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Abstract. In the last few years, the coevolutionary paradigm has shown
an increasing interest thanks to its high ability to manage huge search
spaces. Particularly, the cooperative interaction scheme is recommend-
able when the problem solution may be decomposable in subcomponents
and there are strong interdependencies among them.
The paper introduces a novel application of these algorithms to the learn-
ing of fuzzy rule-based systems for system modeling. Traditionally, this
process is performed by sequentially designing their different compo-
nents. However, we propose to accomplish a simultaneous learning pro-
cess with cooperative coevolution to properly consider the tight relation
among the components, thus obtaining more accurate models.

1 Introduction

Fuzzy rule-based systems (FRBSs) constitute an extension of classical rule-based
systems, because they deal with IF-THEN rules where antecedents and/or con-
sequents are composed of fuzzy logic statements, instead of classical logic rules.
This consideration presents two essential advantages: the key features of knowl-
edge captured by fuzzy sets involve handling uncertainty and inference methods
become more robust and flexible with approximate reasoning methods of fuzzy
logic. One of the most success applications of FRBSs is system modeling [17],
which in this field may be considered as an approach used to model a system
making use of a descriptive language based on fuzzy logic with fuzzy predi-
cates [23].

Several tasks have to be performed in order to design an FRBS for a concrete
modeling application. One of the most important and difficult ones is to derive
an appropriate knowledge base (KB) about the problem being solved. The KB
stores the available knowledge in the form of fuzzy IF-THEN rules. It consists
of the rule base (RB), comprised of the collection of rules in their symbolic
forms, and the data base (DB), which contains the linguistic term sets and the
membership functions defining their meanings.
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Numerous automatic methods — based on ad hoc data-driven approaches [25]
or on different techniques such as neural networks [15] or genetic algorithms
(GAs) [4,20,21] — have been developed to perform the derivation task. When
only the derivation of the RB is addressed, methods generally operate in only one
stage [24,25]. In this case, the DB is usually obtained from the expert information
(if it is available) or by a normalization process.

However, methods that design both RB and DB are preferable since the
automation is higher. In this case, we can distinguish between two different
approaches:

– Simultaneous derivation: It relates to the process of directly obtaining the
whole KB (RB and DB) from the available data in a simultaneous way [12,
13]. This task is usually known as learning process.

– Sequential derivation: The task is divided into two or more stages, each of
them performing a partial or complete derivation of the KB.
Some methods learn the DB with a embedded approach [6,8] that may be
used as one of the first stages.
Generally, one of the last stages adjusts the previously learnt/obtained DB
with slight modifications to increase the system performance [1,10,11]. This
stage is known as tuning process.
In most cases, a sequential process by firstly learning the RB and then tuning
the DB is considered [3].

When the RB and the DB are simultaneously derived, the strong depen-
dency of both components is properly addressed. However, the derivation pro-
cess becomes significantly more complex because the search space grows and the
selection of an appropriate search technique is crucial.

Recently, the coevolutionary paradigm [16] has shown an increasing interest
thanks to its high ability to manage with huge search spaces and decompos-
able problems. The direct decomposition of the KB derivation process (thus
obtaining two interdependent components, learning of the RB and DB) makes
coevolutionary algorithms with a cooperative approach [19] very useful for this
purpose.

In this paper, we propose a KB derivation method within this novel evolu-
tionary paradigm. Actually, a method has been already proposed by Peña-Reyes
and Sipper with this cooperative coevolutionary philosophy [18]. However, oppo-
site to it, our proposal performs a more sophisticated learning of the RB based on
the Cooperative Rules (COR) methodology [2], whose good performance is re-
lated to the consideration of cooperation among rules. Once the rule antecedents
(defining fuzzy subspaces) have been obtained, COR generates a candidate con-
sequent set for each subspace and searches the consequents with the best global
performance.

In the following sections, an introduction to coevolutionary algorithms, the
proposed KB derivation method, some experimental results, conclusions, and
further work are shown.
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2 Coevolutionary Algorithms

Evolutionary algorithms (EAs) [14] are general-purpose global search algorithms
that use principles inspired by natural population genetics. In a EA, each in-
dividual in the population represents a candidate solution to the problem and
has an associated fitness to determine which individuals are used to form new
ones in the process of competition. The new individuals are created using genetic
operators such as crossover and mutation.

Within this field, a new paradigm has been recently proposed, coevolution-
ary algorithms [16]. They involve two or more species (populations) that perma-
nently interact among them by a coupled fitness. Thereby, in spite of each species
has its own coding scheme and reproduction operators, when an individual must
be evaluated, its goodness will be calculated considering some individuals of
the other species. This coevolution makes easier to find solutions to complex
problems.

