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Abstract

This paper presents the use of weighted double-
consequent rules for linguistic modeling with the
aim of improving the accuracy of the so obtained
models. However, the use of these kinds of rules
significantly increases the solution search space
since weights and double-consequents have to be
considered in addition to the traditional approach.
To solve this problem, a simple genetic algorithm
and a cooperative coevolutionary technique have
been proposed and tested with experimental re-
sults.
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1 Introduction

One of the problems associated with linguistic
modeling (LM) is its lack of accuracy in some
cases. It is due to the inflexibility of the concept of
linguistic variable, which imposes hard restrictions
to the rule structure [1]. However, improvements
in the LM making more flexible the rule structure
can significantly increase the accuracy of the ob-
tained model with a slight description loss [2].

Two specific possibilities to relax the model
structure are the following;:

e Use of double-consequent rules, which in-
volves allowing the model to present rules
where each combination of antecedents may
have two consequents associated when it im-
proves the model accuracy. This approach
has been recently proposed in [5, 12].

e Consider weighted rules by giving a certainty
factor to each rule involved in the model, i.e.,
using an additional parameter for each rule
that indicates its importance degree in the
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inference process [4, 13, 20], instead of con-
sidering all rules equally important as in the
usual case.

It is clear that both possibilities will improve
the capability of the model to perform the inter-
polative reasoning and, thus, its performance. As
can be seen, these two approaches are not incom-
patible and a combination of them would be very
interesting. In this way, even more flexible rules
would be obtained, thus involving a potential im-
provement of the accuracy.

This contribution propose to address both
approaches designing weighted double-consequent
rules for LM. This task could be performed by a
simple genetic algorithm (GA) [11] that encodes
the proposed kind of rule.

However, in LM, the use of weights and double-
consequents significantly increases the solution
search space since new parameters are considered
in addition to the traditional approach.

Recently, an advanced evolutionary technique,
the cooperative coevolution [14, 16, 15], has been
proposed to solve problems with a large search
space by independently evolving two or more
species which together comprise solution struc-
tures.

We will use this novel technique to generate lin-
guistic models with the said extended structure
by using a preliminary fuzzy rule set with a large
number of simple and double-consequent rules and
coevolving two species, the subset of rules best
cooperating and the weights associated to these
rules.

The paper is organized as follows. In Section 2,
the said specific possibilities to relax the model
structure are presented. In Section 3, the weighted
double-consequent rule structure is proposed, as
well as two concrete evolutionary learning meth-
ods. Experimental results are shown in Section 4,
whilst some concluding remarks are pointed out in
Section 5. Coevolutionary algorithms are briefly
presented at Appendix A.



2 Preliminaries

2.1 Double-Consequent Fuzzy Lin-
guistic Rules

More flexible rules may be obtained allowing
the linguistic model to present rules where each
combination of antecedents may have two conse-
quents (linguistic terms of the output variable)
associated [5, 12]. The rule structure obtained is:

IF X;is A; and ... and X, is 4,
THEN Y is {B;,B-},

with X; (Y) being the linguistic input (output)
variables, A; being the linguistic label used in the
i-th input variable, and B; and Bs the two lin-
guistic terms associated to the output variable.

The use of two consequents has no influence
on the linguistic model inference system. The
only restriction imposed is that the defuzzifica-
tion method must consider the matching degree
of the rules fired, for example, the center of grav-
ity weighted by the matching degree defuzzification
strategy [6] may be used.

We should note this structure does not consti-
tute an inconsistency from the LM point of view
but only a shift of the main labels making the fi-
nal output of the rule lie in an intermediate zone
between both consequents.

The consideration of this structure to generate
advanced linguistic models is initially proposed
in [12]. Another approach, according to the Ac-
curate Linguistic Modeling (ALM) methodology,
is introduced in [5]. This methodology consist of
two steps:

1. Firstly, two rules, the primary and secondary
in importance, are obtained in each combina-
tion considering a specific generation process.
In this contribution, the generation process
proposed by Wang and Mendel [18] is consid-
ered.

2. Then, after decomposing each double-
consequent rule into two independent simple
ones, the selection process proposed in [10] is
employed to select a subset of rules presenting
good cooperation.

It is based on a binary-coded GA where each
gene indicates if the corresponding rule is con-
sidered or not to belong to the final rule base.
Appropriate selection and recombination op-
erators are used.

