Thrift 49 1609290 1.193721 47  ).067518 0.032442
MOGUL &5 0.3004626 0.324036 95 0011365 0.014518
P-FCB1 48 1.313334 (.935930 42 0.044838 0.038075
C+ML 49  0.213164 0.222263 47 0.006882 0.010902
C+M-L 49  (.250022 (.230623 47 0006428 0.012398
CML 49 0.244005 0.300322 45 0006745 0.011338
C-ML 49  0.216077 .221788 45 0006492 0.010727
CI-M 49 0.179844 0.203371 45 0.008155 0.014808
FRice Elertrieal
Method | #R MBSE,., MSE,.; #R MBSE;.. MSE,.;
Thrift 16  0.004949 1.005991 53 34,063 42,116
MOGUL 6 0.001075 0.002331 BT 21,709 25,290
P-FCS1 a1 0.0005946 0.0090565 272 13,833 15,5623
C+ML 17 0000558 0.001823 | 49 8,559 12,584
C+M-L | 17 0000562 0002052 | 49 9,708 11,967
CML 25 0.000479 0.001942 &) 4,761 8,422
C-ML 25  (.000504 0.002065 48 7.004 11,277
CL-M 26 0.000561 0.001992 5l 9,181 12,432

carcfillly made, the generated linguistic mod-

of Greneds, Spein, 2000.

Avmilable af

cls shows a good degree of accuraecy prescrving
the interpretability.

Asg further work, wo propose to improve the
cooperative cocvolution by performing a het-
tor interaction acheme of the specics and con-
gidcring more than two specics for a proper
decomposition of the problem. This latter
approach involves a geometric growth of the
complexity that is difficult to address with the
current. cocvolutionary proposals. Morcover,
a decpor hybridization study including other
combinations of soft computing partacrships
is neorssary.
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