Different kinds of interactions may be considered among the species according
to the dependencies existing among the solution subcomponents. Generally, we
can mention two different kinds of interaction:

– Competitive coevolutionary algorithms [22]: Those where each species com-
petes with the remainder. In this case, increasing the fitness of an individual
in a species implies decreasing the fitness of the ones other species, i.e., the
success of somebody else entails the personal failure.

– Cooperative or symbiotic coevolutionary algorithms [19]: Those where all the
species cooperate to build the problem solution. In this case, the fitness of
an individual depends on its ability to cooperate with individuals from other
species.
Figure 1 illustrates the cooperative approach. As shown, a set of selected
individuals (called cooperators) is built in each species to represent it. Each
individual is evaluated constructing solutions with it and cooperators of the
remaining species.

Therefore, the use of cooperative coevolutionary algorithms is recommend-
able when the following issues arise [18]:

1. the search space is huge,
2. the problem may be decomposable in subcomponents,
3. different coding schemes are used, and
4. there is strong interdependencies among the subcomponents.

They also arise in problems where the training set is not known in advance,
but created by the solution to the problem themselves, e.g., when collision avoid-
ance behavior for two planes is being evolved simultaneously [7]. In that cases,
training sets are created by the other planes which are being evolved.
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Fig. 1. Cooperative coevolutionary scheme

3 A Cooperative Coevolutionary Algorithm for Jointly
Learning Fuzzy Rule Bases and Membership Functions

Intuitively, we may decompose the problem of deriving a proper KB for an FRBS
into two subtasks: to obtain fuzzy rule symbolic representations (learning the
RB) and to define membership function shapes (learning the DB). Therefore,
our coevolutionary algorithm consists of two species that cooperate to build the
whole solution.

In the following subsections, a formulation for both learning tasks and the
components of the cooperative coevolutionary algorithm are introduced.

3.1 The Knowledge Base Derivation Process

Learning Fuzzy Rule Bases

The RB learning task is based on the COR methodology [2]. Let E be the input-
output data set, el = (xl

1, . . . , x
l
n, y

l) on of its elements (example), and n be the
number of input variables. Let Ai be the set of linguistic terms of the i-th input
variable and B the set of linguistic terms of the output variable. Its operation
mode is the following:

1. Define a set of fuzzy input subspaces, {Ss | s ∈ {1, . . . , NS}}, with the an-
tecedent combinations containing at least a positive example, i.e., Ss =
(As
1, . . . , A

s
i , . . . , A

s
n) ∈ A1 × . . . × An such that E′

s �= ∅ (with As
i being

a label of the i-th input variable, E′
s being the set of positive examples of

the subspace Ss, and NS the number of subspaces with positive examples).
In this contribution, we will define the set of positive examples for the sub-
space Ss as follows:

E′
s = {el ∈ E | ∀i ∈ {1, . . . , n},

∀Aij ∈ Ai, µAs
i
(xl

i) ≥ µAij (x
l
i)} ,
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with Aij being a label of the i-th input variable and µT the membership
function of the label T .

2. For each subspace Ss, obtain a set of candidate consequents (i.e., linguistic
terms of the output variable) Bs to build the corresponding fuzzy rule.
In this contribution, we will define the set of candidate consequents for the
subspace Ss as follows:

Bs = {Bk ∈ B | ∃els ∈ E′
s where

∀Bl ∈ B, µBk
(yls) ≥ µBl

(yls)} ,
with Bk being a label of the output variable.

3. Perform a combinatorial search among these sets looking for the combination
of consequents (one for each subspace) with the best global accuracy.

For example, from the subspace Ss = (high, low) and the candidate conse-
quent set in such a subspace Bs = {small,medium, large}, we will obtain the
fuzzy rule:

Rs = IF X1 is high and X2 is low THEN Y is Bs,

with Bs ∈ Bs being the label selected by the combinatorial search to represent
to the subspace Ss.

Learning Fuzzy Membership Functions

In our case, the derivation of the DB involves determining the shape of each
membership function. These shapes will have a high influence in the FRBS per-
formance. In this contribution, we will consider triangular-shaped membership
functions as follows:

µT (x) =




x−a
b−a , if a ≤ x < b

c−x
c−b , if b ≤ x ≤ c ,

0, otherwise

Therefore, different values of the parameters a, b, c will define different shapes
of the membership function associated to the linguistic term T .

3.2 The Cooperative Coevolutionary Algorithm

Cooperative Interaction Scheme between Both Species

Let Fij be the FRBS obtained by composing the subcomponents encoded in
the chromosomes i and j of the species 1 (RBs) and 2 (membership functions),
respectively. The objective will be to minimize the well-known mean square error
(MSE):

MSEij =
1

2 ·N
N∑

l=1

(
Fij(xl) − yl

)2
,
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Fig. 2. Interaction scheme considered in the learning method

with N being the data set size, Fij(xl) being the output obtained from the
designed FRBS when the l-th example is considered, and yl being the known
desired output.