2.2 Weighted
Rules

Fuzzy  Linguistic

Another possibility to extend the classical model
structure making it more flexible is to wuse
weighted rules [4, 13, 20]. Its structure is:

IF X, is Ay and ... and X,, is 4,
THEN Y is B with [w],

with w being the real-valued rule weight, and with
the operator that attaches a weight to a rule.

With this structure, the fuzzy reasoning must
be extended. A possibility is to infer with the
FITA (First Infer, Then Aggregate) scheme [6]
and compute the defuzzified output as the follow-
ing weighted sum:
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with yo being the crisp value obtained from the
defuzzification process, m; the matching degree of
the rule i, w; the weight associated to the rule ¢,
and P; the characteristic value of the output fuzzy
set corresponding to the rule ¢. In this contribu-
tion, the center of gravity will be considered as
characteristic value [6].

These weights are usually used to handle incon-
sistencies with advanced inference methods [20]
or neural networks [4]. Moreover, some propos-
als make use of them to improve the model accu-
racy with an automatic learning of weights using
different techniques such as gradient descent pro-
cesses [13].

3 Evolutive
of Weighted
Consequent Rules

Learning
Double-

This section proposes the use of a more flexible
model structure that combine the two said ap-
proaches, thus having weighted double-consequent
rules with the following structure:

IF X, is Ay and ... and X, is 4,
THEN Y is {By, Bo} with [w, ws],

with w; and wy being the weights associated to
the rules composed using the consequents B; and
B,, respectively. Therefore, a weighted double-
consequent rule can be seen as two weighted
single-consequent rules with the same antecedent
and different consequents.



To generate linguistic models with this new
structure, we may follow an operation mode sim-
ilar to the said ALM methodology [5], but in-
cluding the weight learning. Therefore, after
performing the first step of the ALM method-
ology, where an initial set of numerous double-
consequents rules is generated, the two following
tasks must be performed:

o Selection of a subset of rules presenting good
cooperation.

e Learning of the weights associated to these
rules.

These interdependent tasks significantly in-
creases the search space making the selection of
the used search technique crucial.

In the following two subsections, we introduce
two evolutionary approach to our learning prob-
lem: a simple GA (evolving the said tasks to-
gether) and a cooperative coevolutionary algo-
rithm (simultaneously evolving both tasks).

3.1 A Simple Genetic Algorithm

A simple GA performing the rule selection to-
gether with the learning of weights was developed
as first approximation to the problem. Genera-
tional and steady-state [19] approaches was con-
sidered, obtaining best results in the latter case.

A double coding scheme (CS; +CSs) for both
rule selection and weight learning is used:

e For the CS; part, the coding scheme gener-
ates binary-coded strings of length m (num-
ber of single-consequent rules in the rule set
previously derived). Depending on a rule is
selected or not, the alleles “1”7 or “0” will be
respectively used in the corresponding gene.

e For the CS, part, the coding scheme gener-
ates real-coded strings of length m. The value
of each gene indicates the weight used in the
corresponding rule. These values may take
any value in the interval [0, 1].

The initial pool is generated with an individ-
ual having all genes with the value “1” for both
coding schemes, and the remaining individuals
with values at random.

The crossover operator will depend on the
chromosome part where it is applied: in the
CS; part, the standard two-point crossover is
used; in the C'Ss part, the max-min-arithmetical
crossover [9] is considered.

As regards the mutation operator, it changes
to the opposite value of the gene in the C'S; part,
and to a value at random within the interval [0, 1]
in the CSs part.

The results obtained in a preliminary experi-
mentation were not satisfactory, presenting even
a worse behavior than a similar approach consid-
ering only weighted rules. This fact conflicts with
the intuitive idea that a more flexible structure
should provide more accurate models. Thus, the
problem seems to be in the search process, that is
not powerful enough to find better solutions.

Indeed, as David Goldberg stated, the inte-
gration of single methods into hybrid intelligent
systems goes beyond simple combinations. For
him, the future of Computational Intelligence “lies
in the careful integration of the best constituted
technologies” and subtle integration of the ab-
straction power of fuzzy systems and the inno-
vating power of genetic systems requires a design
sophistication that goes further than putting ev-
erything together [8].

Therefore, a more advanced optimization tech-
nique is needed. The following section presents a
new algorithm within the cooperative coevolution-
ary paradigm that properly achieves our objective.

3.2 The Cooperative Coevolution-
ary Algorithm

As we have seen, the problem that concern us can
be easily decomposed in two subtasks, the rule se-
lection and the learning of weights. Therefore, it
can be solved coevolving two species cooperating
to form the complete solution by selecting a set of
weighted rules. In the following subsections, the
main characteristics of the proposed cooperative
coevolutionary algorithm are presented. A brief
introduction to the evolutionary paradigm is pre-
sented in Appendix A.