Each individual of species 1 or 2 is evaluated with the corresponding fitness
function f1 or f2, which are defined as follows:

f1(i) = min
j∈R2∪P2

MSEij

f2(j) = min
i∈R1∪P1

MSEij

with i and j being individuals of species 1 and 2 respectively, R1 and R2 being
the set of the fittest individuals in the previous generation of the species 1 and
2 respectively, and P1 and P2 being individual sets selected at random from
the previous generation of the species 1 and 2 respectively. Figure 2 graphically
shows the proposed interaction scheme.

Whilst the sets R1|2 allow the best individuals to influence in the process
guiding the search towards good solutions, the sets P1|2 introduce diversity in
the search. The combined use of both kinds of sets makes the algorithm have
a trade-off between exploitation (R1|2) and exploration (P1|2). The cardinalities
of the sets R1|2 and P1|2 are previously defined by the designer.
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A generational [14] scheme is followed in both species. Baker’s stochastic
universal sampling procedure together with an elitist mechanism (that ensures
to select the best individual of the previous generation) are used.

The specific operators used in every species are described in the following
sections.

Species 1: Learning Fuzzy Rule Bases

An integer-valued vector (c) of size NS (number of subspaces with positive ex-
amples) is employed as coding scheme. Each cell of the vector represents the
index of the consequent used to build the rule in the corresponding subspace:

∀s ∈ {1, . . . , NS}, c[s] = ks s.t. Bks
∈ Bs.

The initial pool of this species is generated building the first individual as
follows

∀s ∈ {1, . . . , NS},
c1[s] = arg

ks

max
Bks ∈Bs

CV (Rs
ks),

with
CV (Rs

ks) =
max

els ∈E′
s

Min
(
µAs

1
(xls

1 ), . . . , µAs
n
(xls

n ), µBks (yls)
)
,

and the remaining chromosomes generated at random:

∀p ∈ {2, . . . , pool size}, ∀s ∈ {1, . . . , NS},
cp[s] = some ks s.t. Bks ∈ Bs.

The standard two-point crossover operator is used. The mutation oper-
ator randomly selects a specific s ∈ {1, . . . , NS} where |Bs| ≥ 2, and changes at
random c[s] = ks by c[s] = ks′ such that Bks′ ∈ Bs and ks′ �= ks.

Species 2: Learning Fuzzy Membership Functions

As coding scheme, a 3-tuple of real values for each triangular membership
function is used, thus being the DB encoded into a real-coded chromosome built
by joining the membership functions involved in each variable fuzzy partition. A
variation interval to every gene is associated to preserve meaningful fuzzy sets.

The initial population of this species is generated with a chromosome
representing the original DB and the remaining chromosomes generated with
the values at random within the corresponding variation interval.

The max-min-arithmetical crossover operator [10] is considered. If Ct
v =

(c1, . . . , ck, . . . , cH) and Ct
w = (c′1, . . . , c

′
k, . . . , c

′
H) are to be crossed, the following

four offspring are generated:

Ct+1
1 = aCt

w + (1 − a)Ct
v, Ct+1

2 = aCt
v + (1 − a)Ct

w,

Ct+1
3 with ct+13,k = min {ck, c′k}, Ct+1

4 with ct+14,k = max {ck, c′k}.



318 J. Casillas et al.

The parameter a is defined by the designer. The resulting descendents are the
two best of the four aforesaid offspring. As may be observed, its formulation
avoids the violation of the restrictions imposed by the variation intervals.

With respect to the mutation operator, it simply involves changing the
value of the selected gene by other value obtained at random within the corre-
sponding variation interval.

4 Experimental Results in the Electrical Maintenance
Cost Estimating Problem

This experimental study will be devoted to analyze the behavior of the proposed
derivation method — jointly learning the RB following the COR methodology
and the membership functions — with cooperative coevolutionary algorithms
(CORMF-CC). With this aim, we have chosen the problem of estimating the
maintenance costs of the medium voltage electrical network in a town [5].

We will analyze the accuracy of the fuzzy models generated from the pro-
posed process compared to the four following methods: the well-known ad hoc
data-driven method proposed by Wang and Mendel (WM) [25]; a GA-based
learning method following the COR methodology (COR-GA) [2]; and two se-
quential methods, WM+Tun and COR-GA+Tun, that firstly perform a learning
of the RB with WM or COR-GA, respectively, and then adjust the membership
functions with the tuning method proposed in [3].

With respect to the FRBS reasoning method used, we have selected the min-
imum t-norm playing the role of the implication and conjunctive operators, and
the center of gravity weighted by the matching strategy acting as the defuzzifi-
cation operator.