3.2.1 Interaction Scheme Between Species

Let Fj; be the model obtained by combining the
chromosomes i and j of the species 1 (selected
rules) and 2 (weights). The objective will be
to minimize the well known mean square error
(MSE):
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with N being the number of training data, Fj;(z')
being the model inferred output when the input 2!
is presented, and y' the known desired output.



Thus, individuals in the species 1 and 2, are
respectively evaluated with the fitness functions
f1 and f, defined as follows:

h(i) JERsUPy Y
f2(j) = [ in, MSE;; |,

with 47 and j being individuals of species 1 and
2 respectively, Ry and R, being the set of the
fittest individuals in the previous generation of the
species 1 and 2 respectively, and P; and P> being
individual sets selected at random from the previ-
ous generation of the species 1 and 2 respectively.

Whilst the sets Ry allow the best individuals
to influence in the process guiding the search to-
wards good solutions, the sets P;)p introduce di-
versity in the search. The combined use of both
kinds of sets make the algorithm have a trade-
off between exploitation (Rj2) and exploration
(Pyj2)- The cardinalities of the sets Ry, and Py
are previously defined by the designer.

A generational GA [11] scheme is followed in
both species. Baker’s stochastic universal sam-
pling procedure together with an elitist mecha-
nism that ensures to select the best individual of
the previous generation are used.

The specific operators employed in each species
are described in the following sections.

3.2.2 Species 1: Selecting Fuzzy Rules

For the species 1, we will use the GA-based
method to select rules proposed in [5]. The used
coding scheme was introduced in Section 3.1 as
the C'S; part. Thus, a chromosome ¢} will be a
binary vector representing the subset of rules fi-
nally obtained.

The initial pool is generated at random except
for one individual, which represents the complete
previously obtained rule set:

Vke{1,...,m}, c'[k] =1,

For this species, the standard two-point
crossover operator is used. As regards the
mutation operator, it changes to the opposite
value of the gene.

3.2.3 Species 2: Learning weights

In this case, the coding scheme also was intro-
duced in Section 3.1 as the C'Sy part. Now, a
chromosome ¢ will be a real-valued vector repre-
senting the weights associated to the rules consid-
ered.

The initial pool for this species is generated
with a chromosome having all the genes with the
value “1”, and the remaining individuals with val-
ues at random within the variation interval [0, 1]:

Vk € {1,...,m}, c3[k] = 1.0,

The max-min-arithmetical crossover operator [9]
is considered. As regards the mutation opera-
tor, it simply involves changing the value of the
selected gene by other value obtained at random
within the interval [0, 1].

4 Experimental Results in
the Electrical Maintenance
Cost Estimating Problem

This experimental study will be devoted to ana-
lyze the behavior of the proposed method to learn
weighted double-consequent rules by using coop-
erative coevolutionary algorithms (WALM-CC).
With this aim, we have chosen the problem of
estimating the maintenance costs of the medium
voltage electrical network in a town [7].

We will analyze the accuracy of the linguistic
models generated from the proposed process com-
pared to the four following methods: the well-
known ad hoc data-driven method proposed by
Wang and Mendel (WM) [18], the said ALM
method [5], a simple GA that learns the weights of
the rule set derived by the WM method (WRL),
and the method proposed in Section 3.1 (WALM).

With respect to the model reasoning method
used, we have selected the minimum t-norm play-
ing the role of the implication and conjunctive op-
erators, and the center of gravity weighted by the
matching strategy acting as the defuzzification op-
erator [6].

4.1 Problem Description

Estimating the maintenance costs of the medium
voltage electrical network in a town [7] is a com-
plex but interesting problem. Since an actual mea-
sure is very difficult to obtain, the consideration
of models becomes useful. These estimations al-
low electrical companies to justify their expenses.
Moreover, the model must be able to explain how
a specific value is computed for a certain town.
Our objective will be to relate the maintenance
costs of medium voltage line with the following
four variables: sum of the lengths of all streets in
the town, total area of the town, area that is occu-
pied by buildings, and energy supply to the town.



We will deal with estimations of minimum main-
tenance costs based on a model of the optimal
electrical network for a town in a sample of 1,059
towns.

To develop the different experiments in this con-
tribution, the sample has been randomly divided
in two subsets, the training and test ones, with an
80%-20% of the original size respectively. Thus,
the training set contains 847 elements, whilst the
test one is composed by 212 elements. Five lin-
guistic terms for each variable are considered.