4.1 Problem Description

Estimating the maintenance costs of the medium voltage electrical network in a
town [5] is a complex but interesting problem. Since an actual measure is very
difficult to obtain, the consideration of models becomes useful. These estimations
allow electrical companies to justify their expenses. Moreover, the model must
be able to explain how a specific value is computed for a certain town. Our
objective will be to relate the maintenance costs of medium voltage line with the
following four variables: sum of the lengths of all streets in the town, total area
of the town, area that is occupied by buildings, and energy supply to the town.
We will deal with estimations of minimum maintenance costs based on a model
of the optimal electrical network for a town in a sample of 1,059 towns.

To develop the different experiments in this contribution, the sample has been
randomly divided in two subsets, the training and test ones, with an 80%-20%
of the original size respectively. Thus, the training set contains 847 elements,
whilst the test one is composed by 212 elements. Five linguistic terms for each
variable are considered.
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4.2 Experimental Results and Analysis

The following values have been considered for the parameters of each method:

– COR-GA: 61 individuals, 50 generations, 0.6 as crossover probability, and
0.2 as mutation probability.

– Tuning stage of the WM+Tun and COR-GA+Tun methods: 61 individuals,
300 generations, 0.6 as crossover probability, 0.2 as mutation probability,
0.35 for the weight factor in the max-min-arithmetical crossover, and 5 for
the weight factor in the non-uniform mutation.

– CORMF-CC: 62 individuals (31 for each species), 300 generations, 0.6 and
0.2 for the crossover and mutation probabilities in both species respectively,
0.35 for the weight factor of the crossover operator in the species 2, the two
fittest individuals (|R1|2| = 2) and two random individuals (|P1|2|=2) of each
species are considered for the coupled fitness.

Ten different runs were performed for each probabilistic algorithm. The re-
sults obtained by the five methods analyzed are collected in Table 1, where
MSEtra and MSEtst respectively stand for the error obtained over the training
and test data sets. Arithmetic mean (x̄) and standard deviation (σ) values of
the 10 linguistic models generated by each method are included. The best mean
results are shown in boldface. A total of 66 fuzzy rules were obtained in all cases.

Table 1. Results obtained in the electrical problem

MSEtra MSEtst

Method x̄ σ x̄ σ

WM 71,294 0 80,934 0
COR-GA 67,237 0 69,457 0
WM+Tun 24,667 1,350 34,143 2,452
COR-GA+Tun 24,255 1,349 31,393 2,831
CORMF-CC 15,435 1,094 22,573 1,557

In view of the obtained results, the CORMF-CC method shows the best per-
formance combining both approximation (MSEtra) and generalization (MSEtst).
Analyzing the two-stage methods (WM+Tun and COR-GA+Tun), we may ob-
serve how the tuning process significantly improve the accuracy degrees of the
fuzzy models generated by the WM and COR-GA learning methods. However,
when the derivation process is made in only one stage with the cooperative coevo-
lutionary approach, the fuzzy model obtained overcomes the remainder thanks
to the proper consideration of the dependency between the RB and the DB in
the learning process. Moreover, the low standard deviations obtained show the
robustness of the CORMF-CC algorithm.

Figure 3 illustrates the DB derived by the CORMF-CC method. Using the
shown membership function shapes a good interpretability is kept up whilst the
fuzzy model performance is improved.
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Fig. 3. KB derived by the CORMF-CC method, where V S stands for very small, S
for small, M for medium, L for large, and V L for very large

5 Concluding Remarks and Further Work

A KB derivation method that jointly learns the fuzzy rules and membership
functions involved in an FRBS has been proposed. The fact of performing these
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tasks together allows the method to consider the tight relation between both
components, thus obtaining better fuzzy models. However, this joint considera-
tion becomes more difficult since the search space is significantly increased, thus
being crucial the selection of a proper technique.

As David Goldberg stated, the integration of single methods into hybrid
intelligent systems goes beyond simple combinations. For him, the future of
Computational Intelligence “lies in the careful integration of the best constituent
technologies” and subtle integration of the abstraction power of fuzzy systems
and the innovating power of genetic systems requires a design sophistication that
goes further than putting everything together [9].

In this contribution, this issue is addressed by using a cooperative coevo-
lutionary approach with a sophisticated rule learning component based on the
cooperation among the fuzzy rules derived. The good performance of the method
compared with other classical hybridizations has been shown when solving a real-
world problem. Nevertheless, the proposed modeling approach can be applied to
other system modeling problems.

As further work, we propose to extend the components of the KB to be
derived (number of labels, more flexible fuzzy rules, etc.), to consider other
metaheuristics to adapt each species, and to improve the interaction scheme for
a better interdependency consideration and scalability to more than two species.
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