4.2 Experimental Results and

Analysis

The following values have been considered for the
parameters of each method:

e Rule selection step of the ALM: 61 individu-
als, 500 generations, 0.6 as crossover proba-
bility, and 0.1 as mutation probability.

e WRL: 61 individuals, 1,000 generations, 0.6
as crossover probability, 0.2 as mutation
probability, 0.35 for the weight factor in the
max-min-arithmetical crossover, and 5 for the
weight factor in the non-uniform mutation.

e WALM: 61 individuals, 1,000 generations,
0.25 as mutation probability, and 0.35 for the
weight factor of the crossover operator.

e WALM-CC: 62 individuals (31 for each
species), 1,000 generations, 0.6 and 0.2 for the
crossover and mutation probabilities in both
species respectively, 0.35 and 5 for the weight
factors of the crossover and mutation oper-
ators in the species 2 respectively, the three
fittest individuals (|R;)2| = 3) and two ran-
dom individuals (| P;}2|=2) of each species are
considered for the coupled fitness.

The results obtained by the five methods ana-
lyzed are shown in Table 1, where #R stands for
the number of rules, and MSE;,, and MSE; re-
spectively for the error obtained over the training
and test data. The best results are shown in bold-
face.

In view of the obtained results, we can see that
the ALM and WRL methods — which are re-
spectively based on double-consequent rules and
weighted rules — present significant improve-
ments over the WM method.

As regards the WALM method, the results ob-
tained were worse than the ones obtained with
WRL, when theoretically the former should obtain

Table 1: Results obtained in the electrical problem

Method | #R_ MSE,,, MSE,,
WM 66 71,294 80,934
ALM 37 64,889 70,850
WRL 66 33,639 33,319
WALM 58 38,919 40,476
WALM-CC | 59 24,961 28,225

better results. It confirms the need of a more ad-
vanced optimization technique. Indeed, analyzing
the model obtained by the WALM-CC method, we
can conclude that it presents the best performance
in both approximation (MSEy,,) and generaliza-
tion (MSEs). It is due to its ability to tackle
decomposable complex problems.

5 Concluding Remarks and
Further Works

In this paper, a new model structure using
weighted double-consequent rules has been pro-
posed with the aim of improving the performance
of the so obtained models. Its main interest lies in
the fact of making more flexible the model struc-
ture in a different way of the usually considered
ones (e.g., learning fuzzy membership functions).

The proposed model involves, however, tackling
an enlarged search space, thus being the selection
of a proper technique crucial. To address this
fact, a cooperative coevolutionary method have
been proposed. Its good accuracy results, com-
pared with other related approaches, has been
contrasted when solving a real-world problem.

As further works, we propose to adding other
mechanisms that make more flexible the linguistic
models, for example with the learning method of
membership functions proposed in [3]. Thus, even
more accurate linguistic models could be obtained.

A Coevolutionary Algo-

rithms

GAs [11] are general-purpose global search algo-
rithms that use principles inspired by natural pop-
ulation genetics. In a GA, each individual in the
population represents a candidate solution to the
problem and has an associated fitness to deter-
mine which individuals are used to form new ones
in the process of competition. The new individ-



uals are created using genetic operators such as
crossover and mutation.

Within this field, a new paradigm has been re-
cently proposed, coevolutionary algorithms [14].
They involve two or more species (populations)
that permanently interact among them by a cou-
pled fitness. Thereby, in spite of each species has
its own coding scheme and reproduction opera-
tors, when an individual must be evaluated, its
goodness will be calculated considering some in-
dividuals of the other species. This coevolution
makes easier to find solutions to complex prob-
lems.

Different kinds of interactions may be consid-
ered among the species according to the dependen-
cies existing among the solution subcomponents.
Generally, we can mention two different kinds of
interaction:

e Competitive coevolutionary algorithms [17]:
Those where each species competes with the
remainder. In this case, increasing the fitness
of an individual in a species implies decreas-
ing the fitness of the ones other species, i.e.,
the success of somebody else entails the per-
sonal failure.

e Cooperative or symbiotic coevolutionary algo-
rithms [16]: Those where all the species co-
operate to build the problem solution. In this
case, the fitness of an individual depends on
its ability to cooperate with individuals from
other species.

Therefore, the use of cooperative coevolutionary
algorithms is recommendable when the following
issues arise [15]:

1. the search space is huge,

2. the problem may be decomposable in sub-
components,

3. different coding schemes are used, and

4. there is strong interdependencies among the
subcomponents.
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